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Under conditions of intense optical pumping or electrical injection it is possible to establish a
temperature of excited carriers, T,, larger than the temperature of the lattice, 7, , for periods of
time sufficient for many effects to be observed. It is well known that semiconductor band gaps
are a function of temperature, but the variation with the two temperatures, 7, and 7, when
these are different seems not to have been discussed previously. Simple thermodynamic argu-
ments may be applied when it is recognized that a band gap is a chemical potential. The simple
formula, AE. (T,,T))=AH, (T,)~T,AS, (T.), is deduced. Physically this formula states
that the vibronic degeneracy of the electronic states (valence and conduction band or bonding
and antibonding) among which the carriers are distributed with characteristic temperature T, is
determined by the lattice temperature, 7,. Thus when 7, >> T, anomalously large variations
in the gap will occur. It is found that under certain conditions loss of energy from the carrier
system to the lattice will cause the density of excited carriers to increase, rather than decrease.
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I. INTRODUCTION

The forbidden energy gap, AE.,, of a semiconduc-
tor is identically the chemical potential for the forma-
tion of unbound electron-hole pairs.!'? Indeed, the
normal formula for the thermal equilibrium concen-
tration (when nondegenerate),

le1lh,)=NA(TIN,(T)expl-AE. (T)/kT] , m

is an example of the law of mass action?? for the
reaction

0O—e.+h, . 2)

Then AE,, is, by definition, its standard chemical po-
tential. [Here

Nr,u( T)=2(21rm(:*vk7‘/h2)3/2 (3)

are the electronic degeneracies, i.e., the effective
number of points in the Brillouin zone at which car-
riers contribute to conduction, for the conduction and
valence bands. e. and A, represent an electron and a
hole excited to the conduction band and valence-
band edge distribution of states, respectively, and m.*
and m are their density of states effective masses.]

Consequently, the band gap is equal both to the in-
crease in internal energy upon increase of the carrier
density by one electron and one hole under condi-
tions of constant entropy and volume and to the in-
crease in free energy upon increase of the carrier
density by one electron and one hole under condi-
tions of constant temperature and pressure;

U
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(In a forthcoming book chapter* there is given a
quantum-mechanical derivation of the thermodynam-
ic identity that the increment in free energy measured
in thermal experiments is equal to the ‘‘no-phonon-
line’’ value of the internal energy increment mea-
sured in optical experiments under normal condi-
tions.)

It has previously been noted®*~’ that there are great
advantages when discussing the temperature depen-
dence of band gaps to treat the change in free energy
rather than the change in internal energy:

AE,,=AG,,=AH,,— TAS,, . (5)

The temperature dependence of a free energy is, of
course, an entropy, in this case the entropy of the
band gap, AS,,, or the standard entropy of excitation
of an electron across AE,,. AH,, is the enthalpy of
the gap, which must, incidentally, increase with tem-
perature if AE,, decreases.? The variation of these
three thermodynamic variables from 7 =0 to the
melting point, 1685 K, for Si is shown in Fig. 1,
which is borrowed from Ref. 2.

To calculate the temperature dependence of a par-
ticular band gap from first principles, one may con-
sider the effect of the excitation of the carriers upon
the frequency of the phonon modes rather than the
effect of the phonons upon the electronic states.’
The number of phonon modes excited is always
several orders of magnitude greater than the number
of carriers excited across the gap. At the melting
point of a covalent semiconductor, typically 2.6 times
the Debye temperature, all phonon modes are multi-
ply excited whereas only 10~ of the carriers are
excited. Whereas simple, tractable and analytic
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FIG. 1. Variation with temperature of the fundamental
band gap, AE,, of Si. As AE_, is the standard chemical po-
tential for the creation of (unbound) electron-hole pairs, it is
equal to a free energy. The corresponding standard enthalpy
and standard entropy of this reaction, AH,, and AS,,,, are
also shown. This figure is borrowed from Thurmond, Ref. 2.

bond-charge-model® formulas are available for the
frequency of the various phonon branches in terms
of the magnitude of the bond charge and the wave
vector, a proper estimate of the effect of the phonons
upon the the electronic states would have to treat
three independent effects—reduction of direct inter-
band scattering (Debye-Waller or Brooks-Yu effect),
increase of indirect interband scattering, and increase
of indirect intraband scattering (Fan effect) with in-
creasing temperature—for every one of the phonons
in all branches.> [The (anharmonic) effect of the
variation of lattice parameter with temperature should
also be treated, but it is smalller than these effects in
the common semiconductors.] It is easier to treat the
effect of the excited carriers on the phonon modes.

Under normal conditions the temperatuare of the
phonon distribution, the lattice temperature, 7, the
temperatures which characterize the distribution of
carriers within the valence and conduction bands, 7, ,
and T,., respectively, and the temperature character-
izing the excitation of carriers across the gap, the
electron temperature, 7,, are all the same. For this
situation AE,, can be measured by any of several in-
dependent methods from 7 =0 K to the melting
point, and from these measurements AH.,(T) and
AS,,(T) can be deduced. Thurmond has reviewed
these data and tabulated the parameters for several
semiconductors in Ref. 2.

However, many semiconductor phenomena are ob-
served under ‘‘hot-electron’’ conditions for which,
due to optical pumping or electrical injection, the
three temperatures describing the excited carriers are
much greater than that of the lattice.’~!2 As the vari-
ous direct, indirect, and fundamental band gaps, as

well as the ionization energies of defects, impurities,
etc., are all functions of temperature, the condition

T,>>T, (6)

would seem to beg the question of the variation of
these chemical potentials with 7, and with 7, ; what
is AE,,(T,,T.)? Is AE,, a function of T, , and T, ?
One approach to the description of nonequilibrium
carrier distributions that is well established in the
literature is that of the introduction!® of ‘‘quasi-Fermi
levels.”” Now, the real Fermi level is the chemical
potential of electrons and of holes. (Of course, a
hole is nothing but the absence of an electron; as
chemical potentials are defined by derivatives of total
system energies with respect to the number of parti-
cles of a given species, electrons and holes must al-
ways have the same chemical potential, or Fermi lev-
el.) In the (normal, one fitted parameter) ‘‘quasi-
Fermi-level’’ approach, one seeks to describe a none-
quilibrium, i.e., T, # T;, concentration of electrons
and/or holes by introducing separate values for the
electron and hole Fermi levels that are adjusted so
that the conventional formula gives the actual con-
centration when the ambient lattice temperature, 7,
and the corresponding value of AE,,(T,) are insert-
ed. There is no evident thermodynamic significance
to these ‘‘quasi-Fermi levels.”” The approach is nor-
mally used to describe the action of injection lasers or
transistors under moderate conditions of injection or
optical pumping for which T, < 7, ,< T,. << T,, be-
cause the excited carrier density is not so high that
recombination is as fast as energy transfer between
carriers or to the lattice. It gives no accurate descrip-
tion of the distribution of carriers within the bands.!?
It could be improved by introducing 7, or 7, , as a
second fitted parameter in addition to the ‘‘quasi-
Fermi level,”’ in which case the corresponding band
gap and exponential factors ought logically to be em-
ployed, so a different value of the ‘‘quasi-Fermi lev-
el’” would have to be used. It seems quite artificial,
but it may be useful when one does not care to
develop a thermodynamic description. When none of
the four temperatures in the problem are equal, or
when, due, e.g., to strong electric fields, the distribu-
tion of carriers is not accurately described by a ther-
mal distribution with any choice of temperature and
chemical potential, this would seem prudent.
However, a proper thermodynamic description is
tractable and desirable when the excited carrier con-
centration is sufficiently high that for times relevant
to the experiments of interest, the carrier-carrier in-
teraction is so much stronger than the carrier-phonon
interaction that the carrier and phonon systems can
be considered to be weakly coupled. Then the car-
riers will thermalize among themselves before they
thermalize with the lattice. Then, when T, ,= T,
= T,, we would have T, >> T, for times long
enough for many interesting effects to be observed.
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Indeed, Lo and Compaan have shown'* by direct Ra-
man measure of the surface lattice temperature that
T, does not rise more than about 300 °C for crystal-
line Si exposed to laser pulses well above the thres-
hold energy density for annealing ion implantation
damage.’>"2? They also observed a background
scattering characteristic of Raman scattering from car-
riers with a T, >> 2000 K. Yoffa has shown? that,
for the the excited carrier concentrations that seem to
persist during laser annealing experiments, the car-
riers would thermalize among themselves much more
rapidly than with the lattice, so that the condition dis-
cussed here, 7,.=T,,=T, >> T, would obtain. It
may also occur for intense electrical injection.

II. DERIVATION

For this case that the carriers may be considered
strongly coupled to each other, (so that T, ,~T,.)
and sufficiently dense that the rates of Auger recom-
bination and impact ionization are rapid on the scale
of the experiments of interest (so that T,. = T,), but
weakly coupled to the phonons (so that 7, >> T,)
for times of interest,,a simple formula in terms of the
values of AH.,(T) and AS,,(7T) measured under the
normal conditions that 7, =T, can be deduced from
simple consideration of the law of mass action and
the number of carriers excited. This formula is

AE. (T, T))=AH. (T,))—-TAS. (T,) . @)

To see that this is the correct formula we invite the
reader to consider Fig. 2. For simplicity the band
structure of the semiconductor has been replaced by
a single electronic transition between two electronic
states. When the effect of the lattice phonons are add-
ed , these two levels become two parabolas (in the
harmonic approximation) of vibronic levels. The lat-
tice temperature, 7, determines the distribution of
carriers within whichever vibronic parabola they may
be found. At T, =0 K all carriers must be in the
lowest vibronic state because there are no phonons
excited. Then the vibronic degeneracy of both states
would be the same and the carriers would be distri-
buted between these two parabolas according to the
normal Fermi-Dirac expression as a function of the
carrier temperature 7,. When 7, #0, phonons are
excited and carriers in either electronic level are dis-
tributed among the corresponding vibronic levels ac-
cording to the normal Bose-Einstein expression as a
funciton of 7,. In general the lattice stiffness and
the phonon energies will be different for the two
electronic states, i.e., there is an electron-phonon in-
teraction. Exciting electrons from the valence to the
conduction band usually softens the lattice modes of
a tetrahedral semiconductor, like Si or GaAs. Cases,
like HgTe, where the excitation stiffens the lattice are
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FIG. 2. Configuration coordinate diagram to illustrate
how it is that when the entropy of formation of electron-
hole pairs is positive (as it is in Si and most other semicon-
ductors), then, in the harmonic approximation: the vibronic
eigenvalues change not at all; the enthalpy difference
between the two electronic states must increase with carrier
temperature, T,, to a saturation value; and the free energy
difference between the two electronic levels will decrease
without limit as the 7, increases. T and T, denote lattice
temperatures which are, respectively, low and high with
respect to the Debye temperature. Also, the value of AS,.,,
and therefore of AH ., is entirely a function of the number
of vibrational modes excited for each electronic state. These
entropies and enthalpies will always be functions of 7, and
will, until the carrier ‘density becomes great enough to signif-
icantly alter phonon frequencies, be functions only of 7;.

also known; in such cases AE,, should and does have
the opposite temperature dependence. These cases
are easily understood in terms of the band structures
of the various materials.’

Figure 2 is drawn for the usual case that the excita-
tion softens the lattice so the upper parabola is
broader than the lower. Consequently the vibronic
degeneracy, i.e., the number of states of the total sys-
tem available to a carrier, is greater for the excited
state than for the ground state. By the law of the
equipartition of states, this will increase the probabili-
ty of finding the carrier in the excited state for any
positive value of T,.
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There are other consequences also. Because the
vibronic levels are more closely spaced in the excited
electronic state, the excited vibronic levels will begin
to be populated to a significant extent at lower values
of T, in the excited state. This means that the aver-
age energy of the distribution of carriers in the excit-
ed electronic state increases relative to the average
distribution in the ground state when AE,, decreases
with rising temperature, 7,. This difference between
the mean energy of two distributions is just the
difference in internal energy for excitation across the
gap, which is effectively equal to AH,, because pres-
sure times volume change terms are quite negligible
in all ordinary circumstances. Indeed, 1 atm is only
0.632 x 1076 eV/A.? (It was noted above that thermo-
dynamics requires AH to increase when AG de-
creases.?)

The standard entropy, AS;,, of the excitation reac-
tion is defined in terms of the ratio of the probable
number of vibronic states in the two electronic states.
As the number of electronic states does not change,
this is a function only of the probable number of
phonons excited. Therefore, the value of AS,,, and
thus of AH.,, required for AE,,(7T,,T,) must be
functions of 7;. They will be the same functions of
T, as those measured under normal furnace condi-
tions provided that the number of excited carriers in
excess of that which would obtain if the two tempera-
tures were equal is not so large that the effect on the
phonons becomes nonlinear in the number of car-
riers. (The intrinsic carrier concentration at the melt-
ing point of Si, and most other common semiconduc-
tors, is about 2 x 10" cm™.) When nonlinearity sets
in one would expect the effect to be greater for the
excited electronic states because atoms whose bond-
ing electrons have been excited to nonbinding or an-
tibonding electronic states will make larger excursions
in their thermal motion than fully bonded atoms and
thus will sense the more anharmonic portions of the
lattice potential. It follows that our assumption of
AS.,(T,) will underestimate the correct value. This
can be seen from Fig. 1 and the fact that AS,, does
not saturate above the Debye temperature, 0, as it
would in the harmonic approximation,® but continues
to increase moderately all the way to the melting
point. At this point it should be clear that the values
of the enthalpy and entropy of the gap in Eq. (7) are
functions only of the excitation of phonons.

[We might note that, when viewed as a free ener-
gy, AE,, decreases without limit as 7, increases be-
cause the entropy factor in the definition of a free
energy, Eq. (7), is multiplied by the temperature
relevant to the species being excited, here 7,. When
viewed as an enthalpy or internal energy difference,
as in optical excitation experiments, AE,, decreases
because the mean number of phonons excited in-
creases and the optical band gap, when defined as the
entropy conserving no-phonon line, connects states

2

with the same number of phonons exciteda, but each
phonon excitation raises the level of the ground elec-
tronic state (valence band) more than the excited
electronic state (conduction band). The eigenvalues
of individual ground and excited vibronic states do
not in general approach each other as temperature
varies. In the harmonic approximation the eigen-
values do not vary at all.]

The carrier temperature 7, is defined by the distri-
bution of the carriers between the two vibronic sys-
tems, the two parabolas, for which the degeneracy is
different. If one considers now just that distribution,
as if there were only one temperature in the problem
but levels of degeneracy determined in the same way,
then it is evident the temperature which multiplies
the entropy factor for the free energy, Eq. (7), must
be exactly 7,. Thus Eq. (1) becomes

AS, . (T.)
k

le1lh,]=NAT,IN(T,,) exp[

—AH,(T,)

X exp[-————k?—— 8)

[Note that we have here a product of electronic de-
generacy factors, N, and N,, which are determined
by the intraband carrier temperatures, 7, and 7, ,,
and the vibronic degeneracy factor, exp(AS,,/k),
which is determined by the lattice temperature 7} .]
Again, at the very high carrier densities, such as
those achieved in laser annealing experiments,'* 13
Yoffa has shown?’ that the three carrier temperatures
should approach each other much more rapidly than
any of them approaches 7} ; the condition 7, ,~T,,
=T, >> T, obtains for some time. Equation (8)
simply states that the vibronic degeneracy of the
ground and excited electronic states (i.e., the valence
and conduction bands or the bonding and antibond-
ing states) is a function of T, but the carriers are
distributed between these electronic states according
to 7,. The ratio of the density of vibronic states
available, exp(AS,,/k), is a factor in the determina-
tion of the number of carriers excited. The ratio
T, /T, does not appear.

III. DISCUSSION

One should note that, when 7, # T, the optical
no-phonon line (‘“‘optical gap”), dU/8n,,4ls v, is not
equal to the thermal, or chemical potential, band gap,
8G/8n,4|rp. This may be seen in Fig. 2 from the
fact that the optical no-phonon line will depend only
on the excitation number of the phonons, and thus
T, ; the optical no-phonon line will not decrease
without limit as 7, increases. Except for the contribu-
tion of free carriers, the optical-absorption edge will
shift to lower energy only to the degree characteristic
of T,. However, as the chemical potential and the
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density of carriers determine diffusion and most oth-
er interesting properties, it is the thermal or chemical
potential band gap, described by Eq. (7), that is
relevant to our discussion.

Another interesting point is that, since AS,, —0 as
T, —0, as do all other entropies, no major variation
of the band gaps should be expected in low-energy
pulsed laser experiments done with liquid He am-
bients. Picosecond pulse experiments have common-
ly been done with samples cooled to liquid He tem-
peratures. If such experiments were repeated with
T, a substantial fraction of ®, a significant variation
of band gaps, optical reflectivity, and related
phenomena should be observed.

For the same reason, the threshold laser intensity
for pulse laser annealing should be sensitive to the
initial lattice temperature. If one started from 7, =0
K and the laser pulse raised it to 300 K, rather than
from 300 K to about 600 K, as measured'* by Com-
paan and Lo, then from the relative values of AS,,
(Fig. 1), we see we would need about twice as large a
value for T, to achieve the same band gap and carrier
concentration.

When large densities of carriers are excited, the ef-
fects of the exclusion principle for electrons and
holes, i.e., of carrier degeneracy, must be considered.
Equations (2) and (8) must be replaced with more
complicated expressions involving the product of two
Fermi-Dirac functions,?

kT, 4
le1lh,]=4 Py (m(-*m:)m‘"—Fl/z
x (" =mo) Fip(—') )

where, of course,

o0

_ _x
Fip(n) J;_odxexp(x——n)‘*'l '

1/2

(10)

Here we have mg=AE. (T,,T,)/kT, and ' = Eg/kT,,
where Ep, is, of course, the Fermi level measured
from the valence-band edge. When the arguments of
the Fermi-Dirac functions are large and negative,
these expressions reduce to the Boltzmann expres-
sions given above. When the arguments of these
functions become positive (i.e., the band gap be-
comes negative), the effects of degeneracy become
important; for a given concentration of excited car-
riers, T, will actually be larger than the value ob-
tained from Eq. (8). However, such complication
does not affect qualitatively the foregoing discussion,
which would hold for a system of discrete electronic
levels as well as for bands.

One expedient would be to use the Ehrenberg ap-
proximation?* 2’

Fip(x) =27"2exp(x)/[4 +exp(x)] , 1)

which is accurate when x < 2.5, or the approxima-

tion¢
Fip(x) = (4x32/37\12) + 732/6x112 (12)
which is accurate when x > 1.5. The effect of degen-

eracy could be accounted for in Egs. (1) and (8) by
simply dividing the classical result by the factor

y=(1r/4)exp(—no)/Fl/z('q'—no)Fl/z(—n') , (13)

which is plotted in Fig. 3. As long as —AE, /KT,
< 2.5, we may use the Ehrenberg approximation and
have

16 +4exp(n’ —mo) +4exp(—n') +exp(—mny) (14

y
16 exp(—np)
Reference to Fig. 1 shows that indeed x < 2.5 as long
as T, <0.70 and/or kT, <1 eV. Therefore, the
Ehrenberg approximation should be reasonably ade-
quate for almost all experimental circumstances.
Under pulsed laser annealing conditions, one may
contemplate!* !® the situation where 7, =10000 K
while 7, =500 K. Referring again to Fig. 1, we see
that such values of 7, and T, would produce a de-
crease in AE,, of more than 3 eV from its normal
room-temperature value of 1.1 eV, so that we would
have x =1.9 in the Fermi-Dirac function. [Note that
negative values of AE,, have significance only in the
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FIG. 3. Variation of degeneracy correction factor, y, from
Eq. (13) with ng=AE, (T, T;)/kT,, into the range of very
high excitation, as during pulsed laser annealing, where the
band gap becomes negative.




5548 J. A. VAN VECHTEN AND M. WAUTELET 23

way they affect the magnitude of the exponential in
Egs. (1) and (8). They do not imply any crossing of
eigenvalues.] Thus, pulsed laser annealing conditions
can produce anomalously large variations to the ther-
modynamic band gap. Due to-the enormous gradient
in the plasma density resulting from the very short
absorption lengths of the intense laser pulse, the gra-
dient of the band gap may be very large indeed, of
order 10° eV/cm (3 eV over 300 nm). As the band
gap is smallest where the carriers are the densest and
hottest, this field opposes the expansion of the plas-
ma and may even produce negative carrier diffusion,
i.e., produce plasma self-confinement. This point will
be discussed further in a separate publication.?’

Another interesting point to consider is the varia-
tion of the carrier concentration with time as the car-
riers do scatter emitting phonons and lose energy to
the lattice. Of course, this causes a decrease in T,
and an increase in 7,. The former tends to make
[e.1[h,] decrease through the density-of-states terms
and the denominator of the exponential in Eq. (8).
The latter tends to make this product of excited car-
rier concentrations increase through the AS, (7. /k)
term in the argument of the exponential. Returning
to Fig. 1, we see that, particularly at temperatures
below ©/2, AS,, varies rapidly with 7,. If one con-
siders progressively lower values of 7T, the lattice
specific heat becomes progressively less. Then a
given quantity of energy from the carrier system may
produce a progressively larger increase in 7; with a
relatively modest decrease in 7,. Thus, we may
reach the amusing conclusion that, under certain con-
ditions, a loss of energy from the carrier system will
cause the concentration of excited carriers to in-
crease, rather than decrease.

Let us investigate this point more quantitatively.
For simplicity let us first treat the nondegenerate ex-
pression for n?=1[e.1[h,]. We obtain (using
T=v,<’ = Te,v= Te)

dn? _n? MM (1 1
9T, k dT, (T, T.|° (15)
and
dn® _ n? AH,,
=34+
oT. " T, 3 KT, (16)
Therefore,
2 =_a_"_2. T, + 8”2
A(n?) BTLA 3 GTFAT"
nz aAH{'u Te AHc'v
= — AT, +|3+—]A
AT n] e e]T"
an

Using Varshni’s equation?® and Thurmond’s data,>

we have
dAH., 2ap8°T,

aT, (7, +8) (18)

with @ =4.73 x 107 eV/K =5.49k and 8=636 K for
Si. Moreover,

CL
C,

AT, =-AT, (19)

where C; and C, are the lattice and carrier specific
heats. Around 7, =100 °C and at constant pressure,
C, =0.81 cal/g =2.55R for Si.* For a free-electron
gas at constant volume,

C,=15R(wkT,/3u.) ., (20)
where
e =K/2m (3m2n )3 | 1

Let us make the most conservative estimate for An?
by choosing the maximum plausible value of u,,
which would obtain if all the 2 x 102/cm? valence
electrons would be participating in the gas, so
pe=12.5 eV and we find C,|, =0.39R. Then we
would have C.|p=1.39R, the carrier specific heat at
constant pressure, to be compared with the lattice
specific heat C; =2.55R. Then, evaluating Eq. (16)
we find,

An?=53AT, n?/T, , (22)

i.e., while these extreme conditions remain, the loss
of energy from the carrier system to the lattice causes
the density of excited carriers to increase rather than
decrease. Again, this is simply the result of increas-
ing the vibronic degeneracy of the excited electronic
states, which increases the probability that they be
occupied.

Of course, degeneracy will generally have signifi-
cant effect under the conditions relevant to this dis-
cussion. Physically, it is clear that an effect of degen-
eracy is to increase the magnitude of the phenomenon
just discussed, whereby loss of energy from the car-
riers to the lattice causes the concentration of excited
carriers to increase. This is simply because degenera-
cy decreases the rate of change of n2 with 7, and
thus lessens the effect of decreasing 7,. However,
the effect of increasing 7, with the transferred ener-
gy is to increase the number of vibronic states avail-
able, and thus serves to relieve the restriction of the
exclusion principle.

Let us denote the correct value of [e.1[4,], taking
degeneracy into account, as n?/y, where y is defined
in Eq. (13). If we then use the Ehrenberg approxi-
mation, Eq. (11), for the Fermi-Dirac function in
order to take account of electronic degeneracy, then
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we find Eq. (16) should be modified.to

a2 n2 8AH, (1 1 SCno.m') n? f(no,m') | AH,,
—|=——" It ——— AT+ - 3+ 1 + = (AT, (23)
y| vk 8T, |T. T, T, kT,
and
Flnom) =4+ 2277 exn(—n") + L expl—(no—n")] (24)
4 Mo No

F(mo, m') is always positive and becomes large when
mno becomes large and negative, i.e., when the band
gap becomes large and negative, as will occur under
intense excitation, as in pulsed laser annealing. If the
approximation of Eq. (12) were used, a much more
complicated expression would be obtained, but the
qualitative effect would be the same. The whole of
the AT, term, which causes an increase in carrier
concentration would be multiplied by a factor greater
than unity, while only a portion of the AT, term,
which causes a decrease in carrier concentration, is
multiplied by the same factor. Note that the portion
of that term which is multiplied by the factor is the
smaller of the two under pulsed laser annealing con-
ditions.

Note added in proof. Throughout this statistical-
mechanical discussion it has been assumed that the
eigenvalues and eigenfunctions of the electronic
states are unaffected by the intense irradiation, the
excitation of significant numbers of electrons, and
the softening of the lattice. Of course, this is an ap-
proximation. Exchange interactions and free-carrier
induced shifts of phonon frequencies will contribute
to band-gap narrowing. Ferry gives a discussion of
these effects®® with reference to Ge subject to 4 x 108
W/cm? of 1.06-um light. He finds these effects nar-
row the optical band gap by an amount of order 0.1
eV, he did not discuss the free-energy gap. If the ex-
change correction is only this large, then we are justi-
fied in neglecting this contribution to the total varia-

I

tion (several eV) in free-energy gap due to the sta-
tistical effects described herein. In any case, the two
effects have the same sign and thus reinforce each
other.

Some direct experimental evidence supporting the
assumption that large changes in free-energy gap are
concomitant with only small changes in optical-
absorption edge, but large changes is the distribution
of optical-absorption strength, has come to light since
submission of this manuscript. Aydinli e al. deter-
mined the density of carriers excited during the
pulsed laser annealing of Si on sapphire by measuring
both the reflectivity and the transmission spectra
(time resolved) and doing the Kramers-Kronig
transform.?! (See the Note added in proof to the fol-
lowing paper.) They measured excited carrier densi-
ties as high as 5 x 1022 ¢cm™ with a shift of the
optical-absorption edge of only about 0.1 eV. With
the Raman scattering measured lattice temperature of
300 °C, this corresponds to a-carrier temperature of
kT,=1.8 eV and a free-energy gap of —6 eV.
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