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A quantum transport theory for electric conductivity in semiconducting thin films is presented
when the de Broglie wave)ength of a thermal electron becomes comparable to the thickness of
the film and size quantization is important. The theoretical results obtained are inalyzed for the
electron scattering by acoustic phonons and point defects represented by a 8-function potential.
In the ultra-thin limit (UTL)„ the resistivity in the longitudinal configuration (when current
floes parallel to the plane of the thin film) is found to be inversely proportion il to the thickness
of the film. In the transverse configuration (when current flows perpendicular to the plane of
the thin film) the resistivity in UTL is inversely proportional to d when 3eo &)h/7, where d is

the thickness of the film, eo is the ground-state energy of the electron confined to a box of
length d, and ~ is the relaxation time. %hen 3~0 &&h/~, the resistivity is found to be inversely

proportional to d.

I. INTRODUCTION

In semiconductors, when the de Broglie wavelength
A.~ of an electron is much smaller than the size of
the sample d (h.o « d), the electron is considered
to be a classical particle and hence the transport prop-
erties are normally calculated by using the semiclassi-
cal Boltzmann transport equation' (BTE) and reason-
able agreement is obtained with the experimental
results. The validity of this transport equation has
been questioned by many ~orkers in the past. A re-
view paper by Dresden' discusses in detail various as-
sumptions and approximations implicit in a semiclas-
sical equation of the Boltzmann type, including the
relaxation-time approximation, which are not always
satisfied. Classical arguments are not valid in the
domain where quantum effects are important. For
example, when AD of an electron becomes compar-
able to its radius in a magnetic field, a large range of
quantum phenomenon has been observed. Similar-

ly, when AD becomes comparable to the dimensions
in which electron is confined, the wave character of
the electron as obtained from the solution of the
Schrodinger equation should be taken into account.
In this paper, we investigate the quantum size effect
(QSE) when h, o & d, and study the transport proper-
ties of quasi-two-dimensional (QTD) gas confined to
a thin film of thickness d.

QSE and perspectives of-its practical applications
have been discussed in a review article by Elinson
er al. These authors have indicated that QSE reveais
itself in the fact that microscopic characteristics of the
carrier gas (electron or hole) in films, such as ther-
modynamical coefficients, kinetic coefficients, optical
properties, etc. , depend on the film thickness. In the
case of a degenerate gas, these functions are of an
oscillatory type; while in the nondegenerate case, a

monotonically increasing or decreasing behavior on
film thickness may be observed. ' ' Larsen' has re-
viewed the classical and the quantum size effects and
their relationship with the transport coefficients in

metals, Fivaz and Schmid have presented the
scattering effects in two- and three-dimensional limits
and have studied the anisotropy of the mobility of a
layered structure in terms of an overlap integral.
Sandomirskii' has considered QSE in a semimetal
film and has obtained formula for the carrier density,
electric conductivity, the Hall coefficient, and the
magnetoresistance for the case of electrons being
scattered by randomly distributed centers with 5 po-
tential. A theoretical study of QSE describing the
electric field effect in thin films of bismuth is
presented by Freeman and Gettys, who have shown
that the film conductance shows abrupt changes with
applied field for thickness which have the Fermi level
close to a step in the electronic density of states.
Dorda9 has outlined the analogy of QSE in thin sem-
iconductor films to the quantum effect in surface
inversion layers, where electrons-are shown to
behave like a two-dimensional (2D) gas.

In spite of the large amount of work on metal and
semimetal films, little attention has been devoted to
the transport properties of electrons confined to sem-
iconducting thin films and its relationship to the bulk
properties. We will, therefore„ in this paper study
some of these properties. In Sec. II, we indicate
transport properties of a quasi-two-dimensional
(QTD) gas when electrons are constrained to move
in a plane, i.e., their motion perpendicular to the
plane is neglected. We will call this QTD-I model.
In Sec. III, we indicate quantum properties of a
QTD gas when electronic motion perpendicular to the
film is quantized like in a one-dimensional box. This
model is characterized as QTD-ll. Also, we study in
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Sec. III the electric conductivity in the longitudinal
configuration for a QTD-II gas, when current flows
parallel to the plane of the film by using the BTE.
QTD-II gas is shown to behave somewhat like a
QTD-I gas under the assumption of a nondegenerate
semiconductor in the ultra-thin limit (UTL), when all

the electrons are assumed to populate the ground-
state energy level. In Sec. IV; we use the more so-
phisticated approach, that of the density matrix, to
study electronic transport properties. It is indicated
that this quantum-statistical approach gives results
equivalent to those obtained by the BTE for the long-
itudinal configuration only. But, this approach also
gives results in the transverse configuration which
otherwise could not be obtained from the BTE. The
use of the eigenfunction in QTD-II model may be
questionable in transverse configuration near the
contacts, although they may give reasonably good
description away from the contacts. The analysis of
the final results in UTL is presented.

an electron with effective mass m, and A = ab is the
area of the rectangular plane of length a and breadth
b. In the above representation, the matrix elements
of the velocity components v„and v~ are

(a'lv„la) = (ta„/m")s„,„,
(k'

I ~, lk ) = (tk, /m" )s„„.
(2.3)

(2.4)

The density of states function Np(e) describing the
number of states per unit energy interval is given by

Np(e) —= XS(e —ek) =Am "/rrt',
k,s

(2.5)

where s stands for spin, giving a degeneracy factor of
2 for an electron.

The equilibrium statistical energy distribution
fp(ek) of electrons in QTD-I model, in the general
case, is described by Fermi-Dirac distribution func-
tion:

fp(ek ) = I/ l e,xp[ (6k —g)/ks T ] + I ] (2.6)

II. QTD-I MODEL

Pk= (I/A )' 'exp(ik„x+ikry)

&„=t2(k2+ a ')/2m',
(2.1)

(2.2)

where k = (k„,kr) is a 2D wave vector characterizing

When electrons are constrained to move in two di-

mensions their two-dimensional behavior is charac-
terized by eigenfunctions pk and eigenvalues 6k'.

with (, the Fermi energy, as obtained from the nor-
malization condition X„,fp(ek) = N, where N is the
total number of electrons, given by

I:= ks T In[exp(rrt'n, /m'ks T ) —I ] (2.7)

where n, = N/A is the surface density of carriers and
T is the temperature. Equation (2.7) can be approxi-
mated for strongly degenerate and nondegenerate
cases as follows:

trrt'n, /m" for rrt'n, /m "ks T )) I (degenerate case)

jiks T In(rrt'n, /m'ks T) for rrt'n, /m "ks T &( I (nondegenerate case)

(2.8)

(2.9)

The steady-state Boltzmann transport function for
an electric field S„applied in the x direction, as ob-
tained from BTE, is given by7

l

rule:

(2.11)
hk„9fpf (ek) f0(ek) +«.
fPf 86k

(2.10)

where —e is the electronic charge, and r(ek) as a
function of energy is obtained from Fermi's golden

for isotropic scattering. V describes the interaction of
an electron with lattice imperfections. For an electron
interacting with acoustic phonons, r (ek) is given by

~ '(~k)= X ](~'lexp(iq ~ r ) la)]'q[(N, +1)S(e —e +tc«0) +N, S(e,—e tee, )]-
, pUAd

(2.l2)

where E] is the deformation potential constant, p is
the bulk density of the crystal, U is the sound veloci-

ty in the bulk crystal, d is the thickness of the plate
in which electrons are confined, q = (q„,q~) is the
momentum-of the phonon, tee, is the energy of pho-
non, and N~ is the number of phonons with wave
vector q. la) stands for lk [N, j) where (N, ]

T«(ek) =m E'asT/pU t d (2.13)

(QTD —I acoustic phonons)

I

describes the lattice eigenfunctions. In the elastic
limit (k~q (( ~ ) at high temperatures
(N, +1=N, = ksT/tUq), r,,' evaluated as follows:
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a result which agrees with that obtained by Kawaji. '

For a 5-function potential (point-defect scattering),
the result obtained is o, = n, e r/m "d (2.16)

leads to an expression for conductivty cr, (J = o-,S„)

vg,
' =,t, V(~)m'/t3d

(defect scattering in QTD —I)

(2.14)
for energy-independent 7 given by Eq. (2, 13) or Fq.
(2.I4), which can be written in final form as

where n; = N;/ V is the volume density of the defects.
v is independent of energy for both types of scatter-
ing in the QTD-I model.

The electric current density, as obtained from

J„=— Xf (eb) (tk„/m')Adq'

g $

n, e'p U't'/m 'E(ks T (acoustic phonons)
(2.17)

n, e t /m" n; Vo (point defects) . (2.18)

r

e'
X

tkx B.fo )
AD -„, m' 8 g,

(2.15) Comparing the above expression with the bulk con-
ductivity

t4ne'p U'rrt'/3 (2n m'ka T ) 'I'm" E~'ks T (acoustic phonons)
(7$

[4ne mt /3(2rrm kaT)'I~m' n; Va (point defects)

(2.19)

(2.20)

we obtain the ratio of surface resistivity, p, to bulk
resistivity p~, in both cases, equal to

with

pz/pb = o b/o z
= 4'«D/3d

«, =t/(2m"k, r)'I' .

(2.21)

(2.22)

The ratio p, /p, is, therefore, proportional to «/do
and hence is a linearly increasing function of inverse
thickness d '. No conductivity is obtained in the
transverse configuration (when electric field is ap-
plied perpendicular to the film) as the motion of the
electrons is constrained in XY plane only.

III. QTD-II MODEL

In QTD-II model, the energy of electron gas is

quantized in the direction of the thin film of thick-
ness d. Assuming the plane of the thin film to be
perpendicular to z axis with its boundaries at z = 0
and z = d, the eigenfunctions p«and eigenvalues Ell,

are obtained as

ytb=(2/0)'I exp(ik„x+ik~y) si (nl za/d}

eg, =t (k„+ky )/2m + lzeo, I = I, 2, 3, . . . ,

ea =- rrttz/2m'dz

(3.1)

(3.2)

(3.3)

where 0 =abd is the volume of the film, and eo is
the ground-state energy of the electron confined to
one-dimensional box of thickness d. The matrix ele-
ments of the velocity components v„, v~, and v, are
given by

(I'k'~ v„~ Ik ) = (tk„/m") 5...5„,„ (3 4)

( I'k'
i u i lk ) = (tk /m" )5, ,5„, (3.5)

(I'k'I v, Ilk ) = 2tll' [l —

exp[in�

(I'—I ) ] }/im'd (I'I') 5„,„
=0 when I'= I (3.6)

I

We see from Eqs. (3.4)—(3.6) that the matrix ele-
ments of v and v~ are diagonal in the representation
of Eq, (3.1), but for v„ the diagonal components
vanish. Thus, as we will see, BTE can be applied to
obtain expectation values of v and v~ when elec-
trons are driven out of equilibrium by the application
of electric field parallel to the film (longitudinal con-
figuration). But, BTE cannot be used for the
transverse configuration when current flows perpen-
dicular to the film. As stated in Sec. I, eigenfunc-
tions of Eq. (3.1) are not good near the contacts in

transverse case, they may give reasonably good
description away from the contacts.

The density of states function N (e) for QTD-II is

given by

N (e) = No[@ e/eo] (3.'7)

1

I'&o
N k TO/sin I +exp =N

l I kaT
(3.8)

For a nondegenerate semiconductor [exp(( —eo)/ka T

where No =m'A/nt' is the constant density of states
for 2D gas in QTD-I model, and [Je/ebl is integral
part of Je/eo. This function, along with that in

QTD-I and that for the bulk semiconductor is indicat-
ed graphically in Fig. 1. We see from that plot, that
for a 3D gas, this function is a monotonically increas-
ing function [N(e) —etiz] in energy, whereas for
QTD-II this function has discontinuities for energies
corresponding to the bottom of each subband charac-
terized by quantum number I. The constant density
of states in QTD-I model is equal to that correspond-
ing to the ground-state energy eb of QTD-II gas.

Fermi energy ( for QTD-II gas can be calculated
from the following equation obtained from the nor-
malization condition [g,„,f(etb) =N]:
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N(E)

whose value as a function of energy has quantum

jumps similar to those obtained in the density of
states. In UTL, when most of the electrons occupy
the lowest subband, 7~' reduces to rUTL given by

-I 3 -I
UTL 2

~g (3.14)

2N'

N —.—.

!

QTD gas II

qOg&'

Q Twas I

which indicates that in UTL, v~ is constant, but its
constant value differs from that in QTD-I model by a

factor 1.5.
For a nondegenerate semiconductor in the UTL,

with r ' as given by Eq. (3.14), the conductivity crrJ

of Eq. (3.11) reduces to a simple analytical result:

I"IG. 1. The density of states per unit energy interval,
N(e) as a function of tE. Np=m A/mh is the density of
states for QTD-I gas (shown by broken line). Solid line is

for QTD-II gas exhibiting quantum character, and dashed

line is for 3D gas.

=2cry= 30s (3.15)

where a, is given by Eqs. (2.17) and (2.18). There-
fore, the conductivity in QTD-II model is smaller

than that in QTD-I model by a factor of —,. The ratio

of resistivity pg = cry to the bulk resistivity is given by« I], this equation yields, for the Fermi energy f,
the expression

pg/p, = 2Wnko/d (3.16)

f = ks 7' In[n, mt'/y(6. p, T) ~'ks J']

with

I ep
y(eo, T) —= Xexp-

kgT

I/2
@kg T

for ~p&& kaT
4~p

1

6p
exp — for 6p ))kg T .

kaT

(3.10)

The above expression for f agrees with that in QTD-I
model if y(eo, T) is taken unity.

The electrical conductivity of QTD-11 gas in longi-
tudinal configuration, when electric field is applied
parallel to the film, obtained from BTE as described
in the previous section is given by

Akg 9fpOg= ~ T III,20 Ik, m', 8~
(3.1 I)

where kz= (k2+kr')' ', and r(e~z) can be obtained
from Eq. (2.12) with a = ik [N, }. It can be shown as
in Appendix, that when basis states are those of
QTD-II,

Xl(a'lexp(iq r)la)l'=(I+ —,'8, ) . (3.12)

The inverse relaxation time is then evaluated both
for acoustic and point-defect scattering, as follows:

In the bulk limit (Xz « d), when spacing between
two adjacent levels is very small, the summation over
1 can be replaced by an integral, and re'(elk)ae' ' as
in 3D case, the crrJ obtained by Eq. (3.11) becomes
equal to crb given by Eq. (2.20). Thus QTD-11 gas
behaves like a 30 gas when XD « d and somewhat
like QTD-I gas when 4D » d.

IV. QUANTUM TRANSPORT THEORY

It was noticed, in the last section, that BTE can be
successfully used in calculating transport coefficients
in the longitudinal configuration. For transverse con-
figuration, the expectation value of the current van-
ishes if BTE is used, because the matrix elements of
velocity operator as given by Eq. (3.6) are nondiago-
nal. In such cases, it is useful to use the Liouville's
equation for the density matrix as used by Arora and
co-workers" to describe the electronic transport. In
the quantum transport theory (QTT), the expectation
value of the current is obtained from the statistical
mechanics recipe given by

( J) = Tr(p J,r)/Tr(p) = ——X (alpla') (a'I v la)

(4.1)

where (a'l via) are given by Eqs. (3.4) —(3.6) and
(alp]a') is evaluated from the solution of Liouville's
equations for the density matrix:

rg'(~ik) =rs '([4~1k/~0]+ —,') ~

ig P =[H, p]Bp
at

(4.2)

where r, = r„or rd, as given by Eqs. (2.13) and

(2.14) for acoustic phonon scattering or point-defect
scattering, respectively. Thus in QTD-II model, the
relaxation time is not constant but depends on energy

where H = Hp+ V+7 is the Hamiltonian of the sys-

tem, which consists of unperturbed part Hp,
electron-lattice interaction V, and electron-electric
field interaction I' =e g ~ r. The eigenfunctions and
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(a'IpIa) = fp(e )8 +
&a'I [pp. ~]Ia&

E I 6~ IETa' aa
(4.3)

eigenvalues of thc electronic part of H0 are those
given by Eqs. (3.1) and (3.2), respectively. A steady
state linearized solution of Eq. (4.2) in the represen-
tation a = (ik) of Eq. (3.1), by following the method
developed earlier, " is given by

l
T I T I + Trk

A N 2 e (4 4)

~here T '=T '(e ) is that given by Eq. (2, 11) and
evaluated as in Eg. (3.13). Thc matrix clcmcnts of
commutator [p„,F] for an electric field

g =(b, ,h, h. ) are given by

2
I

(a I[pii, F]la)=, , (k,8, +k, Sr)8, ,8„„— „.. . [ fp(e, , ) fp(e—,k)]$,8„„

Using Eqs. (4.3) to (4.5) along with Eq. (4.1) and using (T) =ir h we get for the components of o, the ex-
pressions

Q"~ = 0"» = CT0

(0')'sin'[~(i' i)/2—] [ f,(...„) f,(—.«) ]ig.;,„'. ,„
in "d2e, n X (i'- iz)'[(I'- iz).,'+k";,,'„]

!

O,j=o, / +J

(4.6)

(4.S}

The results of QTT thus agree with those obtained
from BTE for o. and 0.», when electric field is ap-
plied parallel to the thin film. But, for the transverse
case, the QTT gives conductivity cr„as given by Eq.
(4.7) which could not be obtained from BTE. In the
UTL, 0-„ is given by

crier" =128nezii4rizi/27m "zdze (qez+t2r z) (4 9)

re'= —,
' [r '( ie)k+r'(ark)]=2r, ' (4.10)

Now, when the spacing between two lowest levels is

much smaller than the energy due to collision
broadening 3ep « t/r„, o and the ratio (pg/pp)~,
for acoustic phonon scattering, is given by

rr,z =128ne pU g d/27m" E k T (4.11)

(pglpb)~ =9M~Zo/32d, when 3ep && it/r „.(4. i 2)

This resistivity ratio is smaller than that in the longi-
81

tudinal configuration by a factor of —.
ln the other extreme, when 3ep &) Ii/rii, cr„and

resistivity ratio (pg/pb)q, for acoustic phonon scatter-
I

[

ing is given by

o„=256ne'II4r, '/243m "d'e3p, (4.13)
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APPENDIX

In this Appendix, we prove Eq. (3.12) of the text:

(pg/pb)i =gin i3'Ik' XDr,
' /512m"d', 3ep » Iilrii

(4.14)

There is a marked difference in the temperature
and thickness dependence in the two limiting cases
discussed above. In the former case, when

3ep « Ii/riz, the resistivity ratio is independent of
the scattering parameters, is inversely proportional to
the thickness of the film, and varies with temperature
as T 'i'. When 3ep ))Ii/rii, the resistivity ratio

depends strongly on scattering parameters, is inverse-

ly proportional to the cube of the thickness of the
film, and varies with temperature as T '~2.

1 '!

oo

Xl(a'lexp(iq r)Ia&l'= dzdz'sin ' '
sin

' '
sin ' ' .;, ' ' dq, '"--' -'

md d d, d g 0

Since
I

iq (z-z &

dq, e ' =2T[8(z —z')

wc have

X](a Iexp(i q'I) Ia)~I' =— dz sin'(I'nz/d) sin'(inz/d) =——+—8, = I+ —'8,
0 8 I I 2 i i

!

which proves Eq. (3.12).
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