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The metal-insulator transition is studied for dilute systems of alkali metals. Using a spin-split self-consistent band-
structure approach, we find the transition density, a strikingly enhanced magnetic susceptibility, and the electron
effective mass. The critical density n, is found to be given by the simple relation r{ =r, + 2.8. Here
¢ =[3/(4wn_)]'” and r, is the model potential radius which is roughly the radius of the neutral atom. The Mott
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criterion of n

a, ~0.25 (where a; is the appropriate Bohr orbit) is found to be inadequate for describing these

systems. The predicted effective mass and magnetic susceptibility enhancements are largest for Li and become
systematically smaller for the heavier alkalis. We compare our results for the transition density with two sets of
experiments, namely the gas-liquid critical density and the metal-insulator transition for codeposited thick films of
alkali-metal and rare-gas atoms. Good agreement is found in both cases.

I. INTRODUCTION

The metal-insulator (MI) transition in real
three-dimensional solids is of considerable inter-
est.’»2 One of its principal fascinations is the large
number of mechanisms which plays some role in
the transition. Examples of such mechanisms are
Anderson localization® and percolation (due to ran-
domness), and the Mott transition' (due to electron
correlation effects). It does not appear possible to
make calculations which incorporate all of these
features and which at the same time make realistic
connections with a physically realizable system.

In this paper we will concentrate on presenting a
realistic calculation of the properties of a simple,
physically reasonable model where the metal-in-
sulator transition is driven by electronic correla-
tions. Our model is a rigid monatomic lattice of
alkali-metal ions with a compensating number of
electrons. Using a self-consistent band-structure
approach we determine the enhancement of the
electron effective mass and the uniform (g=0)
magnetic susceptibility as a function of density.

A large enhancement of the magnetic susceptibility
at the transition is a signature of the presence of
electron correlation effects. The enhancement
arises because of the spontaneous breaking of the
s-band spin degeneracy due to the magnetic order-
ing which is caused by the electronic correlations.*
In addition to the enhancement of the electron ef-
fective mass and the paramagnetic susceptibility,
we also calculate the MI transition density for the
entire alkali-metal series.

There are two sets of experiments to which we
will compare our results. First, we consider co-
deposited thick films of alkali-metal and rare-gas
atoms (e.g., Xe-Rb).>7 As the concentration of the
metal atoms is varied there is a relatively sharp
MI transition. Experimental transition densities
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are known for several metal-rare-gas systems.
A second set of experiments involves the gas-
liquid critical densities of the alkali metals. By
going to high temperatures and pressures dilute
systems of liquid alkali metals can be obtained.

In such systems the metal-insulator transition is
found experimentally to be associated with the
gas-liquid critical density.>® Such a connection
was apparently first introduced on theoretical
grounds by Krumhansl.® At the critical density
the system changes continuously from a liquid to
a gas. The liquid’s binding energy is due to the
metallic electrons. In the gas phase the electrons
are bound to the atoms and an insulating state re-
sults. (The actual gaseous state may be made in
part of dimers as suggested by the recent results
of Freyland® for Cs.) Thus at the critical density
we pass from the metallic liquid state to the non-
metallic gaseous state. One possible conjecture
is that the energetics of the gas-liquid critical
point is determined by the metal-insulator transi-
tion. If this conjecture were true we would expect
to find a strong correlation between our calculated
results for the metal-insulator transition at zero
temperature and the experimentally observed val-
ues of the critical density for the alkali metals.
Such a strong correlation will indeed be shown to
exist,

We emphasize the role of electron correlations
in determining metallization. In doing so we ne-
glect several other effects. First, we neglect the
Anderson localization mechanism, which is due to
the randomness of the electron’s potential, or the
percolation of electrons between metal-rich re-
gions in the sample.»? Similarly, we neglect MI
transitions due to lattice distortions. Our em-
phasis on electron correlations stems from a re-
cently proposed theory which employs the spin-
density functional formalism.!®!! From it one
obtains first-principles estimates of the metal -
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insulator transition density, the magnetic suscep-
tibility, and the static electron-ion coherent scat-
tering contribution to the electron’s effective
mass. Basically, the technique consists of de-
termining the ground-state energy as a function of
the average density and average spin moment from
a self-consistent band-structure calculation. By
examining the total energy as a function of the
density and spin moment one can determine the
various phase transitions.

The spin-density functional approach described
above is suited to problems involving periodic
structures. It was first applied to a model prob-
lem suggested by Mott. There one has a simple,
rigid lattice of protons and an equal number of
electrons. The metal-insulator transition was
studied by varying the average interproton spacing.
Although it is not, in principle, so restricted, our
present development of the theory emphasizes
cases such as Mott’s model problem, where there
is a simple transition between a doubly occupied
s-like band at high densities, and a spin-split
singly occupied s band at low densities.

The idea of using a band-structure calculation
with spin-split bands to calculate the metal-insu-
lator transition was originally suggested by
Slater.'? Since that time a few calculations have
been reported for the low-density expanded lattice
of Li.!»!* These calculations were performed at
the time when the band-structure calculations were
being enlarged from the spin-restricted Hartree-
Fock to a more general spin-split formalism.

The low-density limit served as an important
check on the new formalism. These results are
suggestive of the path our calculations took. How-
ever, they did not examine exhaustively the metal-
insulator transition itself nor did they attempt to
relate their results to experiment.

Berggren and Lindell'® have studied the metal-
insulator transition for both of the experimental
systems mentioned above. They also start from
the point of view that the transition is driven by
the electronic correlations. It was, in fact, the
relatively successful outcome of their investiga-
tion which led us to extend the spin-density func-
tional calculations to these systems. However,
their work differs from ours in two important
ways. First, rather than solving a system which
directly exhibits a metal-insulator transition,
they used an approximate criterion suggested by
Mott.'® They start by using an Ashcroft pseudo-
potential to represent a single alkali-ion core,
which they considered to be immersed in a para-
magnetic electron gas. The metal-insulator den-
sity is estimated to be that density at which the
potential first binds a conduction electron. This
criterion is useful for establishing trends but can-
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not be expected to yield quantitative results. For
example, within density functional theory the pro-
ton in the uniform electron gas forms a bound
state at ;=1.96a5.7'® The metal insulator
transition takes place at 7,=2.84a5.'* Hence, the
criterion given above would lead to a factor-of-3
error in the transition density. The second de-
parture of our work from Berggren and Lindell’s
involves the codeposited rare-gas—alkali-metal
films. They screened the entire pseudopotential,
including the core region, with the static dielec-
tric constant of the rare-gas solid. We, on the
other hand, completely ignore any electronic role
for the rare-gas atoms and consider them only as
spacers which keep the alkali atoms apart. Thus

"~ we neglect the possibility that the conduction

electrons are strongly scattered by the rare-gas
atoms. This limitation of the theory should be
kept in mind, given the good agreement with ex-
periment which will be shown to exist.

Aside from the effects of randomness, the al-
kali-metal experiments mentioned above admira-
bly satisfy the requirements of the theory. The
conduction electrons in the alkali metals are of
an s-like nature. Further, the cores can be easi-
ly modeled by simple pseudopotentials, which con-
siderably eases the computational effort. The
spin-ordered state is assumed to be ferromagnetic
for purposes of computational ease since this
choice of spin symmetry preserves the monatomic
symmetry. The implications of this choice of the
magnetic symmetry on the magnetic susceptibility
will be discussed in Sec. V.

Neglecting randomness in a liquid or random
mixture is of course a rather major approxima-
tion. However, it seems possible that the gross
structure of the MI transition is determined by
the electron correlations, while randomness only
affects the physics near the transition density. In
any case, we proceed with our correlation-based
approach and obtain definite results for the transi-
tion density which compare well with experiment.
Additionally, we make predictions for the enhance-
ment of the electron effective mass and for the
magnetic susceptibility of the metallic phase.

The structure of the rest of this paper is as
follows. The second section presents certain
general considerations of the alkali metals and
the role of the pseudopotential. The calculational
technique is described in the third section. The
fourth section describes the use of the model po-
tential for some normal metal properties of the
alkali metals. Section V gives our general re-
sults for the expanded alkali systems. Sections
VI and VII compare our results with the experi-
ments. Finally, we conclude the paper with a
discussion of the results.
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II. GENERAL CONSIDERATIONS

Here we write down explicitly our model and
discuss some of its general features. Consider a
rigid close-packed lattice made of the nuclei of an
alkali metal such as sodium. Then introduce
enough electrons to satisfy charged neutrality.
The question we wish to answer is this: Are any
of the electrons insulating (i.e., unable to contri-
bute to the current)? The answer will depend on
the average density of the system. At sufficiently
high densities all of the electrons will be metallic
since this allows the electrons to lower their ki-
netic energy. However, for zero pressure and
temperature only the outermost valence electrons
of the alkali metals are metallic. If we imagine
pulling the lattice further apart the valence elec-
trons will eventually have a phase transition to the
insulating state. It is this latter transition of the
valence electrons which we wish to study.

There are two interesting features which are
associated with metallization in this system.
First, at high densities the system is metallic and
paramagnetic. At low densities the system is in-
sulating and spin-ordered, presumably antiferro-
magnetic. Thus the system must become spin or-
dered at some intermediate density. Also, at
some density the system must switch from being
conducting to being insulating. We find for our
model that both these transitions occur as a single
first-order phase transition, in contrast to the
situation for a lattice of protons.

The essence of our calculation is to compute the
ground-state energy of the system using spin-den-
sity functional theory. The result is a self-consis-
tent band structure which yields directly the
ground-state energy and spin density. By examin-
ing the single-particle bands we have a direct
criterion for the occurrence of metallization,
namely, whether there are any available states
just above the Fermi energy. This use of the
single-particle eigenspectrum is not justified
formally. However, this criterion is very plausi-
ble and widely used and we adopt it for the pur-
poses of our calculations. The nature of the spin-
density functional calculation and our approxima-
tions in performing it are discussed in the next
section. The rest of this section describes our
treatment of the alkali cores.

An alkali atom can be considered to be an ion of
charge one (with a tightly bound rare-gas core)
and a single weakly bound s electron. For a wide
range of metal properties it has proven possible
to remove the ion cores from the problem and to
model their effect on the outer electron by means
of a model potential. The model potential is
Coulombic outside the core region and is modified
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in the core region to account for the inner elec-
trons. A general feature of such model potentials
is to provide a realistic electron wave function
cutside the core region. Since the effects we are
interested in involve the overlap of the valence
wave functions in neighboring cells, we expect
that the model potential approximation may pro-
vide a good basis for our calculation.

A particularly simple one-parameter form for
the model potential is v=~-2¢e*/7 for > v, and
v=-2e?/r, for r<7, (see the inset to Fig. 1).

The core radius was chosen by requiring that the
bulk solid have the correct equilibrium density.
This choice of 7, is also found to give the electron
binding energy rather accurately. A particularly
nice feature of this potential is that it depends on-
ly on a single parameter which is fixed by the
bulk properties of the equilibrium metal. This
simplicity of form greatly aids in the analysis of
the calculated results.

The chosen form for the model potential was
suggested by the work of Shaw.!® He developed a
model potential of the same form except that the
cutoff radius R;(E) depended on the angular mo-
mentum and energy. In order to reduce his re-
sult to our simpler form, we chose /=0 and E
equal to the Fermi energy Er. These values were
then used for all electrons. This approximation
seems reasonable for the alkali metal and in Sec,
IV we will show that Shaw’s radius for / =0 and
E=Ep, RyEp), is very similar to the value which
we determine empirically for 7,.

III. SPIN-DENSITY FUNCTIONAL THEORY

The total energy of an inhomogeneous electron
system in a fixed external potential can be written
as a unique functional of the density '[n('r) =n’(r)
+n' ()] and the spin density [m(r) =n' (#) = n' (#)].20
This functional can be expressed as

'
E[n’,n‘ ] :Ts[nf]+Ts[n‘j+%f %dsydsw

+f Vexe (V)(7) d3'r+ExC[n*, 2. )

Hence T°[n!] is kinetic energy of a noninter-
acting collection of electrons with density n!
(and similarly for »'). The second term is

the electrostatic energy. The third term re-
presents the interaction of the valence electron
with the model potential. The final term Ey. rep-
resents the exchange-correlation energy of the in-
homogeneous electronic system. Equation (1) is
formally exact. In practice, however, several ap-
proximations are necessary. First, Eyis an un-
known functional of ' and » and must be approx-
imated. We will use the local approximation in



this paper, namely,
4
Ey. =f d*rn(r)exln (), n' ()] . (2)

Here €y, is the energy per particle for a uniform
electron gas with densities ' and n'., We use the
interpolation formula of Gunnarson and Lundquist
for €,..%

To proceed with the calculation, we note that
due to periodicity the energy calculation can be
reduced to a unit cell. We then minimize the en-
ergy with respect to the variation of the class of
single-particle wave functions which satisfy per-
iodic boundary conditions on the unit cell, The
result of this procedure is a self-consistent
band-structure calculation. The form of the self-
consistent equations is determined by the first
variation of the total energy® and is

I gt s ol nlr)o = v, ®)

UUF) = VenlF) + 6(F) 4 op (nExd) @
R

n'(F) =2; lye(E)2. (5)

Here zp% represents the wave function and € the
eigenvalue. The spin-up density is denoted by n
and V¢ is an effective potential as given by Eq.
(4). The electrostatic potential is denoted by
¢(7), kg is the Fermi energy, and Ve is the
pseudopotential. Similar equations obtain for the
spin-down component.

Once the self-consistent band structure has been
determined,! we use Egs. (1) and (2) to find the
ground-state energy E. By varying the lattice
spacing and the relative occupation of the spin-up
and spin-down bands we obtain the energy as a
function of the density # and the magnetic moment
m. By studying the properties of E as a function -
of these variables, we determine various physical
properties of the system, including the transition
density.

We have one final comment. We simplify our
calculation by replacing the true Wigner-Seitz
cell by a Wigner-Seitz sphere. This approxima-
tion has two effects. First, the ground-state en-
ergy is changed by an amount typical of the struc-
tural energy which is negligible on the energy
scale driving the metal-insulator transition.
Secondly, modifying the Wigner-Seitz cell leads to
changes in the electron density of states, particu-
larly for states near the boundary of the zone.
However, the metal-insulator transition takes
place abruptly in our model from half-filled
(paramagnetically ordered) bands to a completely
filled (ferromagnetically ordered) band and we do
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not expect the details of the Brillouin zone to be
important.

IV. NORMAL METAL PROPERTIES

The determination of the metal-insulator trans-
ition relies on calculating the energy differences
between the paramagnetic and the spin-ordered
phase. I our calculation of these energy differ-

.ences is to be reasonable it is necessary that the

same procedure yield good values for the normal
(zero pressure and temperature) equilibrium
properties of the alkali metals, We have calcula-
ted the equilibrium density and electronic binding
energy of the alkali metals and we will report our
results below. The values of the model potential
radius R, (Ey) given by Shaw'® are found to give a
good account of the alkali equilibrium properties,
except for Li, for which it is too large. We ad~
just the value of the model potential radii 7, so
that the metals have exactly the correct equilibri-
um density.

Our calculation proceeds as follows. For each
value of 7, there is a value of 7, which minimizes
the total energy E. In Fig. 1 we show this value of
7s as a function of 7, Similarly, in Fig. 2 we
show the minimized value of E as a function of
7, Using Fig. 1 we determine that value of 7,
which yields the observed bulk density for each of
the alkalis. These values of 7, are given in
Table I, where they are compared with Shaw’s
R,(Ef). To test the reasonableness of this choice

8 L T T T T
7t V(r):‘// i
L ‘T‘o . L )
sl 0T o 3 ]

EQUILIBRIUM Tg

0 Il L 1 1

0 1 2 3 4 5
CORE RADIUS, T,

FIG. 1. The equilibrium »¢ is shown as a function of
the pseudopotential core radius ;. The inset shows the
form of the model potential used in this paper.
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TABLE 1. The table gives two estimates for the radius
of the Shaw pseudopotential radius. The second column
gives the values obtained by Shaw. The third column
gives our values obtained by fitting to the observed bulk
density for the metal.

Ry(Ep) )
Li 3.02 2.34
Na 3.26 3.11
K 4.20 4.15
Rb 4,46 4.44
Cs 4.88

of 7, we then plot the experimental value of the
equilibrium binding energy® on Fig. 2. The com-
parison shows quite good agreement for all of the
alkalis. Our values of the core radius agree with
the values published by Shaw for Na, K, and Rb
to within 4%. Shaw did not give a value for Cs.
For Li we found 7,=2.34ap. It should be noted
that Shaw’s criterion for determining R (E) did
not rely on fitting the bulk cohesive properties.
Rather, he determined R (Ey) by a “smoothness”
condition in joining the nodeless interior solution
(7 <7,) to the realistic external solution (7>7,)
for the model wave function. Since our procedure
has given quite good answers for the bulk proper-
ties, we will proceed with the metal-insulator
calculation.

V. RESULTS FOR EXPANDED ALKALI SYSTEM

We find a single first-order metal-insulator
transition from the paramagnetic metal to the
spin-ordered insulator for all the alkalis. The
critical density for the metal-insulator transition
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FIG. 2. Having chosen 7 to give the correct equilib-

rium density, we plot the calculated binding energy as
a solid curve. The crosses are the experimental values
for the alkali metals.

FNS
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o
n

Cs +
Rb +

Ts Li #

CORE RADIUS, Ty
FIG. 3. The solid line shows our calculated results
for the transition density. The crosses are the experi-
mental results for the gas-liquid critical density of the
alkalis.

is shown as a function of the core radius 7, in
Fig. 3. A striking feature of this curve is that
the calculated transition density, for all alkalis,
is given to within 2% by 7»¢ =1.04v,+2.8. The ap-
pearance of such an apparently simple relation-
ship suggests an underlying simple explanation of
the physics. Up until now such an explanation has
not been forthcoming. However, it is interesting
to note that 7, correlates roughly with the radius
of the neutral atom.?* Thus, we restate the rela-
tionship for »{ in words: the critical », is given
by the atomic radius plus 2.8.

Electrons in a 74gid periodic lattice have a
change in their effective mass due to their coher-
ent scattering by the ions. We calculate the effec-
tive mass at the Fermi surface by

9 -1
m*:kF(_ek)

ok ’ (6)

kp

where &y is the Fermi wave vector. The change
of the effective mass is shown in Fig. 4. As ex-
pected, the effective mass is largest for the most
strongly scattering potential. The enhancement
of the effective mass reflects itself in several
material properties, e.g., the electronic specific
heat. However, there are other effects which
significantly influence the density of states at the
Fermi surface, such as the electron-phonon
coupling. These other effects may also vary rap-
idly near the phase transition. Hence it might be
difficult to clearly observe the relatively small
mass enhancement which is predicted by our
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FIG. 4. The enhancement of the electron effective
mass due to the presence of the static lattice of ion
cores.

theory.

On the contrary, the enhancement of the static
magnetic susceptibility is much larger and should
provide an easily observed experimental effect.
The magnetic susceptibility can be determined by
a calculation of the total energy E as a function of
the magnetic moment 7. Then X is given by

9 2E -1
~(32)
The total energy as a function of w is determined

numerically and then expanded to obtain X.
For the case of sodium we present results for

(7

m=0

the magnetic susceptibility in a little more detail

than for the other metals. First, for the normal
metal x/X;=1.8 for Na. Here X; is the magnetic
susceptibility for the noninteracting electron gas
evaluated at the same 7, as X. The value for
X/Xs at the normal metal is in relatively good
agreement with both theory and experiment,®®
being perhaps 5-10% too lai'ge. This discrepancy
is accounted for by the neglect of the core elec-
trons, which is implicit in our calculations. Fig-
ure 5 shows the magnetic susceptibility of Na for
densities which range from the normal metal den-
sity to the metal-insulator transition density. As
can be seen, the magnetic susceptibility is very
greatly enhanced at the transition. Figure 6
shows the enhancement of the susceptibility at the
transition density for all of the alkali metals. We
note that core effects become more important for
the heavier alkalis. Our estimate for X/X; is ap-
proximately 25% too large for bulk Cs.?” We ex-
pect similar errors in the value of X/X; at the
metal-insulator transition density for Cs.

»26
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FIG. 5. The enhancement of the magnetic susceptibil-
ity is shown for Na. Note that X, is the magnetic sus-
ceptibility of a noninteracting electron gas calculated at
the given 7.

In our calculation we only allow states which
have paramagnetic or ferromagnetic symmetry.
The choice of a ferromagnetic ground state was
made to simplify the numerical calculations. In
fact, we expect the ground state of the insulating
phase to be antiferromagnetic. It is reasonable to
ask whether our choice of ferromagnetic symmetry
for the insulating state will affect the magnetic
susceptibility enhancement which we are predic-
ting. There are two mechanisms which might be
expected to influence the susceptibility enhance-
ment. First, there are low-lying excited states
of antiferromagnetic symmetry. Secondly, taking
the antiferromagnetic symmetry into account
might lower the transition density and hence de-
crease the enhancement (see Fig. 5).

As discussed briefly- earlier in this section, the
magnetic susceptibility is determined by calcula-
ting the change in energy when electrons are
transferred from the spin-down band to the spin-
up band. The existence of low-lying antiferro-

To

FIG. 6. The enhancement of the magnetic susceptibil-
ity at the metal insulator transition is shown for the
alkali metals.
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magnetic excited states does not influence this
transfer and hence does not affect the determina-
tion of the ¢ =0 magnetic susceptibility which we
have been discussing. The low-lying antiferro-
magnetic excited states will, however, induce, in
' addition, a large g-dependent magnetic suscep-
tibility, where ¢ is the wave vector of the anti-
ferromagnetic state.

The second way that taking the antiferromagnetic
symmetry into account could affect the enhance-
ment of the ¢ =0 susceptibility would be to substan-
tially shift the transition density. This is not ex-
pected to occur for the following reason. The en-
ergy difference between the antiferromagnetic and
the ferromagnetic state at the transition density is
expected to be on the order of a Curie tempera-
ture, i.e., 0,005 Ry. This is a small energy
compared to the changes in the total energy near
the transition density. Thus the transition densi-
ty is not expected to be substantially changed by
the difference in magnetic symmetry. Conse-
quently, the g =0 magnetic susceptibility will not
be greatly changed.

VI. COMPARISON: GAS-LIQUID CRITICAL
PROPERTIES

As mentioned in the Introduction, it has been
suggested that the gas-liquid critical point for the
alkali metals is determined by the MI transition
for the valence electrons. In Fig. 3 we have plot-
ted the experimental values of the alkalis’ gas-
liquid critical density.'®* This allows a compari-
son with our estimate for the metal-insulator
transition density, which is also plotted on the
same figure. The agreement between experiment
and theory is good. The agreement improves sys-
tematically for higher electron-density (smaller
7,) alkali metals.

The theoretical results are obtained for zero
temperature while the experiments were per-
formed at the critical temperatures of the alkalis.
If the picture of the gas-liquid critical density
being driven by the MI transition is true, we would
expect that deviations from our predictions for the
transition density would depend on the ratio of the
critical temperature to the Fermi temperature.
Qualitatively, this is observed. The ratio 7,/Tp
increases systematically as we go from the dense
alkalis to the less dense alkalis. For example,
T,/Tr=0.17 for Na and the agreement with theory
is good. On the other hand, T,/T=0.28 for Cs
and the disagreement is systematically larger.

These deviations suggest that our theory should
be extended to finite temperatures. This work is
in progress. However, one preliminary comment
may be in order. The preferred phase is deter-

mined by comparing the free energies of the para-
magnetic and spin-ordered phase. If we continue
to focus only on the electronic degrees of freedom,
the effects of finite temperature on the free ener-
gy F show up through the electronic entropy and
contribute a term AF =-TS, where 7T is the tem-
perature and S is the electron entropy. The me-
tallic phase has a large density of states at the
Fermi level, while the insulating state has a zero
density of states at the Fermi surface. We would
thus expect this change in the free energy to make
the paramagnetic state more preferred at a given
density as the temperature is raised. The result
would be a larger critical »,, as is, in fact, ob-
served. This encourages us to consider for the
future a more systematic calculation of tempera-
ture effect using the finite temperature generaliza-
tion of density functional theory suggested by Mer-
min 28

Recently, experimental results have become
available for the magnetic susceptibility of liquid
Cs for densities ranging from that of the bulk met-
al to nearly the critical density. These results
show a large enhancement of the paramagnetic
susceptibility., However, unlike our model, the
experimental susceptibility reaches a peak before
the critical density and then decreases as one ap-
proaches the critical point. The maximum value
observed for the enhancement of the susceptibility,
x/xf, is about three. Our theory predicts a value
of seven. However, the enhancement of the sus-
ceptibility increases rapidly as 7, - ¢ (see Fig.
5). Hence we would expect that the effects of ran-
domness would be to smear and hence substantial-
ly reduce the predicted enhancement. It is en-
couraging that the experiment shows a large in-
crease in the paramagnetic susceptibility. The
discrepancies between the experiment and our
model results are not too surprising, considering
our restriction to zero temperature and a perfect
lattice. A realistic comparison with these experi-
ments will require a detailed calculation of the
system at finite temperatures, with some account
taken for the random nature of the liquid.

VII. COMPARISON: CODEPOSITED FILMS

Our theory makes a prediction for the », of the
metal-insulator transition in codeposited thick
films of rare-gas atoms and alkali atoms. We
plot our results in Fig. 7. For comparison, we
include experimental results for the systems Xe-
Cs, Rb-Kr, and Na-Ar. The agreement is very
encouraging. However, the experimental results
are difficult to obtain and should probably be con-
sidered somewhat uncertain. Further, the theory
regards the rare-gas atoms only as spaces. A
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FIG. 7. The solid line shows our calculated results
for the transition density. The x’s show the experiment~
al results. The error bars are based only on uncertain-
ties in the packing fraction.

more realistic comparison would require one to
take into account the scattering of the conduction
electrons by the rare-gas atoms. For purposes
of comparison we have included three systems
which do not satisfy the conditions under which the
theory was developed. There are Hg-Xe,?® Cu-
Ar,* and Na-NH,.” The sodium-ammonium sys-
tem was treated just as the rare-gas—alkali mix-
tures above. For the copper and mercury mix-
tures we used the approximate relationship that
the transition 7, is given by the metal atom’s
atomic radius plus 2.8. Overall, the theory is
consistent with the experimental results.

VIII. DISCUSSION AND CONCLUSIONS

Several competing theories have been used to
describe the metal-insulator transition of dilute
systems of alkalis. Mechanisms proposed to de-
scribe the transition include the effects of elec-
tron correlation, Anderson localization due to
randomness, and percolation models. We have
focused entirely on the effects of electron corre-
lations. We have found that our approach yields
good estimates for the transition densities for
two types of experiments. However, our theory
indicates that the metal-insulator transition for
codeposited thick film should be first order. In.
fact, the experimental result is a continuous tran-
sition. We suggest the following picture. The
electronic correlations determine the rough value
of the transition density =z, and some other physi-

cal properties when |rn-n,|/n, is large. On the
other hand, in the region of the transition |n-n,|/
n,<< 1, the effects of randomness and the percola-
tion process are expected to be very important,

Large enhancements of the ¢ =0 magnetic sus-
ceptibility are expected near the MI transition
density.? Within our model we make detailed pre-
dictions for the enhancement as a function of dens-
ity. There are two major approximations which
limit our ability to directly compare our results
with experiment. These are the effects of ran-
domness and temperature. For the codeposited
thick films the measurements are made at tem-
peratures which are very small compared to the
Fermi energy, and for these systems the restric-
tion to zero temperature is not expected to be im-
portant. Hence it would be of considerable inter-
est to obtain experimental results for these sys-
tems. Such experiments and their comparison’to
theory might give some indication of the relative
importance of the effects of randomness and elec-
tron correlation near the transition.

Mott!® has proposed a criterion for the metal-
insulator transition in simple s-band materials,
namely, '

nt/3a%=0.25, (8)

Here 7, is the critical density and a} is the radius
of an orbit chosen to represent the outer electron.
We find this criterion adequately describes the
case when there are no cores, such as a lattice

of protons or an array of donor centers in a semi-
conductor. However, we find that it is inadequate
for describing the metal-insulator transition of
the alkalis which have large ion cores. Figure 8
shows the electronic density of an isolated Cs
atom using the Shaw pseudopotential. Choosing
that value of  for which the density is e~? of the
density at the origin to define the Bohr orbit af,

o.2r E

n/eg

O.ir 1

o) L
[0] 5 10

r

FIG. 8. The density for an isolated Cs atom using the
Shaw pseudopotential.
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we find
nt/%ax =052, 9)

in clear disagreement with Mott’s estimate. For
the alkali metals we suggest, instead, our result
that 7,,=2.8+1.047,.

- In conclusion, we have studied the metal-insula-
tor transition for a dilute system of alkali atoms
on a lattice. We obtain estimates for the critical
density which are consistent with two sets of ex-
periments. Finally, we predict the enhancement

of the electron effective mass and the magnetic
susceptibility at the transition.
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