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Stress dependence of the binding energy of D centers in Si
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Calculations of the binding energy of the outer electron in the ground state of D centers in

Si as a function of uniaxial stress along the [100] direction show that, for centers associated with

group V substitutional donors, the binding is not a monotonic function of stress. As the stress
increases from zero, the outer electron becomes localized in the two stress-deepened valleys„

which leads to a decrease in binding energy. With further increase in stress the inner electron is

gradually forced into the same two valleys, increasing the binding energy. Calculated results for
Si:P are compared to experiment. The stress dependence of the binding energy of D in Si:Li,
which is quite different, is also discussed.

I. INTRODUCTION

A study is presented of the ground state of the D
ion, a shallow donor with an extra electron attached,
as a function of applied uniaxial stress in Si. The
purpose of this work is to identify the most important
physical aspects of the problem and to treat them in
simple models. Our hope is to achieve at }east a
semiquantitative understanding of the behavior of D
centers under stress in semiconductors with multival-
ley conduction bands.

It is well known that the ground-state wave func-
tion for a D ion in a semiconductor with an isotropic
single-valley conduction band can be approximated by
the Chandrasekhar variational wave function, given
in atomic units by

[exp( —ar& Pr2) +exp( ——ar2 —Pr&) ] (I + Cr, 2), (I)

where r~2= ( ri —r2(, n=1.075, P=0.478, and
C =0.312. This wave function yields a binding ener-

gy (BE), here defined as the minimum energy re-
quired to free one of the electrons, of 0.05180, a
value equal to 93% of the exact BE. ((it is the hydro-
genic rydberg. ) If one neglects correlation in Eq. (I)
by setting C =0, the calculated BE drops to 0.026%,
only 47% of the exact BE. Notice that since the op-
timal value of n in Eq. (I) is 1.075 the inner orbital,
exp( —Q.r), is very nearly the same as the donor
ground-state wave function, exp( —r). '

For multivalley semiconductors the D problem is
much more complicated. A complete treatment must
take into account the mass anisotropy (MA) for each
valley, which produces different nonspherical en-
velope functions for electrons in different valleys,
valley-orbit (VO) interaction, which profoundly af-
fects the distribution of the electronic wave function
over the valleys, as well as correlation and exchange.

An important initial approach to this problem was

made by Natori and Kamimura who attempted to es-
timate the role of MA on the binding of D in Si and
Ge. Their calculations, which did not include correla-
tion, gave very large effects. For Si those authors
found that, in the absence of VO interaction, the BF,
e,&, of a D ion constructed by putting the two elec-
trons in nonequivalent valleys ("intervalley config-
uration") was 36% greater than the BE, e;;, arising
when both electrons are in the same valley ("intra-
valley configuration"). ' The physical origin of the
difference between e&; and e J resides in the electro-
static repulsion between the two electrons„ the repul-
sion energy is high when the axes of symmetry of the
electron orbitals are the same and low when these
axes are perpendicular to each other. %hen MA is
zero the orbitals are spherical and ~;; = ~;,.

Subsequent calculations on D in Si which include
both MA and correlation give only a 10% increase in

e,& over ~;;. Moreover, e&; calculated with correlation
is found to be —86% greater than the same quantity
calculated without. These results suggest that
perhaps a better starting point for an approximate
description of D in Si would be to neglect MA and
include correlation.

In this paper a simple model of the D center in Si
is proposed for calculating the stress dependence of
the BE. For group V substitutional donors, MA is ig-

nored, for ease of calculation, but correlation is in-

cluded. The VO interaction is assumed to affect only
the inner orbital, which, in turn, is assumed to
respond to this interaction as if the orbital were
identical to the donor 1s ground-state wave function.
The calculation is carried out in the effective-mass
approximation so that increased screening of the
donor ion by the inner electron due to drawing in of
the envelope function of the inner orbital by the
short-range central cell potential' is ignored. Further,
effects of the VO interaction on the outer orbital,
which is only weakly penetrating, are neglected.
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II. GROUP V SUBSTITUTIONAL IMPURITIES

For group V substitutional donors like P and As,
the donor ground state has A

~ symmetry (the donor
electron distributes itself with equal probability over
all six valleys), and, assuming, as an approximation,
that at zero stress the lowest lying T1 and E states are
degenerate, then the VO splitting, 6~„and the stress
splitting of the valleys, S, completely define the split-
ting of the Is donor levels under stress along [100}.7
Since the VO splitting for P or As donors is large
compared to the observed D BE, the inner D orbi-
tal can be taken in the donorlike form (not normal-
ized)

stress in the model proposed here.
The model Hamiltonian employed in the present

calculations is given by

HEM+Hs(1) +Hs(2)+Hvo(1) +Hvo(2), (8)

where, with lengths in units of the effective Bohr ra-
dius and energy in units of @,

HF M
= —Vf —Vz —2/r ~

—2/rz + 2/r~ 2

Matrix elements of HEM are evaluated in the
effective-mass approximation, which means that HEM
is assumed diagonal in band index pairs. The stress
energy operators, Hs in Eq. (8), have the properties

6

P(r) =exp( 1 075—r) . Xn ju(jl )
J~]

1 +3 A4=n5 = +6=8
(2)

2S/3(i —=1,2)Hs( ) uj(r;) =
S/3( 3 '6) uj(f;)

H~ is assumed to operate only on the Bloch func-
tions. Hvo is defined by

(10)

where u& is the Bloch function for valley j, 8 has the
same value as it would for the corresponding donor
ground state, ' and the valleys are numbered such
that band edges associated with valleys 1 and 2 are
lowered in energy by [100l compressive stress. At
zero stress 8 = 1, whereas 8 0 as S ~. The
outer orbital, denoted by a prime, is given by

Q'(r) =exp( —gr) X/3juj(r)

P1 =P2=1. P3=P4=P5=P6=~
(3)

where g and A are variational parameters. Combin-
ing Eqs. (2) and (3) and adding correlation we obtain
for the final trial function, in analogy to Eq. (1),

4 = [0'(r&)4i(rp) +0'(rg)g(r)) t(1+«12) (4)

where C is an additional variational parameter. '
If Eq. (4) is expanded in products of pairs of Bloch

functions, one obtains
'

6 6

X Xu;(r&)uj(r2)(Dj 4++Dj 'C ) (5)

where

D/J
- = n; pj + o,jp/

(+)

and

(6)

&0+ = [exp( —1.075r~ —gr2)

+ exp( —gr ~
—1.075r2) l(1+Cr ~2) . (7)

The functions 4+ and 4 play the role of the
bonding and antibonding states, respectively, dis-
cussed in Ref. 2 ~ Antibonding states are high-energy
configurations, and their admixture into 1I/, due to
the application of stress, causes the D binding ener-
gy to be smaller in the presence of stress than at zero

—1.075 r/Hvo(i) (I + Cr~2) e 'uj(r;)
—1.075)/(1 + Cr]2) e Aq X up(ff)

keg

-gr.
Hvo(i ) (1 + Cr, 2) e 'uj(r;) =0

In postulating Eq. (11) we are assuming that g will

be sufficiently small that the valley-orbit interaction
will have negligible effect on the outer orbital.

For each value of S the BE of D is determined
variationally from Eqs. (2)—(4) and Eqs. (8)—(11) by
varying g, 8, and C. Optimized values of g and C
turn out to be quite insensitive to S. Details of the
calculation can be found in the Appendix. Results
for the BE of D vs S are given in Fig. 1 for both
Si:P and Si:As, the only difference in the calculations
of the two curves being the value of d, employed; 4,
is taken as 0.11$ (2.2 meV) for P and 0.19(R (3.8
meV) for As donors. 9 The observed zero-stress D
binding energy in Si:P is 1.7 meV. '0 Experimental
points denoted by solid circles in Fig. 1 are calculated
from the data of Ref. 10.

It is not difficult to understand qualitatively the
variation of the BE with stress depicted in Fig. 1. At
zero stress, where A and 8 are equal, the valley dis-
tribution of the inner and outer electrons are the
same and D/J =0 for all i and j; when the disparity
between A and B is large then ~D,~,z~' for j & 2 is
also large and a substantial admixture of 4, the
high-energy configuration, appears in the ground-
state wave function (5), decreasing the BE. Thus, if
the disparity between A and P'should grow with in-
creasing applied stress then the D binding energy
will decrease as the stress int:reases. This is precisely
what happens at low stress (S (( 6A, ), for which
the relatively strong VO interaction prevents the
inner electron from moving readily into valleys 1 and
2. However, the outer electron in our model, feels
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FIG. 1. Variation of the ratio of D binding energy at
stress S, E&(S), to the zero-stress D binding energy,
Ez(0), for P and As impurities in Si. S is the stress splitting
of the conduction-band valleys in units of et, the effective-
mass donor rydberg associated with the light mass, mj.. S is

taken as 20 meV; the valley splitting is assumed to be linear
in stress and to have the value 8.85 meV at 10 dynes/cm .
The solid circles are computed from experimental data for P
centers (Ref. 10).

F1G. 2. Variation of the probability of finding an electron
in either valley 1 or valley 2 vs uniaxial compressive stress S
for P D centers. Sisdefined as in Fig. . l. The vertical ar-
row indicates the value of S at which, in Si, the stress split-
ting of the valleys is equal to the VO splitting of P donors.
At zero stress each of the six valleys has an equal probability
of being occupied.

no VO interaction; it can move much more easily
into valleys 1 and 2 under stress. The result is
sho~n in Fig. 2 for Si:P, where it is apparent that for
S & 0.15 the outer electron has been driven almost
completely into the stress-deepened valleys (B =0).
As S increases from 0 to 0.1 the disparity between A

and B grows and the D binding decreases. As S in-
creases beyond 0.2, the D binding increases because
the inner electron moves more and more into valleys
1 and 2, reducing the disparity between A and 8 and,
therefore, the admixture of antibonding states.

In the limit S ~, the BE should approach ~»

since both electrons are in equivalent valleys in that
limit. For Si el; is —93% of the zero-stress BE,
which is given by (e;r+2aJ) j3. The present model,
not distinguishing between e;; and ~ J because MA is

neglected, predicts equal binding energies at S =0
and S

For the stress along [110],valleys 1 —4 are pushed
down in energy relative to valleys 5 and 6. Our
model predicts in this case a curve of binding energy
versus S similar to that in Fig. 1 but with a minimum
only half as deep as for the corresponding donor
under [100] stress. No variation of binding energy
with stress is expected for [111]stress since this
stress induces no valley repopulation.

III. Li IMPURITIES

The situation for D associated with interstitial Li
impurities in Si should be quite different from the
cases discussed above due to the inverted structure of
the VO split ground-state levels of Li donors. " In
this case, MA should not be neglected. The D
ground singlet state at zero stress is expected to be
threefold degenerate; an appropriate trial wave func-
tion for zero stress might take the form4

[ [FI(rr) ur(rr) —Fq(rr) uq(rr) ] [F3 (r&) u3(rq) —F4 (rq) u4(r&)]

+ [FI' (rr) ur(rr) —F2'(rr) u~(rr) ] [F3(rq) u3(rz) —F4(r~) u4(r~) ] + (rr r~) ](1+(-rrz), (12)

where F; and F are anisotropic envelope functions
appropriate to valley i for the inner and outer orbital,
respectively. Notice that trial function (12) is funda-
mentally different from Eq. (4) in that Eq. (12) has
strong valley correlation whereas in Eq. (4), by con-
trast, the occupation probability of a valley by one

electron is independent of whether or not the other
electron is in the same valley. The advantage of
choosing Eq. (12) for Li D centers is that the bind-
ing energy at zero stress is just a pure intervalley en-
ergy, e&. Further, the inner orbitals in Eq. (12) both
have Ti symmetry, which is the symmetry of the
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ground state of Li donors in Si." Note that if the
second + sign inside the curly brackets in Eq. (12) is
changed to a —sign the resulting wave function be-
comes a triplet state which is degenerate with the
(singlet) wave function of Eq. (12). This suggests
that Si:Li should make an excellent material for D
magnetospectroscopy experiments at high fields and

low temperatures in which the spins of conduction-
band electrons are almost entirely aligned and, there-
fore, singlet D states are difficult to observe.

For "strong" stress along [100] both electrons are
in valleys 1 and 2, and the binding energy should be
close to e;; [e;; —0.9e„" in Si (Ref. 4)], an intravalley

energy corresponding to the trial function

[ [F((rt) ut(r~) —F2(rt) u2(r~)] [Et'(r2) u~(r2) —F2 (r2) uz(r2) ] + (rt r2) }(1+Crt2) (13)

It is hard to see how a trial function of the form (12)
could smoothly transform into Eq. (13) with increas-
ing stress. In an abrupt transition between these
states the D ground-state binding energy should de-
crease linearly with stress until the:stress is high
enough that the energies of Eqs. (12) and (13) are
equal. At that point a kink would appear in the curve
of BE vs S since further increase in stress would have
no effect on the binding energy.

For stress along [110] no change in the binding en-
ergy of D centers associated with Li in Si should
be observed since no valley repopulation is expected,
Eq. (12) remaining the ground-state wave function at
all stress. This follows because Li D wave functions
of the form (12) are built up from only four valleys
(two pairs of equivalent valleys), rather than all six
as in the case of P or As. Thus [110]stress, which

depresses uniformly valleys 1 —4 relative to 5 and 6,
will not cause valley repopulation in Eq. (12) but will

do so for the trial function (4). (Of course, the
threefold degeneracy of the Li D ground state at
zero stress will be partially lifted by [110]stress, the
ground state under stress becoming nondegenerate. )

IV. D in Ge

Much of the discussion in Sec. II for Si should ap-

ply also to Ge. One might worry, however, about
neglecting MA, which is much more pronounced in
Ge than in Si. Nevertheless from the experimental
data of Ref. 12, which for D in Ge:Sb gives a high-
stress BE of 0.55 meV and a zero-stress BE of 0.625
meV, it is reasonable to conclude that e& is only
about 20% larger in magnitude than ~;;, the calculated
results of Ref. 2 notwithstanding. ' Thus errors in-

troduced by neglecting MA in Ge should be about
twice as large as in Si.

V. SUMMARY AND CONCLUSIONS

We have considered the stress dependence of the
binding energy of D centers in Si associated with

two kinds of impurities —those whose donors have A ~

ground states and VO splittings large compared to the
D BE (e.g. , the group V substitutional impurities),

I

and those whose donors have Tt ground states (e.g. ,

Li).
In the former case, MA can be neglected in a

lowest-order theory because the major effect of stress
is to admix antibonding configurations into the D
ground-state wave function due to stress-induced un-

equal valley repopulation of the inner and outer orbi-
tais. In Si the splitting between bonding and anti-
bonding states is much larger than splittings due to
MA, which are the intervalley-intravalley splittings.

The most remarkable prediction of the model is
that the D binding, as stress increases from zero,
first decreases and then recovers. This happens be-
cause the biggest disparity between valley distribu-
tions of the inner and outer electrons, and hence the
weakest binding, occurs at an intermediate-stress
value, a stress which is strong enough to drive the
outer electron into the stress-deepened valleys but
too weak to do the same to the inner electron. The
inner electron resists repopulation due to the strong
valley-orbit interaction which it feels.

Nonmonotonic variation of D BE with stress has
recently been confirmed experimentally in Si:P.'

However, although the theory appears to give a fairly
accurate account of the low-stress data, it predicts a
too-rapid recovery of the binding at high stress (see
Fig. 1). This discrepancy requires more theoretical
and experimental study. A check on the theoretical
predictions for stress along [110] remains to be made.

For D ions associated with Li centers one can
place the inner electron into T~ orbitals, and it is not
necessary to admix antibonding configurations when
the stress is turned on. Thus only MA can be ex-
pected to play a role in the binding of Li D centers
under stress. We have conjectured that the ground-
state binding decreases linearly from the intervalley
value, e,&, with stress and then suddenly saturates
when it reaches ~;;, the intravalley binding strength.
Experiments to check this prediction are awaited.
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APPENDIX

The calculation of matrix elements relevant to
evaluating the variational energy &$}H lQ)/(QlQ),
where P is given by Eq. (4) and H by Eq. (g), is out-
lined here.

%e define, at the outset, the fundamental
effective-mass matrix elements N+ and ~+ by

Iy+= &4+le+), e+= &qilH, M}c+) . (Al)

These matrix elements can be easily evaluated by the
use of Hylleraas coordinates. ' Notice that by sym-

metry &@+le,-) = &e+lH«le,-) =0.
We can immediately write down from Eqs. (5) and

(A 1) the relations

&4 ly) = X[(Du&+i)'A, +(Djt-l)'/t/ ], (A2)
ij

&4 IHEMIQ) x[(Dig ) +++(DIJ ')'a-] (A»

From Eqs. (2), (3), and (6) we obtain

D~g =1 Ds =0 fof / 2, j «2 (4 terms)

Djt+& =(~ +8)/2

Djt '= (A —8)/2 for i «2, j & 2 (g terms)

D,,'+'=(W +8)/2

Dut '———(A —8)/2 for i & 2, j «2 (8 terms)

Dr~+ = 38 Dj ' =0 for i & 2, j & 2 (16 terms)

From Eqs. (A2), (A3), and (A4) follows

&ply) =4[[1+(~+8)'+4~'8']A +(~ -8)'A },

and (11)

[Hs(1) +Hvo(1) l (1 + Cr )2) d (r, )

=ED(1+Crt2)$(r, ), (A7)

vhere

E = lb l [ —4 —x —[(2 —3x)'+32]' '}/2

with x =S/(3ld, , l), provided that 8 is chosen to be

((2 —3x)+[(2—3x)'+32]'~'}/g .

Here ED is the valley-orbit part of the donor ground-
state energy under a stress along [100] which pro-
duces the valley splitting S. Our choice of 8 makes
$(rt) an eigenstate of the stress and valley-orbit part
of the donor Hamiltonian. In our model the total
donor energy is ED —1. Note that the integers 1 and
2 can be formally interchanged in Eq. (A7).

Thus our remaining task is to evaluate (H') where
from Eq. (11)

&H') = &yl [H (1)P'(r ) y(r, ) +1 2] (I + Cr„) )

Expanding we obtain

4'(r t) 4 (r2) (1+«»)
=-,' (4+—4 ) $/3;aalu;(r, )u)(r~)

ij

4 '(r» 4 (r t) (1+«»)
=-,'(4++4 ) X/3qe;u;(rt)uj(r2)

ij

Operating with the appropriate stress operators and
taking the expectation value using Eqs. (5), (6), and
(A4) we obtain after some simple algebra

(H') = —S [[—2+(A +8)(—28+3 ) +43'82]N

+(W -8)(~+28)/t/ } .

&plHsM}41) =4[[1+(A +8)2+4A~82]a+

+(~ —8)" } .

(AS)

(A6)

This completes the computation of matrix elements
required for obtaining the total D energy in the
present model. The binding energy of the D is
given by

Let us denote the remaining matrix element to be
evaluated,

&Pl Hs(1) + Hs(2) +Hvo(1) + Hvo(2) I g)

by (H') +ED&Pl/). Observe that from Eqs. (10)

}&4 IHIP')/&414) -(&0 —1)+2S/3}, (Ag)

where —2S/3 is the energy of a free electron at the
bottom of valley I or 2 and, as already. metioned,
F~ —l is the energy of the donor which remains
when an electron is removed from the D center.
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In Si:P effective-mass theory appears to give a more
accurate BE for D than for donors. The effective-mass
variational calculation of Ref. 4 for group V element D
centers in stress-free Si gives a BE of 1.61 meV vs the
measured value of —1.7 meV for P from Ref. 10. We
expect that the variational ansatz of Ref. 4 gives a BE
which is less than but close to 93% of the exact D
effective-mass BE in Si, since for the case of isotropic val-

leys the same ansatz does give 93% of the correct BE.
Thus the agreement between the effective mass and mea-
sured BE appears very good in Si:P. This agreement is

probably due to a cancellation effect. The increased
screening of the central positive charge due to drawing in

of the inner electron by the short-range attractive central-
cell potential tends to reduce the BE, whereas the attrac-
tion of this same potential for the outer electron tends to
increase it.
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Fig. 1.
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