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Macroscopic theory of pulsed-laser annea&ing.

II. Dopant diffusion and segregation
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The radiation from Q-switched ruby and Nd:YAG (yttrium aluminum garnet) lasers can an-

neal the lattice damage produced by ion implantation of semiconductors. In the first paper of
this series, we described the models and methods we have been using for heat-transpot t calcula-

tions during pulsed-laser annealing and gave numerous illustrations of the type of results which

are obtained. In this paper, we discuss dopant-diffusion calculations in detail, with particular

emphasis on the incorporation of segregation effects into the modeling. From the forms of the

experimental dopant profiles, it is established that pulsed-laser annealing is a nonequilibrium

process, but in this paper the interface segregation coefficient is treated as an adjustable parame-

ter and no attempt is made to justify the values obtained. Approximate analytical and finite-

difference solutions to the diffusion equation are discussed and compared. It is argued here that

the excellent fit between theory and experiment which is obtained is a strong indication of the

basic validity of the melting model of pulsed-laser annealing.

I. INTRODUCTION

This is the second in a series of papers on the ma-

croscopic theory of pulsed-laser annealing. In the
first paper, ' referred to as I or Paper I in the follow-
ing, we discussed the physical and mathematical
models we have used recently for calculations of heat
generation and transport during pulsed-laser anneal-
ing of ion-implanted silicon', extensive results of the
calculations were given. Those results showed that
for sufficiently energetic laser pulses the near surface
region melted and stayed molten to a depth of ap-
proximately 0.5 p, m for periods of the order of 100
nsec. Very high recrystallization velocities of the
order of 4 m/sec were calculated. We have previous-

ly shown that results of the thermal calculations,
when combined with calculations of dopant diffusion
in the molten material, can explain the observed
spreading of dopant profiles in ion-implanted laser-
annealed sam'ples' and samples on which a doped
amorphous layer has been recrystallized by the laser
radiation. 3

Although some results of dopant diffusion calcula-
tions have been given in the papers of Ref. 2, we
have not yet discussed the calculations in detail. In
this paper, we supply the details which have been
missing from the previous papers and give extensive
new results. Dopant diffusion during recrystallization
of a laser irradiated sample is a moving-boundary
problem4 and cannot be solved exactly except in spe-
cial cases. Approximate analytical and finite differ-
ence solutions are discussed and compared, and the
incorporation of segregation effects into the modeling
is emphasized. Results of the calculations are com-

pared to the extensive body of experimental data ob-
tained over the past few years at Oak Ridge National
Laboratory (ORNL). ' The excellent agreement
between theory and experiment which is obtained is a
strong indication of the basic validity of the melting
model of pulsed-laser annealing.

The paper is arranged into five sections. In the
next section, the well-developed theory of dopant
segregation during crystallization of a molten sem-
iconductor containing a uniform concentration of
dopants is reviewed. In Sec. III„ the models we have
used in our dopant redistribution and segregation cal-
culations are presented and discussed. Section IV
contains most of the numerical results and some dis-
cussion of them. Additional discussion of the
results, as well as some concluding remarks about the
calculations and about the melting model of pulsed-
laser annealing, are given in the last section.

II. REVIE% OF THE MACROSCOPIC
THEORY OF SEGREGATION

In this section we give a brief review of the ma-
croscopic theory of segregation for an impurity
(solute) which initially has constant concentration in

a molten solvent. By a macroscopic theory we mean
one that does not inquire about the details of atomic
processes going on in the interface region between
the liquid and solid. In fact, here the interface region
is assumed to be infinitely thin and the information
about processes at the interface is contained entirely
in the interface segregation (or distribution) coeffi-
cient. This quantity is defined as the ratio of the
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concentrations of the impurity in the solid C, to its
concentration in the liquid C& immediately in front of
the interface. It is important to distinguish carefully
between the interface segregation coefficient k; and
the effective segregation coefficient k, f~. This latter
quantity is generally defined as the ratio of the im-

purity concentration in the solid to the initial constant
impurity concentration Cp in the liquid solute. Thus,
for k; and k, ff we have

k; = C, /C(

k,r(= C, /Cp

In addition to these quantities, a number of other
"segregation coefficients" appear in the literature.
We will reserve the symbol k; for the interface segre-
gation coefficient when crystal growth occurs sO slow-

ly that a condition of quasithermodyna'Nic equilibri-
um is maintained at all times. Burton, Prim, and
Slichter have given the equation

k= k'
k'+ ( I —k') exp( — v/gD, )

for an "effective distribution coefficient. " In this
equation, k' can be either k; or k;, u is the melt-
front velocity, DI is the diffusion coefficient in the
liquid, and the rather arbitrary quantity 5 is some-
times referred to as the diffusion boundary layer
thickness. This equation has caused a great deal of
confusion because it apparently gives a relationship
between k and k' in terms of the melt-front velocity,
and this has led some to conclude that it applies to
the laser-annealing process. In fact; Eq. (3) applies
to Czchrolski-type growth of crystals in which the ro-
tational velocity of the growing crystal is nonzero; it

has little or no direct relationship with the situation
encountered in laser annealing. One of the primary
purposes of this section is to clarify the physics
underlying the various segregation coefficients ap-
pearing in the literature. To do this, we will first
consider one-dimensional solidification in which only
diffusion of an impurity in the liquid is important and
we will then discuss the paper of Burton et al.

A. One-dimensional solidification without convection

There are many treatments of this topic in the
literature but we have found the development given
by Smith, Tiller, and Rutter' particularly useful and
will follow' it here. It is assumed that the solidifica-
tion is unidirectional (x direction) with a constant
liquid-solid interface (melt-front) velocity v. The
concentration of the solute in the solvent is initially
uniform and has value Cp. It is further assumed
that: (i) impurity diffusion in the solid is negligible;
(ii) no convective mixing of solute and solvent oc-
curs; (iii) the interface distribution or segregation

coefficient k; is constant and ~1; and (iv) the
liquid-solid interface is always perpendicular to the
axis of the specimen. These conditions are believed
to correspond closely to those encountered in

pulsed-laser annealing in many instances. However,
the formation of cellular structure in the distribution
of some impurities has been observed in laser an-
nealed samples; and this is a clear indication that
conditions ii and iv may break down. ' It should be
noted that condition iii does not specify whether k; is

an equilibrium (k; ) or a nonequilibrium value.
Smith et al. solve the dopant diffusion equation in

the liquid, i.e.,

O'C((xr) , BC((x,r)

gx2
(4)

Cp at x'= ~
CI(x') =

LCp/k; at x'=0
(6a)

(6b)

and the solution is

C((x') = Cp+ C(((q/k;) exp[ —(v/D()x')

with q =-1 —k;. It can be seen from this equation
that under steady-state conditions the distribution of
the dopant in the liquid immediately in front of the
interface falls off exponentially with x' until Cp is ob-
tained. The second boundary condition requires that,
at the interface (x'=0), C((0) must be such that the
concentration in the solid is exactly Cp, that is, from
the definition of k,

C =k;C((0) = Co (g)

It should be noted that this equation states that the
concentration of dopant incorporated into the solid

The motion of the melt front generally makes this
equation quite difficult if not impossible to solve
analytically, but the solution simplifies considerably
when the initial concentration of the solute is uni-

form, as assumed in Ref. 7. Then a transformation
to a coordinate system moving with the melt front
can be made and the equation

ri'C((x'r) , BC((x', () 8C((x', r)
D, , +v

Qx gx Bt

obtained. Here x' is measured relative to the posi-
tion of the melt front. We are interested in those
solutions of this equation which give the steady-state
behavior of CI and the initial and terminal transients;
once CI is known at the interface, C, can be deter-
mined from Eq. (I). The terminal transient occurs
when the melt front approaches the end of the sam-

ple (solidification completed) and it is of particular
interest in laser annealing, as we shall see.

The steady-state solution of Eq. (5) occurs when
I)C(/'dt =0. The boundary conditions can then be
written as
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TABLE I. Values of k,o and DI from the literature and the results for k; from Ref. 17 and the
present calculations.

Da Db

(10 4 cm2/sec)
k,

(Rer. 17)
k,

(This work)

B
P
As
Sb
Ga
In
Bi

0.8
0,35
0.3
0.023
0.008
0,0004
0.0007

2.4+ 0.7
5, 1 + 1.7
3.3+0.9
1.5+0.5
4.8+ 1.5
6,9+ 1.2

3.3
2.7

+0,4
+ 0.3

1.4 +0,5
0.66+ 0.5
0.17+0.3

1,00
0.7
0.2
0,15
0.4

0,9 -1.0
0.9 -1,0
0.9 -1.0
0.8 -1.0
0.15—0.3
0.10—0.20
0,25—0.42

'Reference 15, bReference 16.

under steady-state growth is exactly Co and does not

depend on velocity. Smith et al. give curves of
CI(x')/Co as a function of (v/D)x' for k; =0.1, 0.01,
and 0.001.

The equation for the initial transient as a function
of x (not x') as given in Ref. 7 is

c,(x) I 1
I(v/p)xl'"=—'1+erf

2 2

+ (2k, —I) exp —k;q —" x

&& erfc
'

Q(v/DI )x . (9)
(2k, - I)

2

%e will show plots of this equation for several values
of k; shortly. It should be noted from the definition

I,6
I I I I I I I

k;
0.80

+ 050
O. I 5

~ 0.025

I [ I I I l I I I

V= 400 cm/sec
D=4 x IO cm2/gec

&0,8
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FIG. 1. The ratio of the dopant concentration C, in the
solid to that in the liquid of initially uniform dopant concen-
tration Co as a function of distance from the surface. V and
D are referred to as v and DI in the text. The melt front
~as assumed to have penetrated to 0.23 p, m and beyond--this

depth C,./CO=1, since no diffusion in the solid is allowed.

of k,«[Eq. (2)] that this equation can be thought of
as giving an expression for a transient coinponeflt of
k ff' which is velocity dependent.

Smith et al. give an equation for the terminal tran-
sient which we will not repeat here since it is in series
form and not particularly transparent. The series
diverges at x2=0 (xq is the distance from the front
surface of the sample) if k; is less than unity; howev-
er, for larger values of x2 it converges quite rapidly.
If k; = I (no segregation) there are, of course, no ter-
minal or initial transients.

For illustrative purpose~ we have used the equa-
tions for the initial and terminal transients given in
Ref. 7 to calculate the form of C,. (x)/Ca for several
different values of k;. Except for k; =0.15 these
values correspond to the equilibrium interface segre-
gation coefficients for B, As, Sb, and In in Si given
in the compilation of Trumbore" (see Table I). The
results are shown in Fig. 1 for a melt-front velocity
of 4 m/sec and a typical diffusion coefficient of
4 x 10 4 cm2/sec. It is obvious from this figure that,
under typical conditions of pulsed-laser annealing,
the segregation of some dopants may never reach the
steady-state condition. Thus, for k; =0.15, 0.023,
and 0.0004, before the initial transient (solid line) is
over, the melt front has reached the vicinity of the
front surface where all of the dopant accumulated in

the liquid ahead of the melt front is deposited by the
terminal transient, as indicated by the dashed curves
for k; =0.15 and 0.023. %e will discuss this feature
again in the last section.

8. Segregation in a rotating crystal
pulled from the melt

Burton, Prim, and Slichter6 considered the case of
segregation in a crystal pulled from melt with the
crystal subjected to various rotation rates as in the
well-known Czchrolski method. The liquid-solid in-
terface in this case is approximately a plane disk and
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the result of the rotational motion is to produce a
component of fluid velocity normal to the disk.
Equation (5) is modified for steady-state growth to

d2C((x'), dC((x')
dx'2 dx' (10)

in which eo is the angular velocity of crystal rotation
and v is the kinematic viscosity. They obtain an ap-
proximate solution to Eqs. (10) and (11) at the inter-
face given by

c,(o) - c,
Cp —C,

with (It = vg/D and the quantity 8 given by

6D 1 /3 1 /6 —1 /2

Equation (12) can be rewritten first as

c, + [c,(0) - c, ]e-~ = c,
and then as

C, C,

Cp C, + [C((0) —C, je

(12)

(13)

(14)

(15)

or

k'
k'+ (I —k') e

with k,«=—C, /Cp and k'= C, /C((0). We emphasize
again that k' can be either k; or k, . Figure 2 shows

keff as a function of v for several different values of
(G in Eq. (13); v and D were given the values used in

Ref. 6. We see from Eq. (11) that when (G =0 the
steady-state equation corresponding to Eq. (5) is

recovered. In that case, C, = Cp and k,« = 1 and it is

apparent that the velocity dependence of k, ff in the
Burton, Prim, and Slichter treatment is due entirely
to the rotational motion which produces W(x')
This can also be seen from Eq. (13) which gives
8=GG when cp=0, or, from Eq. (16), k,«= l. It is
also indicated by the results on Fig. 2 ~ The effect of
the rotational motion is to draw liquid from the re-
gion far in front of the interface and well removed
from the diffusion boundary layer. The concentra-
tion of the impurity in this liquid is much less than it
is in the boundary layer region. The result is that
less impurity is incorporated into the solid. %hen
the rotation rate becomes very large, 5 becomes very
small and k, ff k . In this limit, liquid of low im-

purity concentration (Cp) is being brought into the
interface region so quickly that the buildup of C,(0)
substantially above Cp cannot occur.

with V(x') = v+ 8'(x'); II((x') is the component of
the fluid velocity induced by the rotation. Following
an approximation by Cochran, "Burton et al. take

8'(x') =0 51~'"v '"x' x' ( v'"(G
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FIG. 2. The effective segregation coefficient of Burton,
Prim, and Slichter as a function of melt-front velocity for
several different values of the rotational velocity

III. MODELS AND APPROXIMATIONS FOR
DOPANT TRANSPORT CALCULATIONS

The thermal transport calculations in Paper I indi-
cated that the near-surface region of the silicon sam-
ple melted during pulsed-laser annealing. The diffu-
sion coefficients of most dopants in molten silicon
(see Table I) are several orders of magnitude higher
than they are in the solid and are quite large enough
to explain the profile spreading that is observed after
laser annealing. In this section, we discuss several
approximations we have used to calculate the dopant
redistribution. In all of these approximations, we as-
sume that the thermal and mass diffusion problems
can be effectively decoupled so that the heat trans-
port results from Paper I become input data for the
present calculations.

A. Instantaneous approximation (IA)

In those cases where the melt front penetrates well
beyond the implanted dopant profile, rather good fits
to the experimental data can be obtained by assuming
that the region of the profile is instantaneously melt-
ed, stays molten for a certain period of time, and
then is instantaneously resolidified. This "instan-
taneous approximation" (IA) involves a straightfor-
ward solution of Eq. (4) during the time the near
surface region is molten; it also corresponds to an in-
finite melt-front velocity during melting and recrys-
tallization. %e have found it convenient to work in a
Green's-function formulation in which the dopant
profile in the solid after laser annealing is given by

C, (X, r) =f (G(f( olg(C(Xplg(l dA'g, . (,17), , —
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G(x tlxp, tp) =[4m D(t —tp)] 't

t —(x —xii)'
x exp

4D, (t —t, )
t —(x+xp)'

+exp
4Di(t —tp)

(18)

Because the melting and resolidification are assumed
to occur instantaneously, C; in the liquid is just the
implanted profile in the solid and the final profile in

the solid is the same as that in the liquid at the end

of the melt time, C; will generally be given in nu-

merical form. It should be noted that the IA used

here does not allow for segregation, i.e., k, =1.

where C, and C, are the initial (x =xp, t = tp) and fi-

nal profiles, respectively, and G(x, t ~xp, tp) is the
Green's function. If the melt front penetrates well

beyond the region of the implanted profile, it is a

good approximation to take G(x, t lxptp), to be the
Green s function for diffusion in a semi-infinite sam-

ple, i.e.,

region remains molten is easily extracted from the
curves. For example for curve 1, the surface melts at
10 nsec after initiation of the laser pulse and stays
molten until 100 nsec, so that it remains molten for
90 nsec. A simple approximation which gives
surprisingly good results and yet remains within the
spirit of Eq. (17) is obtained from the following pro-
cedure. The time t; —to=Sf, during which a thin

layer at a depth x; in the sample remains molten, as
calculated from the melt-front profiles, is substituted
into Eqs. (17) and (18) and the integrations over xp
are carried out to find C, (x, ). The integration over
xo ls of course allowed to go over only that part of
the material which is molten during At, since only
this material can act as a diffusion source for rapid
diffusion. Thus, if the melt front does not penetrate
entirely through the impurity profile, only that part of
C, (x) which is in the molten zone will undergo diffu-
sion (we continue to neglect any diffusion in the
solid). This requires that the Green's function in Eq.
(18) be modified to that for a slab of appropriate
thickness or, more approximately, that G(x, t~xp, fp)
of Eq. (18) be restricted in the range of x and xp and

suitably renormalized.

B. Modified IA (MIA) C. Quasistationary finite-difference (QFD) approach

The IA is too restrictive in its treatment of the ef-
fects of melt-front motion. For example, when the
melt front does not penetrate beyond the implanted
profile, a single time during which the entire profile
is allowed to diffuse cannot be assigned in even an

approximately correct manner. Clearly, it is neces-
sary to limit the time during which the dopant atoms
in any volume element of the initial profile are al-

lowed to diffuse to the time the volume element is

molten. Figure 3 shows a set of melt-front profiles
for one of the calculations to be described later. %e
note that the time each element of the near-surface

0.50—
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O
O

0.1 5—
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O

0.~0—
I

0.05—

0 )0 20 50 40 50 60 70 80 90 f00
TIME (nsec)

FIG. 3. Melt-front location as a function of time for a
100-keV As-implanted Si sample. EI is the incident laser en-

ergy and E, is the energy absorbed by the sample. Details
of the calculation are given in the text and in Paper I.

In the quasistationary approximation the sample is
assumed to be divided into N layers or cells of vari-
ous thicknesses. All of the material in any one layer
melts or solidifies at the same time. The melt front
thus advances into the solid and recedes back to the
surface in finite jumps, and between jumps it is held
stationary while diffusion in the molten material oc-
curs. For example, beginning at the surface layer,
the dopant diffusion equation is solved in that layer
for some time interval and with the implanted profile
as the starting profile. The melt front then jumps to
the next layer where it pauses for a chosen time in-
terval. During this interval, diffusion occurs with the
initial profile given by the distribution of impurity in
the first layer after the first time interval plus the im-

planted profile in the second layer. In this way, the
diffusion equation is solved in steps as the melt front
first penetrates into the sample and then returns to
the surface. This problem can be solved analytically

by using Green's functions appropriate to slabs of
widths determined by the finite steps of the melt
front. However, these Green's functions are given as
infinite series and are rather cumbersome to work
with. %e have therefore used a quasistationary finite
difference (QFD) approach which we now describe in

some detail.
%e let the bounding planes of the jth layer be x;

and x;+t with bx; =x,+l —x, . In the finite difference
algorithm we have followed, the dopant concentration
at the center of a layer or computational cell is used.
The diffusive fluxes D(BC/Bx) are defined at the
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cell edges by

D (.j)
gx

C(,j+ I/2) —C( j —I/2)=D,j x(.j+ I/2) —x( j —I/2)

The subscripts have been placed in parentheses for
convenience of printing, and subscripts indicating
solid and liquid are not needed because the space and
time indexing scheme together with the melt-front
information determine whether solid- or liquid-state
quantities are to be used. The flux approximation in

Eq. (19) requires a diffusivity at x, or, more exactly,
an averaged diffusivity in the interval from
x( j —I/2) to x(j + I/2). If the material is fully

melted or fully solid in this interval, the choice of a

value for D; is straightforward; when the melt front
is in the cell, the choice is more difficult. Generally,
it is not desirable to move the mesh points to place
the melt front in the center of a cell. Therefore, an
averaged diffusivity for the interval which contains

the melt front was determined using the reciprocal of
the sum of the "resistances" to diffusion (i.e. ,
hx/D) in the subintervals containing the molten and
the solid material. This approach has proved quite
satisfactory in our calculations.

The boundary conditions assume that the flux
through the front surface is known. In most experi-
ments we will be concerned with, the surface flux is
observed to be zero and the calculations reflect this
condition; Sb and Ga in Si are exceptions to be
described later. The boundary flux is added to the
difference equation for the cell whose edge is the sur-
face. The boundary condition used in the deep inte-
rior is one of zero flux; and, therefore, the mesh
must be chosen to extend somewhat beyond the
maximum depth that the melt front penetrates.
Thus, the diffusion at the interior boundary is negli-
gible so that the zero flux condition is as accurate as
the more rigorously correct continuative condition.

The finite difference equation for an interior cell is

C(n+I;j+I/2) —C(n;j+I/2) I C(n+I;j+3/2) —C(n+ I;j+I/2)
D n+I;j+I

jtt Ax,
' x(j+3/2) —x(,j+I/2)

C(n + I;,j + I/2) —C(n + I;j—I/2)—D n+I j x(j + I/2) —x(,j —I/2)
(20)

where the index n +1 represents quantities at time
t = (n + I ) jtt The set o. f equations for the total assem-

bly of cells becomes a system of simultaneous linear

equations for the C(n + I). This system is tridiagonal

and may be solved by simple Gaussian elimination.
The modeling of segregation requires some signifi-

cant alterations in the finite difference scheme
described in the foregoing. The segregation process
can be thought of as an internal "boundary" condi-
tion acting at the melt front to transfer dopant from
the layer which is freezing to the immediately adja-
cent one which is still molten. Mathematically, the

l

interface condition is given by Eq. (I). To deal with

this internal condition, we chose to force the mesh to
align with the melt front by creating extra cells at the
beginning of each time cycle and then removing them
at the end of the cycle. These small cells are inserted
into the large cell which contains the melt front in

such a way that the front is always at the center of
one of the new cells. The interface condition is then
applied to produce a "two-sided" (i.e., discontinu-
ous) dopant distribution in the cell which contains
the melt front. The modified finite difference equa-
tion for this cell is

C(n + I;j+ I/2) —C(n;j+I/2) I D(n +I j+I), 2k;

ht hx, x(j+3/2) —x(j+I/2) ~

'
k, + I

C(n + I;j+I/2) —C(n +I;,j —I/2)
D(n + I;j)

x j+12 —x j—12 k, +I

(21)

This assumes that the molten portion is at x & x, +~/2.

The two-sided nature of the dopant distribution at
the interface is shown by the factors multiplying
C(n + I;j + I/2); we note that Eq. (21) reduces to
Eq. (20) when k; = l.

The implicit finite difference algorithm we have
used is stable for any value of the time step ht, but

I

stability does not guarantee accuracy. For problems
with no segregation, we found it necessary to lait
the time-step size so that the melt front takes at least
two cycles to cross a cell when the cell is resolidify-
ing. For problems with segregation, the time-step
limitations are more stringent. These limitations are
dependent on the value of the segregation coefficient
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and will bc discussed below'.

The accuracy of the computer code was first tested
by comparison with the analytic solutions given in

Sec. II. Not unexpectedly, numerical difficulties be-
gan' to arise as the segregation coefficient was re-
duced from 1.0. Although the fully implicit diffusion
algorithm is formally unconditionally stable, when
diffusion and segregation are combined, instabilities
can (and frequently do) occur. For example, in a cal-

culation which allowed 26.5 time steps for the melt
front to cross a 12.5-A cell, the concentration in the
solid developed a sawtooth pattern when k; had the
value 0.1. When the time step was cut in half, the
sawtooth pattern vanished. With k; =0.3, the calcula-
tion with 26.5 time steps per 12.5-A cell did not show
the sawtooth instability.

In addition to stability, thc time step also affects
accuracy. For k; =0.1, the 53 time steps pcr cell
needed for stability gave a concentration curve com-
parable to that given by the analytic solution using a

value of k, =0.15. Reducing the time step by another
factor of 8.0 (424 steps per 12.5-A cell) gave a nu-

merical solution which followed the analytical curve
for k; =0.12. Results for a test case arc shown on
Fig. 4. Deviations of thc calculated results from the
analytic solutions approach zero as the time step goes
to zero, but calculations with very small time steps
can become prohibitively expensive. Calculations to
test the effects of varying the time step were also run
for k; =0.3 The calculation with 53 time steps pcr
12.5 A, cell gave a curve which followed the analytic
curve for k; =0.35. Cutting the time step by another
factor of 8.0 gave a curve which followed the analytic
results for k; =0.31.

Our calculations with the QFD method have gen-
erally used a space step of 12,5 A, but a few test cal-

culations with k; =0.1 were run using a 6.25-A step

size. It was found that the results were virtually
identical to those from calculations using the larger
space step, provided one compared problems with
time steps using the same number of cycles for the
solid-liquid interface to cross a cell. In other words,
when both space step and time step were cut in half,
the results were virtually unchanged. This establishes
that with these cell sizes the accuracy is controlled by0
the time step only, and thus, the 12.5-A space step is

quite sufficient. It is perhaps of interest to note that
the magnitude of thc spatial cells used here begins to
approach interatomic dimensions in Si. The use of
differential or difference equation to describe diffu-
sion on a scale finer than we have employed becomes
questionable.

D. Approximate treatment of segregation—
MIAS method

The finite difference approach described above is
capable of achieving great accuracy, and it can pro-
vide a high degree of flexibility, e.g. , the diffusion
coefficient can bc allowed to depend on position and

temperature. Ho~ever, as we have seen, the com-
puter time required to achieve acceptable accuracy in-
creases very rapidly as the interface segregation coef-
ficient decreases. To partially circumvent these draw-
backs, we have developed an approximate approach
based on the following model. Thc implanted profile
is allowed to develop according to some approxima-
tion, e.g. , the IA or MIA of this section. The profile
is then fixed and segregation is allo~ed to occur as
the melt front sweeps back through this profile. The
concentration C&(/). In the liquid in the jth cell is
made up of a contribution Ct„(,j) from the diffused
profile and a component C& „,( j) arising from segre-
gation, i.e.,
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C((j) = C p(j) + C, „,(j)
Ct„(j) is given from the first stage of the calculation
and C, „,( j) is calculated by assuming that the
dopant deposited just in front of the advancing melt
front diffuses according to an exponential behavior,
as one would expect for a steady-state problem. We
have

Cj„,(j)=q X C)(n) —" exp ——" (x; —x„) hx„
n 0 / I

FIG. 4. An illustration of the difficulties encountered
~ith the finite difference method for relatively small values
of the interface segregation coefficient (denoted by k on this

figure). The analytical solutions mere obtained from Eq. (9)
and the points labeled "calculation" were obtained from the
QFD calculation. Vand 0 are referred to as v and D, in the
text.

The nth term on the right side of this'equation gives
the contribution to the dopant concentration in the
jth cell due to segregation of the dopant in the nth
cell as the melt front sweeps through hx„. Equations
(22) and (23) can be written in integral form as
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f~X

Ci(x) =C~. (x)+q —"
Ji C, (x')exp ——" (x —x') dx'

l t

We have carried out calculations with this expression for C, (x), but the presence of C&(x') in the integral is

cumbersome and a simpler expression can be obtained as follows. Differentiate CI(x) to obtain

dCI (x) dCI ~ (x) —q ——
i exp ——(x —x') C, (x')dx' —C,(x)

dx dx DI DI 0 DI
J

(24)

(25)

The last term comes from the upper limit on the integral in Eq. (24). Substituting Eq. (24) back into this expres-
sion gives

de(x) dCI~(x)
dx dx

dC„(x)
dx

'I

[CI(x) —C(,,(x)]+q —" C, (x)
I I

I i

[C„(x)—k, C, (x) ]
I

(26)

This is a linear inhomogeneous equation which may be solved by standard methods. The result is
I r

X

C, (x) = —"
J exp ——"

k, (x —x') Cfp(x')dx'
I I

' v, dCI p(x')
+ Jl exp ——k;(x —x') ', dx'+ C, (0) exp—

DI dx
t

—k;x
DI '

(27)

The second term on the right-hand side of this equa-
tion is zero if C&~(x') is a constant Ca, and one finds
that the distribution in the solid is given by

C, (x) =k;CI(x) =Co{1—q exp[ —k;(v/DI)xl} . (28)

This equation was derived by Tiller et al. "on an in-

tuitive basis and Smith et al. have shown that it is

quite a good approximation to the correct form given

by Eq. (9). When CI~(x') is not constant the in-

tegrations in Eq. (27) can be carried out numerically.
Equation (9) is an expression for the initial transient
and does not give the segregation spike at the surface
due to the terminal transient. This spike can be built

into the calculations in an approximate but somewhat
artifical manner. From Fig. 1 it is seen that the ter-

minal transient is confined almost entirely to the re-
0

gion within 200 A of the surface; and, since the ex-
periments cannot give the dopant profile there reli-

ably, ~gems best just to deposit the final amount of
segregated dopant in tPis region without undue con-
cern for its exact distribution.

We have made extensive comparisons between the
results given by Eq. (27) with C,,(x') generated by

our MIA and the results from the finite difference
calculations. The differences between the results are
invariably small; and with the uncertainties in the in-

put data for the calculations and in the experimental
data itself, it is virtually impossible at this time to
claim that one method consistently gives a better fit
to the experimental data than the other. Moreover,
the predictions of the two methods are very nearly

I

the same and it would seem, at this stage in the
development of laser annealing, that highly accurate,
expensive finite difference calculations are frequently
not warranted. For simplicity, we will refer to the
method described in this subsection as a modified in-

stantaneous approximation with segregation, or
MIAS for short.

IV. CALCULATIONS AND RESULTS

In this section we give the results of calculations by
each of the methods described above but with partic-
ular emphasis on the methods in Secs. III B—III D.
First, however, we demonstrate a simple method for
scaling the melt-front profiles which are required as
input for the dopant diffusion calculations.

A. Scaling of melt-front profiles

The thermal transport calculations described iri Pa-

per I can consume large amounts of computer time,
and it is impractical to calculate melt-front profiles
for every possible variation of laser energy density,
pulse duration time, etc. Also, since there are uncer-
tainties in the thermal conductivity, reflectivity be-
fore and after annealing, absorption coefficients, and
other experimental quantities, some variation of
melt-front profiles to improve the fit between calcu-
lated and experimental dopant profiles is justified.
We will now describe a simple scaling procedure
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which we have found useful in this connection.
Figure 3 shows a series of melt-front profiles ob-

tained from calculations such as those described in

Paper I for the "amorphous model. " The calcula-
tions assumed an amorphous layer 0.15 p, m thick had
been created in the Si sample by the ion implantation
of energetic heavy ions. In this region, the absorp-
tion coefficient was taken to be 5 x 10 cm ' and in

the deeper lying undamaged region of the sample it
was assumed to be 3 x 10 cm '. The reflectivities of
solid and molten Si were assumed to be 0.35 and
0.60, respectively. Further details of the model are
given in I. We denote the melt-front location or
depth as a function of time by

dM =f«) (29)

and introduce a scale factor S. We then find that
new melt-front profiles of very nearly the correct
form are obtained by the simple scaling

dM(St) = Sf(t) (30)

This scaling does not locate the melt-front profile on
the time axis correctly, but in the dopant diffusion
calculations we require only the duration of time that
a layer at depth d~ remains molten; when the layer
first began to melt is unimportant. Figure 5 shows
how well the scaling procedure works. In this figure,
we have used scaled melt-front profiles to plot the
time that a layer at a given depth remains molten.
The two dashed curves in Fig. 5 were constructed
directly from c0rves 1 and 2 of Fig. 3, whereas the
three solid ones were constructed from data obtained
by scaling curve 1 of Fig. 3. The scale factor for the
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FIG. 5. Illustration of the results of scaling the melt-front
profiles in Fig. 3 according to Eq. (30); see text for a discus-
sion of the figure.

lowest solid curve on Fig. 5 was chosen to give very
nearly the same maximum melt-front penetration as
that of curve 2 on Fig. 3. The agreement between
the lowest full and dashed curves on Fig. 5 is an indi-
cation of the success of the scaling procedure.
Curves 1 and 2 of Fig. 3 were obtained with laser
pulses of 1.41 and 1.07 J/cm', respectively, as indi-
cated on the figure. We would not normally scale
melt-front profiles over such large differences in the
energy density and have done it in Fig. 5 only for il-

lustrative purposes. This scaling technique should be
used only within the framework of a given model.
Models which differ widely from one another, e.g. ,
when the thicknesses of the amorphous layers are
greatly different, may have melt-front profiles which
scale quite differently from one another.

8. Input data

The only input data for these calculations are the
initial dopant distributions, the melt-front profiles,
dopant diffusion coefficients in molten Si, and the in-

terface segregation coefficients. We have discussed
the melt-front profiles above and in Paper I. The ini-
tial dopant distributions have generally been obtained
by secondary ion mass spectroscopy'4 (SIMS) or by
Rutherford backscattering" (RBS); they are supplied
to the computer programs in numerical form. Two
sets of values of DI have appeared in the literature.
We have generally used the set given by Kodera" be-
cause it is slightly more extensive than the one given
by Shashkov and Gurevich" and gives better overall
agreement between calculated and measured profiles.
Both sets are shown in Table I. It should be noted
that there are large differences in the two sets for a
number of the dopants and that the error limits es-
timated by Kodera are quite large in some cases.
Values of k; from the Trombore compilation, though
shown in Table I, are not applicable to laser anneal-
ing and k, was, in effect, taken as an adjustable
parameter in the calculations to be described now.

C. Calculations with the IA and MIA

Figure 6 shows SIMS profiles of boron before and
after laser annealing of a Si sample implanted with 35
keV "B+ to a dose of 1.03 && 10'6/cm'. The annealing
was carried out with a ruby laser using a pulse energy
density, of approximately 1.8 J/cm2. The circles and
squares give the experimental data before and after
laser annealing, respectively. The solid curve marked
with triangles was calculated by using the as-implant-
ed profile (initial data) in the instantaneous approxi-
mation and varying the parameter D ~ T [on Fig. 6,
D = D~ and T = t —to in Eq. (18)] to obtain a satisfac-
tory fit to the laser-annealed profile. With Kodera's
value of DI for boron from Table I, we find that
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FIG; 6. Concentration of boron as a function of depth be-
fore and after laser annealing. The solid curve marked with

triangles was calculated using the IA with the parameter
0 + T (square of the diffusion length) varied to give the best
fit to the experimental (initial) data; the dashed curve
marked with diamonds was calculated by the QFD method.
Both calculations assumed I.,- = I.

T'=180 nsec and with the Shashkov and Gurevich
value, T =130 nsec. These times arc consistent with

the time that a thin layer at a depth of —0.40 p,m

remains molten after a 1.75—2.0-J/cm2 ruby laser
pulse (see, e.g. , Fig. 4 of Paper I). Similar results
were found for P, As, and Sb implanted samples but
we will not show the results here. The lack of a con-
centration spike at the surface in the experimental
data shouid be noted (see also Ref. 14). Because of
the lack of such a spike, wc took k; =1 for 8, P, and
As. There is some loss of dopant in the case of Sb
but k; = 1, as we shall see below.

Figures 7(a) and 7(b) show the results of fitting ar-
senic profiles in As-Implanted (100 keV, 1.4 x 10'6

cm ) Si samples with the modified instantaneous ap-
proximation. The experimental profiles were mea-
sured by RBS and the uncertainty in concentration at
any given depth due simply to counting statistics is
indicated on Fig. 7(a). The calculations were made
with the melt-front profiles of Fig. 3 scaled slightly to
improve the least-squares fit between experimental
and calculated curves. The initial, as-implanted data
were smoothed for thc calculations, but subsequent
testing showed that this smoothing made very little
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FIG. 7. (a), (b) RBS results for the dopant profiles in As-
implanted Si. The as-implanted data for both figures are
given on (a). The calculations were made with the MIA and
MIAS methods. Further details are discussed in the text.

difference in the profiles after laser annealing. The
segregation coefficient was put equal to unity in all
but one of the calculations whose results are shown
in Figs. 7(a) and 7(b). As mentioned above, the iack
of any surface segregation peak argues for this
choice. Thc overall agreement between experiment
and calculations is quite good for Fig. 7(b); however,
there is an interesting problem in connection with
Fig. 7(a) which we now briefly discuss.

Figure 3 shows that for a laser pulse of 0.82 J/cm'
the maximum melt-front penetration is approximately
0.1 pm. From Fig. 7(a), we can see that this implies
that the melt front should not have penetrated all the
way through the implanted profile, and indeed for the
0.82-J/cm' pulse the experimental profiles before and
after laser annealing coincide at depths greater than
-0.1 p, m. The calculations show that with k; =1 the
profile should have the form shown by the indicated
curve on Fig. 7(a); this curve does not fit the experi-
mental profile as well as we might expect. %e furth-
er refined the MIA to include segregation effects ap-
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proximately (essentially in the manner described in
Sec. III D) and carried out a calculation with k;=0.7.
This calculation improved the agreement with experi-
ment in the region around 0.1 p,m, but it also gave a
substantial segregation peak at the surface which is
not observed. Quite similar results were obtained
with the QFD method of Sec. IIIC. Since k,

' is 0.3
for As in Si (Table I), one suggestion from Fig. 7(a)
is that we may be observing effects due to the tran-
sient buildup of k, from 0.3 to 1.0. Before pursuing
this line of investigation further with the calculations,
it seems advisable to verify that the effect is real by
further experimentation. Experiments using a dopant
with k; smaller than 0.3 and with the laser pulse
chosen so that the melt-front profile penetrates just
beyond the peak of the implanted profile might
enhance the effect.

The MIA was also used to fit dopant profiles ob-
tained when As-doped layers of amorphous Si were
deposited on Si substrates and then recrystallized by
laser-induced melting. The results for layers 0.1 and
0.2 p, m thick are shown in Fig. 8. The experimental
profiles were determined by anodic oxidation and
stripping together with measurements of the electrical

carrier concentration. The starting profiles cannot be
measured by this technique because most of the As is
electrically inactive when. the deposited layer is still
amorphous. However, the deposition conditions
were such that the As concentration in the deposited
layer should have been fairly uniform. The melt-
front calculations were carried out with the same
model described above (and in Paper I) to obtain the
melt-front profiles of Fig. 3 but with the thickness of
the amorphous layer changed to match the experi-
mental conditions. The uniform concentrations re-
quired to give the calculated profiles are shown by
the dashed lines on the figure.

Perhaps it is worth emphasizing here that the basic
thermal and dopant diffusion models used to obtain
the results on Figs. 7(a), 7(b), and 8 are the same.
Only the th'ickness of the amorphous layer, and
therefore the melt-front profile, and the initial dopant
distribution change in going from one calculation to
another. Thus there is an internal consistency within
the models and the calculations which argues strongly
for the validity of the melting model of laser anneal-
ing.

D. Calculations with the QFD and MIAS methods
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FIG. 8. Dopant profiles in Si samples on which As-doped
amorphous layers 0.1 and 0.2 p, m thick were deposited and
subsequently laser irradiated at the energy densities indicat-
ed on the figure. The dashed curves are the assumed ideal-
ized starting profiles.

We first used the QFD method to calculate the
boron profile of Fig. 6 and the dashed curve marked
with f shows the results. There is a definite im-

provement over the fit obtained with the IA, In
qualitative terms, we believe this improvement comes
about because the QFD method allows for the f'act

that the solidification front, as it moves back toward
the surface, presents a barrier to further diffusion
into the sample, thus steepening the annealed profile.
A fit to the boron profile with 'the MIA gave a result
nearly as good as that obtained with the QFD method
but it is not shown on Fig. 6 to avoid a confusion,

Our most extensive use of the QFD and MIAS
methods has been in fitting the data of White et al. "
on Si implanted with Sb, Ga, In, and Bi. Unlike the
results for B-, P-, and As-implanted laser-annealed
Si, the profiles of Ga, In, and Bi in Si after laser an-
nealing show clear evidence of segregation; the case
of Sb is questionable, as we shall see. For Ga-, In-,
and Bi-implanted samples, surface segregation spikes
are observed, but they are not nearly as large as they
would be if the values of k; shown in Table I were
applicable. The necessity of choosing k, ) k to ob-
tain agreement between experimental and calculated
profiles and the fact that the equilibrium solubility
limit-can be greatly exceeded as a result of the laser-
annealing process"" shows that the process is a
highly nonequilibrium one. The nonequilibrium na-
ture of laser annealing will be the subject of the third
paper in this series, Here we will simply treat k, as
an adjustable parameter in the calculations. White
et al. followed the same procedure in fitting their data
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with calculations similar to our QFD and MIAS
methods. Their calculations and ours were carried
out totally independently, and the fact that the results
are closely similar reinforces the basic validity of both
sets of calculations.

E. Bismuth and indium

We discuss the Bi and In profiles first because, un-

like Sb and Ga, they show no loss of dopant during
laser annealing. The Bi was implanted at 250 keV to
a dose of 1.2 & 10"cm and the In was implanted at
an energy of 125 keV to the same dose. The laser
annealing was done with laser pulses of —15 nsec
duration full width at half maximum (FWHM) and
—1.5-J/cm energy density. The experimental
results are shown in Figs. 9 and 10 for Bi and In,
respectively. The calculations were carried out by
first using the amorphous model (Paper I) to com-
pute melt-front profiles for samples with amorphous
layers of the appropriate thicknesses. These profiles
were then taken as the starting melt-front data in the
dopant diffusion calculations. The diffusion coeffi-
cients of Kodera were chosen and, as mentioned

. above, k, was treated as an adjustable parameter. A

limited amount of scaling of the melt front was used
to improve the least-squares fitting of the experimen-
tal profiles. This fitting excluded the experimental

0
points in the first 200A of the sample where the very
large segregation spikes occur and where the data
tend to have larger errors than elsewhere.

The results of Ref. 17 suggest that a good fit to the
Bi data can be obtained with a value of k, of 0.4 for a
recrystallization velocity of 4.5 m/sec and a max-
imum melt depth of approximately 0.3 p, m. A value
of the diffusion coefficient for Bi in Si is not given by
Kodera and the value used in the calculations of Ref.
17 is not specified. In our calculations with the QFD
method, we assumed D~ =2.4 x 10 4 cm'/sec. Minor
scaling of the melt-front profile gave a maximum
penetration depth of 0.360 p, m instead of the 0.365
p, m indicated by the heat transfer calculations for a
0.18-p,m-thick amorphous layer; this difference is en-
tirely inconsequential in view of the combined uncer-
tainties in the experiments and calculations. The re-
crystallization velocity varies somewhat during the
solidification process but an average velocity of
4.0—4.5 m/sec is indicated from the melt-front pro-

2 gl

102O

0

102'

5'6

2

1P20

In IN Si
~ IMI LANTED

LASER ANNEALED

kl = 0.12
1.0

04
(QFD)

p P ~

„ Io10
Z

5
K
Z
C3 2
z0~ 10'e

Bi IN Si
~ IMPLANTED

LASER ANNEALED——kI = 1.0
k, = 0.35—-—k; = 0.0007

fo 5
E
V

D 2
0

z 100
cf

Z
LLI

O

0 2
O

Ipre

5

1.p17 I I x I

0.10 0.20 0.30

DEr TH (p. m)

FIG. 9. Experimental (RBS) and calculated concentration
profiles of Bi in Si after laser annealing. The implantation
and laser-annealing conditions are given in the text. The to-
tal lack of a surface segregation peak for k, =1 should be

noted. The solubility limit of Bi in Si is —8 && 10'
atoms/cm3.

1017
0. 1

I

0.2
DEPTH (p. m)

0.3

FIG. 10. Experimental and calculated concentration pro-
files of In in Si after laser annealing. For reasons explained
in the text, the curve for k,- =1.0 is not the best fit when no

segregation is allowed. The solubility limit of In in Si is
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files. We carried out calculations with k; =1.0, 0.5,
0.3, and 0.1 and found that k; =0.3 gave the best fit
to the experimental data. Because of the conver-
gence problems of the QFD method, we estimate that
this corresponds to a true best value of k; =0.35.
The Bi profile for this value is shown on Fig. 9 by
the solid line. Also shown on the figure is the profile
for k, =1.0, i.e., with no segregation and the profile
using the equilibrium value of k; =0.0007; the latter
is clearly unable to give a satisfactory fit to the exper-
imental data. On a semilogarithmic plot such as Fig.
9, the differences between profiles with k; =1.0, 0.5,
and 0.3 in the regions away from the surface peak do
not appear very great. Therefore, an examination of
the amount of dopant segregated to the surface re-

0
gion (depth = 200 A) is quite useful and the results
reinforce our confidence in the model calculations.
The experimental data show that of the implanted
dose (1.2 x 10" cm ') approximately 0.22 x 10"/cm'
or 18% is located within the first 190 A of the sur-
face; this includes the few points which lie in front of
the surface in the experimental data (see Ref. 17).
The corresponding percentages from the QFD calcu-
lations are 6, 11, 15, and 31 for k, values of 1.0, 0.5,
0.3, and 0.1, respectively. Thus, both the percentage
of dopant in the surface peak and the least-squares
fitting of the dopant profile (which excludes the sur-
face peak) with the QFD method indicate a value of
k; in the range 0.25—0.35. We were not entirely sat-
isfied with the results of fitting the Bi data with the
QFD method. As we have already discussed, the
method has convergence problems unless one can af-
ford the large amounts of computer time required
when the time step is made very small. Therefore,
we carried out a series of calculations, with the MIAS
method, which is extremely fast. For these calcula-
tions, we assumed DI values of both 2.4 &10 and
4.4 x 10 4 cm'/sec. The best fit to the smooth part of
the experimental data was found for k; =0.42 and
D, =4.4 x 10 4 cm2/sec. This fit gave 18.4% of the
dopant in the surface peak which is in remarkably
close agreement with the experimental value of 18%.
When k; =0.0007 was used in the calculations,
greater than 99% of the dopant was segregated to the
surface.

The calculations on In in Si were carried out almost
entirely with the MIAS method because the low

value of k; would have necessitated large amounts of
computer time if the QFD method had been used ex-
tensively. We took D& =6.9 && 10 4 cm'/sec from
Table I, a maximum melt depth of 0.2975 p, m and a
recrystallization velocity of 4 m/sec. Figure 10 shows
the results of the calculations. The best fit was ob-
tained with k; =0.12 which is quite close to the value
of 0.15 found in Ref. 17. The curve indicated for
k; = 1 may be somewhat misleading since it is not the
best fit when no segregation is allowed. It is instead
the profile which was used with k; =0.12 to generate

the segregation calculation, as explained in Sec. III D.
If we had put k, =1 and allowed the melt front to
penetrate deeper, we could have obtained a better fit
than that shown on Fig. 10, but there would still be
no surface spike. A calculation with k; =0.12 using
the QFD method gave the dotted curve on Fig. 10;
the calculation with k, =0.0004 using the MIAS
method is also shown on the figure. If we again con-
sider the amount of dopant segregated to the surface
(in the MIAS calculations), we find 61/0 which, as in

the case of Bi, is remarkably close to the value of
60% obtained experimentally. This should be com-
pared to the value of very nearly 100% when
k;0 =0.0004 is used in the calculation.

F. Antimony and gallium

The fitting of the profiles of these dopants in sili-
con presents an additional problem because there is a
measurable loss of dopant during laser annealing
under the conditions used in Ref. 17. We concen-
trated on the Sb results and made three different as-
sumptions about dopant loss. In one set of calcula-
tions, all of the dopant loss occurred during the initial
part of the surface melting when the temperatures in

the liquid Si were the highest. Equally good fits to
the experimental data were found for k; values of 1.0
and 0.8. However, when the same assumption was
applied to the case of Ga in Si satisfactory fits could
not be obtained. A second set of calculations was
carried out with the assumption that dopant loss oc-
curred only when the surface concentration exceeded
some threshold value. This assumption gave quite
good fits to both the Sb and Ga experimental data
but the fit for Sb required a value of k, =0.4 and a
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FIG. 11. Antimony distribution in Sb-implanted Si before
and after laser annealing. There is some loss of Sb from the
sample during laser annealing, as discussed in Ref. 17. The
solubility limit of Sb in Si is —7 && 10' atoms/cm .
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maximum melt-front penetration substantially less
than indicated by the heat transfer calculations. In
the third set of calculations, we used the approxima-
tion that the dopant loss is proportional to the surface
concentration, as one would expect from a simple
kinetic rate theory approach. %'e found that satisfac-
tory fits to both Sb and Ga in Si could be obtained
with this method. Although the rms deviations
between experimental and calculated profiles for both
dopants werc not quite as good as those obtained
with the assumption of a threshold concentration for
dopant loss, .the values of the maximum melt-front
penetration needed to obtain the fits were much
more in accord with the values given by the heat
transfer calculations of Paper I (and the values used
for the As, Bi, and In calculations). Figure 11 shows
the results for Sb in Si from the third set of calcula-
tions. Our calculated results for Ga in Si are quite
comparable to those reported in Ref. 17 and are not
shown here.

%C view the results for B, P, As, In, and Bi in Si
as being fairly unambiguous when the melt front
penetrates beyond the as-implanted dopant profiles.
Under similar circumstances, the experimental results
for Sb and Ga are somewhat more difficult to inter-
pret because the loss of dopant adds another variable
to the modeling and calculations. However, even in

these two cases the simplest and most natural physi-
cal assumption (dopant loss proportional to the sur-
face concentration) leads to results most consistent
with the thermal calculations of Paper I.

Several things must be kept in mind when evaluat-

ing the results of our calculations and the experi-
ments. First, it should be recognized that Rutherford
backscattering, though a very powerful and quantita-
tive technique, yields fairly substantial error bars as-
sociated with the individual data points, unless one
has the luxury of accumulating vast counting statis-
tics. Our calculations have utilized rrns fittings to the
data as though no errors were involved. If these er-
ror bars had been taken into consideration, it would

be virtually impossible to differentiate between a k;
of 1.0 and 0.9 for fitting the As data for example or
between k; values of 0.25 —0.45 for fitting the smooth
part of the data in Bi. Counterbalancing this are the
precise results that both the experiments. and the cal-
culations give about the percentage of dopant con-
tained in the surface spike. As we have seen, there
is good agreement between experiment and theory on
the percentage of dopant in this spike and this per-
centage is remarkably consistent with the results of
thc rms fitting of thc smooth part of thc profile.

Turning to the calculations, we see from Eqs. (7)
and (9) of Sec. II that the ratio of v/Di enters into

the analytical solutions for the case that the initial
dopant profile is constant. The heat transport and
melting calculations of Paper I can be assumed to
give fairly accurate values of v. The values of DI
ho~ever are subject to fairly large uncertainties as in-
dicated by the error estimates of Kodera and the
differences between Kodera's values and those of
Ref. 16. In this connection, we carried out calcula-
tions on both Bi and In using the values of DI from
Ref. 16 and found the results totally unacceptable un-
less we greatly changed the melt-front profiles from
those dictated by the heat transfer calculations of Pa-
per I. %C are convinced therefore that a reasonable
and probably extremely useful way to proceed is to
employ whatever means available to ascertain that
the calculations of melt-front profiles give reliable
results and then to use these profiles in the dopant
diffusion calculations to determine the diffusion coef-
ficients and the values of k;. For example, as shown
in Paper I, melt-front profiles generated by our calcu-
lations give results quite consistent with the duration
of surface melting obtained by Auston et al. ' from
transient reflectivity measurements. %C have then
found from the calculations reported in this paper
that the diffusion coefficients given by Kodera must
be reasonably reliable. Systematic experimental stud-
ies of laser annealing coupled with refined calcula-
tions of melt-front profiles and further experiments
and calculations on dopant redistribution can be ex-
pected to lead to improved values of both DI and k;.
The last two columns in Table I show the values of k;
from the calculations of Ref. 17 and our best esti-
mates from the calculations reported here. %hen the
various sources of possible error in the experiments
and calculations are considered, there is essentially
complete agreement between the two sets of calcula-
tions.

The sketchy experimental results presented thus
far on those cases in which the melt front does not
penetrate entirely through the implanted profile may
point the way toward a deeper understanding of the
dynamics of ultrarapid crystallization. Data from
such experiments can potentially lead to an under-
standing of the transient regime in which the recrys-
tallization velocity builds up from zero to the high
velocities characteristic of laser annealing. These
transients are superimposed on those transients in-
herent in growth at a constant velocity illustrated in
Fig. 1. It will require high instrumental resolution
and a combination of careful experimentation and
realistic modeling to disentangle these transients, but
in principle it may be possible. The capability of
treating both types of transients is already built into
the QFD approach. A more important effect of the
transients may come into play in the interpretation of
experiments in which the dependence of k; on melt-
front velocity (see, for example, Ref. 18) is studied.
As we have already noted, Fig. 1 shows that for
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k, ~0.15, a steady-state situation is not attained be-
fore the melt front reaches the surface. Thus the
amount of dopant contained in the surface peak is
not determined entirely by k;, as it is when a steady-
state situation exists. When the melt-front velocity is
reduced (e.g. , by substrate heating) to the point that
k, falls below about 0.15, it will be necessary to
correct for the effect of the initial transient on the
amount of dopant segregated to the surface before
the true dependence of k; on v can be determined. It
is possible that such a correction should have been
made here for the In results.

Closely connected with the above considerations
are the problems of nonequilibrium segregation
(k; W ka), how, when, and to what extent the equili-
brium solubility limit is exceeded, and the breakdown
of the planar melt front to produce the cellular struc-
ture observed in laser-annealed semiconductors.
These questions, which will be addressed in the third
paper of this series, are among the most important
and fascinating ones in modern materials science and
solid-state physics. Pulsed laser annealing for the
first time provides a flexible and reliable technique
for studying ultrarapid recrystallization phenomena
and their consequences. Calculations of the type dis-
cussed in this paper and Paper I must form an in-

tegral part of such studies.
We end this paper by taking note of the fact that

the recent experiments of Lo and Compaan on Ra-
man scattering during pulsed-laser annealing have
been interpreted as implying that the near-surface re-

gion of the sample does not melt. The experiments
of Lo and Compaan are important but also difficult
to perform and interpret. They were carried out with
a laser that gave heating pulses only 90 p, m in diame-
ter, and the spatial homogeneity of the pulses, which
we know to be of vital importance, over such small
areas could not be studied. In contrast to this one
result that seems to imply that melting does not oc-
cur, there is a large body of experimental data on
transient reflectivity, dopant redistribution, cellular
formation, etc. , which, gives very strong evidence
that melting does occur. We believe that the excel-
lent fits which we have obtained here between exper-
iments and calculations based on the melting model
make it extremely difficult to seriously question the
basic validity of the melting hypothesis. It would be
a truly remarkable coincidence if a nonmelting hy-

pothesis cou)d lead to a theory (yet to be construct-
ed) which duplicated virtually all of the results of the
melting model.
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