
PH YSICAL RKVIK% 8

articles is foao~ed, and page proofs are sent to authors.

Comment on "Relationship between two-body interatomic potentials in a lattice model and
elastic constants"

M. M. Shukla
Instituto de Es'sica "Gleb 8'utaghin, "Uniuersidade Estadual de Campinas, C.P. /I 70, 13100Campinas, S.P., Brazil

(Received 13 June 1979; revised manuscript received 9 December 1980j

Thomas had considered the volume-dependent energy of metals, E„, given by E„=(V/VoI", with n = —2/3.
Johnson, on the other hand, shows n = 1, Correct interpretation of his results restores the value of n given by
Thomas.

In the past, several attempts have been made to
correlate the two-body pair potential in a solid
with its elastic constants. The case of metals was
more complicated as it has offered severe diffi-
culties due to the presence and influence of con-
duction electrons. Fuch's' work on monovalent
metals has demonstrated clearly that total inter-
atomic interactions in metals could be divided
into two parts, i.e., the central interaction (inter-
tonlc} and the noncentral (volume-dependent) or
electron-ion interaction. Fuchs's' work has been
used invariably by subsequent workers i.n the lat-
tice dynamics in metals. ' ' Quite recently Thom-
as' and Johnson' ' have adapted a different way to
express the volume-dependent part of the inter-
atomic interaction. Thus they took
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where E„ is the potential energy describing elec-
tron-ion interaction, I' is a constant, and V and

Vp are, respectively, the deformed and unde-
formed volume of the metal. While Thomas' has
pointed out that the most probable value of n is
——',, Johnson' has shown [his equation (25)] that
n = 1 is the best choice to reproduce the results
given by Thomas' and others. As a matter of fact,
n =-—,'is the correct result on the model of John-
son' also. This is demonstrated here. To show
our point, let us write the equation numbers (8b),
(8c), and (Bd) from the paper of Johnson' which are

pp S 2 ~S 2+ +2g
1

P S

P ger (&s)2(y8)2
1

(Id)

In these equations, g" (r')2 and t/j" (g'}'(y')2 are the
functions of the lst and 2nd derivatives of the in-
terionic potential of the metal. C,.z are the elastic
constants of the metal.

These equations could be rewritten-in a form
suggested by Martin'.

c„=(c„)"+p, + ~. ,

c„=(c„)--p,+ f„
c„=(c„)"+ p, .

(2b)

(2c)

P, + 0, = n(n —2}P,
-P, + k, = g I',
p =-gI .

Equations (3) give readily

(3a)

(3b)

(3c)

(3d)0, = n(n- 1}P.
Equations (3c) and (3d) are exactly the same re-

lations Rs ObtMned by Thomas by his equations
(8) and (5). A look at Eq. (3c) and (3d) shows that

In above equations (C,&)" describe the values of
the elastic constants calculated on short-range
interaction, i.e., interionic interaction.

A direct comparison. of the pairs of equations
(1b) and (2a), (1c) and (2b), and (ld) and (2c) would
give
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in order to determine the value of n, we must es-
tablish a relation between P, and k,. Following
de Launay, ' we have for a free-electron-gas metal

By substituting in Eq. (4}, the relation (Sc) and

(M) we have

-nP=~53 (n —l)P

or

It is commonly used in the literature.
Finally, I totally agree with Johnson' ' that more

than one volume-dependent energy term should be
considered in Eq. (l} for real solids. This point
is elaborated for metals in the following. The to-
tal energy of electrons in a metal is given by'
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2n 3 0 (sb) Equation (6) can be written approximately

I would point out the most probable reason which
led Johnson to choose n =1. From the set of Eqs.
(l) and (2), we have apparently two different, but
eventually the same, expressions for the Cauchy
deviations, i.e.,

C„-C„=n(n+ l)P,
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Remembering that r, = (2F/4')'~', k~ = (9v/4)'~'v', ',
c~=h'kz/2m, Eq. (9) can be transformed to

(6b)C~2 —C44=-2p +k, .
Johnson' was looking for a result [Eq. (9) of Thom-
~'1

E„=P (lo)

(7)

That is why he tookn = l in Eq. (6a).
He did not realize that P appearing in Eq. (6a)

and (7) are different, i.e., P of Eq. (7) is actually
eq~al to 2 (-2p, +k,). l need not tell that the value
of n = =, is not the unique value of n for metals.

Comparison of Eqs. (l) and (l0} tells that for the
metals we must have at least two volume-depen-
dent terms with n, ==,' and n, =-—,'. A more accu-
rate expression for E„ from the work of Gell-
Mann and Brueckner" would lead to one more
value of n.
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