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Detailed measurements and theoretical analysis are presented of the far-infrared absorption coefficient of
phosphorous donors in uncompensated silicon at low temperatures. The study covers over 3 orders of magnitude in
doping density, i.e., from the regime of isolated donors to near the insulator-metal transition at 3.7 X 10'® cm~>. The
photon energy was varied from 5% of the isolated donor ionization energy (45.5 meV) to about 25% above it. The
spectra are described quantitatively by including pair states (donor excitons), charge-transfer excitations at low
densities and energy, and excitation processes in larger random clusters at higher densities. The results indicate that
the donors form a nearly ideal, random, three-dimensional system in which there are large-scale potential
fluctuations which dominate the approach to the delocalization transition.

I. INTRODUCTION

Shallow donor levels in lightly doped semiconduc-
tors can be adequately described in terms of an
effective-mass theory: The outermost electron of
the donor moves in a hydrogenlike orbit with an
effective Bohr radius a* which is typically much
larger than the lattice spacing in the semiconduc-
tor. Consequently, in describing interactions be-
tween neighboring donors the discreteness of the
lattice is unimportant. The doped semiconductors
thus provide an ideal prototype of a random sys-
tem of hydrogenic atoms with one electron per site
in which the transition from an insulating to a me-
tallic state (i.e., localized to itinerant electrons)
can be studied by varying the impurity concentra-
tion.

Work to date'~® has concentrated on transport
and magnetic properties (e.g., resistivity, Hall
effect, magnetic susceptibility) in these systems.
These have been examined theoretically on the
basis of idealized models such as those due to
Anderson® and Hubbard,'® which concentrate on the
role of disorder and correlation, respectively.
The models have been quite successful in describ-
ing the overall qualitative transport and magnetic
behavior but the central problem of understanding
the interplay of correlation and disorder in the
metal-insulator transition remains.?

The optical spectroscopy of doped semiconduc-
tors in the far infrared is a probe of the electronic
states that has not been fully tapped. One part of
the problem that has been thoroughly explored,
both theoretically!!*? (in terms of an effective-
mass theory with central-cell corrections) and
experimentally'® (with transmission or photocon-
ductivity methods) is the case of the isolated shal-
low donor, at low donor concentration. In this
regime, the optical absorption spectrum consists
of sharp atomiclike lines (forming a hydrogenlike
series), corresponding to excitations from the

ground 1s state to various bound excited states

(2P, 2b:, 3py, €tc.), followed by a broad absorption
band due to excitation to the continuum (conduction-
band) states. The results have been summarized
by Fisher and Ramdas.!®

At higher densities, though a large number of
experiments on the optical properties have been
carried out!3"37 a detailed, systematic study of the
problem, providing a unified picture, is lacking.
On the theoretical side, Golka®®~*! has considered
absorption by donor pairs in direct-gap semicon-
ductors and recently has begun to extend his cal-
culations to three-donor clusters. Analysis by
various experimental groups has been limited to a
variety cof qualitative explanations of broadening
mechanisms (see, e.g., Kobayashi et al.,?® Nor-
ton,*® and Kuwahara et al.?°) as the donor density
is increased above the isolated donor limit, and,
at higher densities to extracting an effective min-
imum optical gap (see, e.g., Toyotomi'®) on the
basis of transitions between band states violating
momentum conservation (due to disorder). How-
ever, as shown by recent theoretical analyses,*?4®
because of the existence of all sizes of donor clus-
ters with substantial diagonal energy shifts in a
randomly doped system, the meaning of such an
optical gap is unclear. We shall present a spec-
troscopic study of phosphorous-doped silicon
(Si:P) including fits of the spectra with a phenom-
enological model of absorption by donor clusters,
as the donor concentration »,, is increased from
very low values, n,=~4X10' ¢cm™, up to the in-
sulator-to~metal transition, n, =ny, =~ 3.7x10'®
cm™3,

We have studied uncompensated samples of Si:P
using conventional far-infrared Fourier-trans-
form spectroscopy to obtain the absorption coef-
ficient a(w) from the transmitted intensity. We
remark here that most of our theoretical re-
sults can be taken over to donors in Ge by re-
scaling the Rydberg and density, and with appro-
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priate modifications to the direct-gap semiconduc-
tors such as GaAs.

The optical absorption measures the joint den-
sity of the D~ and D* bands—the bands of states
to add or remove an electron, respectively. In
the Hubbard model,!° these are referred to as the
upper and lower Hubbard bands. There are, how-
ever, important effects from the electron-hole
attraction, especially at low density when the
states are strongly localized. For the case of
isolated donors in Si:P, our results indicate that
about a quarter of the oscillator strength lies in
the localized donor excitations or Frenkel exci-
tons (this strength is reduced from the hydrogen-
ic value of about a half, primarily due to central-
cell effects). At higher densities too, in analogy
with the case of expanded fluid mercury,*% the
absorption edge is dominated by the localized
states within random clusters of donors with den-
sities greater than the average due to the statis-
tical distribution.

The randomness of donor positions naturally
leads to the conclusion that as the donor concen-
tration is increased, the first effect on the isola-
ted donor lines is due to nearest-neighbor effects,
i.e., due to pairs of donors which are closer than
average.3®~3:46:47 (Thig is a direct consequence of
the short-range nature of the donor-donor inter-
actions.) The energy levels of these donor pairs
have a large diagonal shift, leading to a very
asymmetric broadening of the isolated donor line,
with features due to critical points in the density
of states. The broadening of the lower edges of
the sharp lines arising from isolated donors has
been seen in spectra of both donors and acceptors
in Si and GaAs, by a number of workers (e.g.,
Newman,'* Aleksandrov et al.,?**?* Bajaj et al.,%®
Gershenson ¢t al.,?® Kuwahara et al.,?° Stradling
et al.,'® Stillman et al.,!” and Townsend®®). The
broadening has been attributed to a number of
effects, e.g., Stark broadening, donor-acceptor
pairs, van der Waals forces, Fano interference
between localized states and a continuum. We
argue, however, that broadening by donor pairs?*?:46
is the largest effect in the range of densities where
the broadening is small (z, <2%10'" em™3 in Si:P).

We find, in addition, that electron-hole attrac-
tion in the localized states of donor pairs is very
important, and leads to the appearance®?'*¢ of a
band of charge-transfer states (D*D~) below the
isolated donor excitation energies. The stability
of the charge-transfer state relies heavily on the
Coulomb attraction between the D* and the D~.

A weak peak seen in photoconductivity of GaAs by
Stradling et al.'® has been attributed to this pair

charge-transfer state by Golka.*® The importance
of this state in the monovalent hydrogenic case is

in contrast with the “closed-shell” divalent case
of mercury,* where because of the Pauli exclusion
principle, the charge-transfer state lies above the
neutral Frenkel exciton (6s — 6p transition).

These charge-transfer states are properly de-
scribed as excitons in the Mott-Hubbard gap be-
tween the D~ and D* single-particle energy bands.
It is thus immediately clear that simplified Mott-
Hubbard models?+3:1%48-52 with only off-diagonal
elements and on-site Coulomb interactions are
inadequate for describing the optical-absorption
spectra of doped semiconductors.

The donor-pair picture works well*®*” for tran-
sitions to the lowest excited states for densities
up to np ~10'" ¢cm™2 in Si:P. Photoconductivity
studies have also been carried out for the same
range of donor concentrations by Norton3%3! (in
Si:P) and Taniguchi et al.1° 22 (in Ge:Sb). Studies
have also been carried out for acceptors by Alek-
sandrov et al.?®*'?* In these experiments, donor
electrons are excited initially to the two-electron
D~ state using room-temperature radiation, and
then excited to the conduction band using far-in-
frared radiation. These groups have ascribed
the change in the observed spectrum, as the donor
concentration is increased beyond the isolated
donor regime, to different causes. Norton claim-
ed®! that a substantial increase in activation ener-
gy (7.6 meV compared to 1.7 meV for the isolated
D7) at n, = 8.5X10% em™ in Si:P was due to the
formation of the D~ band. Taniguchi et al.,'®"%
on the other hand, associated the change in photo-
conductivity threshold and line shape with the oc-
currence of larger negative donor complexes such
as the D;. Clearly our optical-absorption data,
which provide evidence for the effects of donor
pairs at these concentrations, are in line with
the latter explanation.

Because of the many-valley structure of the con-
duction band in Si, one may put up to 12 electrons
in the 1s state of a dense cluster of donors with-
out violating the Pauli principle. This leads to
extremely large electron affinities of donor clus-
ters. For zero donor-pair separation (analogous
to a He atom), the D3 is estimated by Bhatt and
Rice® to have a binding energy, in the absence
of central-cell effects, of about 0.4 Ry. The value
of D™ is much smaller (0.055 Ry), while values
for D, increase rapidly with ». In contrast, the
D; state in a single-valley semiconductor is not
bound at zero separation, and its binding energy
barely exceeds the value for D~ at any separation.
Taniguchi et al.?? in fact find a remarkable de-
crease in the photoconductivity threshold of a
Ge:Sb sample when they apply stress sufficient to
lift the valley degeneracy and pass to the single-
valley limit. Thus both photoconductivity and
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optical-absorption measurements are in agree-
ment that the initial density dependency arises
from random donor pairs.

As the donor concentration is increased beyond
np=~2%X10'" em™3 in Si:P, but still below the in-
sulator-to-metal transition, the isolated donor
lines get washed out and the absorption spectrum
assumes an essentially featureless broad-band
form.!%:20:25:37:46 Qpe structure, however, is
found to grow in intensity and shows up as a peak
in the absorption spectrum for n, between 10'”
cm~® and 10'® cm™®, at around 12 meV, approxi-
mately the energy difference between the valley-
orbit split 1s excited states and the ground state.
Although it has not been analyzed quantitatively,
this feature has been seen by previous workers,
including Toyotomi,'® Townsend,?® and Taniguchi
et al 2?1 We show that the selection rule making
this transition dipole forbidden in isolated donors
breaks down for pairs, and that the experimental
results are in semiquantitative agreement with a
model of absorption between the valley-orbit split
1s states in donor pairs. The donor pair picture
is expected to work well at these higher densities
for the 1s states, though it has broken down for
the 2p states because of their larger spatial ex-
tent. We remark here that transitions between
the valley-orbit split states are allowed in Raman
scattering. A detailed study of this process as a
function of doping, up to n,=~n,;, has been carri-
ed out by Jain et al.*® and by Doehler et al.’; the
former also includes a simplified theoretical dis-
cussion of the effect of donor pairs on the Raman
line shape. They find a rapid asymmetric broad-
ening of the line beginning at about 10'7 cm™3,
However, the peak is observable to a density near
1y, reflecting the high-frequency (short time
scale) nature of the Raman probe.

At densities beyond n,~ 2X10'" cm™3, a descrip-
tion of the excited states must involve clusters
bigger than pairs. Clusters of three or more don-
ors do not show discernible density-of-states
features, a result that is entirely consistent with
the featureless broad-band absorption observed
in this density region. We will use a statistical
theory of optical absorption by donor clusters, in
much the same way as was done in the case of ex-
panded fluid mercury by Bhatt and Rice.** The
absence of hard-core effects in the present case
leads to a broader distribution and less steep
absorption edge. The parameters of the phenom-
enological cluster model are determined by fitting
the data at one concentration. Then the variation
of the absorption edge with n, predicted by the
model is found to describe the data.

The outline of the paper is as follows. In Sec.
I the theoretical models are described. First we

review the effective-mass theory for isolated do-
nors and the modifications caused by central-cell
effects. Then the theory of absorption due to
pairs of donors is presented (applicable for n, <2
X10'" em™%). Next, we have a subsection on the
transition between the valley-orbit coupled 1s
states in close donor pairs. A description of the
phenomenological model of absorption by larger
clusters follows (covering the range 2X10'7 cm™3
Snp s 4X10'% em™3),

Section III pertains to experiment. First we des-
cribe the sample preparation and measurement
technique. Then, we present the data for doping
levels n, < 2%X10'" cm™3 (the isolated-donor and
the donor-pair regimes) and show that the theory
of absorption by pairs of donors describes the in-
tensity and line shape well. Next follows a dis~
cussion of the forbidden transitions between the
valley-orbit states and the evidence that donor
pairs are responsible. Finally we present the
data at higher densities, and demonstrate the
good fit of the phenomenological model to experi-
ment. We conclude with a summary of results in
Sec. IV; some details of the theory are worked out
in the Appendixes.

II. THEORY OF OPTICAL ABSORPTION

In discussing optical absorption in doped semi-
conductors at densities below the insulator-metal
transition density, n,,, it is convenient to divide
the study into three regions: (a) the extremely di-
lute or the isolated-donor regime (n, < 10'® cm™3
in Si:P; (b) the semidilute regime, where effects
due to pairs, and possibly triplets, show up (10'°
Snp <2%10Y ¢m~? inSi:P); and (c) the intermedi-
ate doping regime up to ny; (2X107 <5, < 4X10'8
cm™? in Si:P) where the system exhibits a broad
featureless absorption spectrum due to a statis-
tical distribution of donor clusters. We will take
up each of the above regimes in turn.

A. The extremely dilute limit: Isolated donors

The isolated shallow donor problem in semi-
conductors has been dealt with extensively in the
literature.!™»'? In direct-gap semiconductors with
an isotropic conduction-band minimum at I" (e.g.,
GaAs, CdS), the isolated donor problem is thus
just a hydrogen atom with a scaled Rydberg and
radius. In indirect-gap materials the donor-elec-
tron wave function is a sum over terms which are
products of a rapidly oscillating Bloch wave with
a hydrogenic envelope which satisfies an effec-
tive-mass Schrodinger equation. In silicon there
are six anisotropic conduction-band minima lo-
cated on the [100] directions at a distance 0.85 of
the Brillouin-zone edge. As a result the envelope
functions are characterized by different longitud-
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inal and transverse radii. The Kohn-Luttinger
ansatz for the wave function

e /5~ exp{ - [(#* + y°)/a® + 22/b7]}, (2.1

with a and b as variational parameters, is an ex-
tremely good approximation'? (z is the longitudi-
nal direction). For phosphorus donors, there is
an addition a short-range central-cell potential
which splits the sixfold-degenerate ground state
to a singlet (A,), a triplet (T,) and a doublet (E)
state.’® Because of the central cell, the average
energy of the 1s manifold is lowered 4.0 meV be-
low the effective-mass value of —31.3 meV, while
the A, ground state, which is the symmetric com-
bination of the minima, has an energy of —45.5
meV. Thus the hydrogenic results, illustrated in
the upper part of Fig. 1, must be applied with
some care to Si:P. For the symmetric ground
state, which has cubic symmetry, the replacement
of the anisotropic envelope functions by a single
spherical one can be considered reasonable. How-
ever, the radius (a*) of the spherical function is
reduced due to the central-cell potential. One es-
timate of a* is the exponential decay length in the
asymptotic region which scales inversely with the
square root of the binding energy. This gives
a*/a,~0.83. Another estimate of a* is obtained
as follows. We add to the Coulomb potential a
central-cell potential whose magnitude is deter-
mined by fitting to the mean energy of the 1s man-
ifold. Then we take a variational wave function
by, = (1a*®)""2 exp(-/a*) and vary a* to minimize
the energy (see Appendix A). We obtain a*/a,

= 0.82 in close agreement with the result of the
first method. We have also done the calculation
for the single-valley anisotropic 1s wave function
with the central-cell potential and found essential-
ly the same results; the two radii shrink by ap-
proximately the same amount.

The 2p states have zero amplitude at the donor
site and the correction due to the central-cell po-
tential is negligible. There is also very little
mixing of the valleys. These states are adequately
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FIG. 1. Upper part, hydrogen-molecule-level ener-
gies as a function of interatom spacing. Lower part,
variation with interatom separation of the Poisson
nearest-neighbor probability (upper curve) and the opti-
cal-transition energies for H molecules (lower curves).
The energies are differences between the pair 1s,1s
ground state and the 1s,2p and H*H™ states.

described by the Kohn-Luttinger variational wave
functions. The anisotropy must be taken into ac-
count explicitly. For reference we have tabulated
in Table I the various parameters for the 1s and
2p states for effective-mass donors in Si using

TABLE I. Parameters for 1s and 2p states of effective-mass donors in silicon (e =11.40,

m,/m=0.9163, m /m=0.1905).

“Exact” effective-
mass energy (mevV)

Energy using K-L
wave function (meV)

Kohn-Luttinger Radii
State trial wave function a &) b (A)
2402 H2\1/2
1s exp[—("T;"—+Z—2) ] 237 13.6

2402 p2\1/2
20y 2 exp[-(" 3’+§—2) ]36.0 21.7

a?

2,02 L2\172
2, % exp[—-(x Yy +,%) ] 53.3  32.8

a?

-31.2 -31.3
-11.5 -11.5
-6.4 —6.4
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Kohn-Luttinger variational wave functions.

In the isolated-donor regime, the infrared ab-
sorption spectra of doped semiconductors are
thus characterized by a set of sharp hydrogenic
lines from the ground 1s state to the set of exci-
ted p states below the ionization energy. (For
anisotropic conduction-band minima, as in Si or
Ge, the p states are further split, e.g., 2p, and
2p,, depending on whether the p lobe points along
the longitudinal or transverse axis of the mass
tensor.) Above the ionization energy the absorp-
tion is due to excitation from the ground state to
the continuum (conduction-band) states.

The D~ state is not observable in the optical
spectrum of isolated donors, as it is a two-elec~
tron state, but it plays a role in pair spectra, as
we shall see in the next section. Like the H™, the
D~ is just bound with a binding energy E g~ 0.055
Ry. The two electrons move in a highly correla-
ted state, of which the most detailed analysis is
due to Pekeris.®® The simplest variational approx-
imations include one by Hylleraas®® with angular
correlation and a wave function of the form

P(E, T,)~e 1t/ (14 | T - T,)) (2.2a)

and by Chandrasekhar®” with an “inner” and an
“outer” electron and a wave function

(p(’}’v 1’2) ~e _('1/ain+72/aout) + e—(rl/aout+'2/ain) . (Z,Zb)

While (2 .2a) does better as far as the binding en-
ergy is concerned, it seriously underestimates
the charge at the nucleus, and therefore is inap-
propriate for studying the effect of the central-
cell potential. On the other hand, the charge den-
sity at the nucleus given by (2.2b) is in error by
only 2% relative to Pekeris’ calculation. How-
ever, the form (2.2b) which has no angular cor-
relation overestimates the radius of the outer
electron by ~50%. [ This was shown in Chandra-
sekhar’s original paper®” by comparing radii using
(2.2a) and (2.2b) multiplied by the Hylleraas angu-
lar correlation factor (1 +c|T, -T,|).] We have
estimated the shrinkage of the D™ due to the cen-~
tral-cell potential by interpolating between the
results for the 1s wave function and the outer elec-
tron in the wave function (2.2b), using an estimate
of the outer electron radius from (|T|) and (»2) of
the exact wave function.®® We thus obtain a reduc-
tion factor of 0.87 for the radius of the outer elec-
tron in the D~ wave function.

B. The semidilute limit: The donor-pair regime

As the donor concentration is increased beyond
the isolated-donor regime, the sharp isolated-
donor lines begin to broaden. As the donor-donor

interaction is exponential in their separation, the
first major effect for randomly distributed donors
is due to nearest-neighbor donor pairs. The prob-
ability of finding the nearest neighbor at a distance
between r and 7 + dr is a Poisson distribution:

dPyn(7) =4mnprie™ ™o/ 3dy (2.32)
leading to a probability density per unit volume,
Dan(r) =npe=tmor/3, (2.3b)

where n, is the density of donors. The most prob-
able nearest-neighbor distance is (ryy) = 0.547,
where 7, =n~V3 is the nearest-neighbor separation
on a simple cubic lattice at the same density.
Often 7yy is much smaller, and it is in the ran-
domly occurring close pairs of donors that the
donor energy levels are most drastically altered.
On the other hand, because of the relatively low
density, larger clusters of donors are much less
probable; this is why donor-pair effects are seen
first. To be quantitative, we have tabulated in
Table II the effects on the 2p states (as em-
bodied by the overlap of nearest and next-nearest
neighbors) at various donor concentrations in Si:P
and compared with the effect if the donors were
distributed on a simple cubic lattice. Clearly

the donor-pair and donor-triplet effects dominate
until n, ~10'7 em™3, after which of course the si-
tuation becomes more complex. (By the same
argument, if we were interested in the overlap

of 1s states, say, for discussing the “forbidden”
inter-ground-state transitions in Si:P, pair ef-
fects dominate until n, ~10'® ¢cm™3,)

We consider the case of a pair of hydrogen
atoms first. The ground state, the =}, is com-
prised primarily of the 1s states on the two hydro-
gen atoms. The lowest excited states, which are
optically connected to the ground state, are the
I3+ and the 1, states. Inthe Heitler-London
approximation these are the states in which one

TABLE II. Comparison of nearest-neighbor donor in-
teraction effects on 2p states in Si:P for random doping
and uniform lattice (simple cubic).

%p NN Ye

(cm“‘) (A) (A) e—rel/ 2a§ R2

*
e~ "NN /2ag

10% 542 1000 1.3x107¢ 1l.4x10! 6.3x107°
106 252 464 1.8x10°° 9.2x107 0.027
10 117 215 0.054 4.6x10°  0.37

1018 54 100 0.26 0.082 1.17

AR=¢6¢ -fc/zaﬁ/(e-rNN/2a§+ e~"NNN/2B) is an estimate
of the ratio of the overlap of 2p states with the six
nearest and next-nearest neighbors in a simple cubic
lattice to the most probable of the two nearest neighbors
for random doping (2} =20 f\).
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of the electrons is promoted to the 2p state on the
same atom, i.e., |1s;2po) and |1s;2pm) states,
respectively. (The 2po has its lobe pointed along
the axis of separation of the two atoms, while the
2pm’s have it perpendicular.) On the other hand,
the LCAO description of the '=} is that of a
charge-transfer state |1s%; 0) (i.e., H*H") with
both electrons in the 1s state on one of the atoms.
In general, of course, the 'z} state is a mixture
of the two, along with other states of the same
symmetry, mainly the |1s;2s) state. Detailed
calculations by Kolos and Wolniewicz®® show that
the 'T; state can be adequately represented as
the sum of the above three:

|18y~ ¢, | 155 2p0) + 4| 155 28)+ ¢; | 15% 0)
(2.4)

for all separations. While c, dominates for v~
asymptotic limit, for distances around 4ay, c; is
by far the largest. As a function of the separation
between the two hydrogen atoms, the transitions
'z}~ 1%, M, have minimum energy when the sep-
aration is around 4a,. For the I, state which is
composed primarily of the | 1s; 2pn) states, this
minimum is 0.031 Ry below the isolated-atom 1s
- 2p transition. The transition to the T}, which
has mostly ionic character at these distances (c;
~0.75; ¢,, ¢, <0.15), occurs at much lower en-
ergy—0.19 Ry below the isolated 1s-2p transition
and 0.384 Ry below the affinity level of the hydro-
gen atom (the » -« limit of the H" H™ pair). This
large reduction in energy of the H*H™ pair in
comparison to the isolated H™ level comes pri-
marily from the Coulomb attraction between the
H' and the H™. This effect makes the charge-tran~
sfer state the lowest excited state (see Fig. 1) of
a pair of donors.

The absorption coefficient in the pair approxi-
mation is given by

aB)~ [ @ p ) MD|BE -EF),  (2.5)

where E(T) is the excitation energy of a donor
pair with a separation T, and M(T) is the matrix
element of the transition. For hydrogen, or do-
nors in direct-gap semiconductors, E(T) is iso-
tropic. Expanding E(7) around the point where it
is a minimum @ = 7,),

2
E@)=E, + % (gll—,%)':'o('r -7, (2.6)

and substituting in Eq. (2.5), we get a divergence
in the optical absorption at threshold due to the
one-dimensional density of states:

@(E)~(E -Ey) Y2 (EZE,). 2.7

The divergent density-of-states effect has in fact
been seen in the isotropic case as a peak in the
photoconductivity spectrum of GaAs,'® and identi-
fied as such by Golka.*®

Note that such extremal points in the transition
energy of n-atom clusters lead to a (3n-5)-dimen
sional density of states, and thus to singularities
~(E --Em)“"‘”/2 in @(E). These singularities are
featureless for » >2. Thus it is almost impossible
to identify thresholds or other features due to
bigger clusters of atoms, and it becomes more
fruitful to talk in terms of a statistical distribu-
tion of all possible clusters, as in the next sec-
tion.

For the case of Si:P, the situation is complica-
ted by the existence of many valleys, anisotropic
mass, and central-cell effects. For the ground
state 'Z; which is comprised of the symmetric
combination of the six valleys, we assume that
the anisotropy is unimportant; however, one must
scale the hydrogenic curves using the shrinkage
factor discussed in the previous section. In ad-
dition, the Bloch wave part of the wave function
leads to oscillations in the exchange and overlap
terms [and hence in the E(F) curve] because of the
mismatch of the phase at the two donor sites; this
mismatch is due to the requirement of the valley-
symmetric combination at each donor forced by the
central cell. As has been emphasized elsewhere,®
this mismatch effect leads, on the average, to a
reduction of the exchange terms by a factor of 6,
which should be incorporated in the scaled E(T)
curve. Since a division of the exact hydrogenic
results into direct and exchange terms is not
available, we have multiplied the scaled curves
with the full hydrogenic exchange by the ratio of
the reduced to full exchange results in the Heitler-
London approximation, to obtain our final results
for the energy of the 'Z; state.

We take the 'z} state, by analogy with the hydro-
genic case, to be composed primarily of the
charge-transfer state D*D~ at the distances of
interest. We assume isotropic envelope functions
with the reduced values of the radii discussed
before. The effect of the phase mismatch on the
exchange terms is not as easy to analyze as for
the '=;, because of the presence of two different
electron states—inner and outer electrons of the
D~ (plus, of course, the correlation effect). How-
ever, we expect the reduction in the exchange
terms to be much less than for the 'Z; because
the dominant exchange terms will be from the
outer electron, which has a negligible central-cell
correction. Thus the relative phase of the wave
functions in a different valleys may be adjusted
to take advantage of the full attractive exchange
and we use the scaled hydrogenic curves without
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modification.

In the excitation curve E(T) for charge transfer,
the stationary point corresponding to the lowest
value of the D* D~ pair excitation state is almost
a one-dimensional minimum since most of the
energy shift is due to the isotropic Coulomb in-
teraction between the two donors. The singular
threshold, however, is smeared out by the oscil-
lations in the exchange-energy contribution to the
ground-state energy mentioned above.

For the 'IT, -type states (which we label as
D, D,,) we have assumed that states with lobes
parallel (D, D,, ) or perpendicular (D D,,,) to
the valley axis do not mix. This is reasonable
since the pair broadening of lines (typically ~2
meV is small compared to the separation of the
isolated donor 2p, and 2p, levels (~5 meV). Cal-
culations have been done only for the high-sym-
metry [100] directions where stationary points
are expected to occur; in an arbitrary direction,
of course, the different pair states would mix.
Here again, because of the negligible effect of the
central cell on the 2p states, the phases of the
wave functions are adjustable, and we do not ex-
pect a significant reduction of the exchange ener-
gy. After scaling the hydrogenic curves by using
the effective radius of the Kohn-Luttinger varia-
tional 2p wave function oriented along the direc-
tion of separation, we obtain an extremum (sad-
dle point) for the D, D,,, state and two saddle
points for the D, D,,, states. These latter cor-
respond to valley axis parallel or perpendicular
to the separation axis.

C. Pair band intensities and line shapes

For the D, D,, pair states, where matrix ele-
ments do not vary strongly with distance, the
intensity of pairs relative to isolated donors is
simply the ratio of their probabilities:

%i‘-—-uffﬁ =4 Ty R*(AE,), 2.8)
where R*(AE,) is a radius where the energy shift
AE(r) due to a neighboring donor becomes greater
than E; i.e., AE(r)>AE, for »r <R*(AE,). [Minor
variations in the matrix element with distance
could be incorporated into the definition of R* in
Eq. (2.8).] Since the effects of neighboring donors
on the D, D,,, and D, ; D,,, states fall off rapidly
with distance, R* determined experimentally
using Eq. (2.8) is a measure of the extent of do-
nor wave functions in the excited state, and we
shall refer to it as the effective radius.

For D*D~ states, since the excitation requires
the transfer of an electron, the matrix element
varies exponentially with distance:

23

M@r)=Myr)e ", (2.9)

where M(r) is a slow function of » (a polynomial).
Therefore M(r) must be explicitly included in the
definition of R*:

Itz _ Jo [Mpry Oy
Lapg fo ,szo !2PNN(’V)d3'r

Jo My =) Pp 0y
My ®

Here I,+,- is the integrated intensity under the
D' D~ pair band while I,, is the integrated inten-
sity under the 2p, band (singles plus pairs), and
Mpsp- and M,, are the matrix elements for the
DD~ D'D™ and D, D~ DD, transitions (the
latter being approximately equal to the matrix
element for the D, - D,,  transition). We use Eq.
(2.10) to define an effective interaction radius

R;"’D" by

(2.10)

gia:sg TpR A - . (2.11)
Unlike the case of the D, Dyp,and D, D,,, states
where R* is determined by the energy shift from
the isolated donor lines, R} pisdetermined by the
exponential fall-off of the matrix element M p+p- (7).
However, we emphasize that since overlap is
the determining factor in My+,-(), R}~ is a
measure of the radius of the D~ state.

For the D, D,, pair states where the variation
of the matrix element M(T) with 7is weak, we may
compute the pair band line shape simply in terms
of the probability distribution p, (r). The D, Dy,
case is simpler than D, D,, and we have analyzed
it by parametrizing the E(T) curve as a general-
ized Morse potential with an empirical anisotropy
of cubic symmetry. The line shape of the D*D~
transition is obtained by using the LCAO result
for My+,-(r) and the scaled hydrogenic E(r) curves
with a Gaussian smearing to simulate the rapidly
oscillating exchange terms in the ground-state en-
ergy. Details are given in Sec. III.

D. The forbidden inter-ground-state transition

At donor concentrations above 10'7 em™2 in Si:P,
a peak appears in the absorption spectrum at an
energy approximately equal to the difference in
energy between the symmetric 1s ground state
and the valley-orbit split higher 1s states. The
peak is seen till just above n,~10'® em™3, after
which it is swamped by the rapidly moving cluster
absorption edge (to be discussed in the next sec-
tion). The transition between the valley-orbit
split 1s states is dipole forbidden for isolated do-
nors. An order-of-magnitude estimate of the ran-
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dom electric field needed to mix in p-like states
and allow such a transition with the observed in-
tensity, yields fields in excess of 10* V/cm. Such
fields are clearly much larger than random elec-
tric fields present due to compensation or other
effects. On the other hand, as we shall show, the
transition is not dipole forbidden in pairs of do-
nors provided the conduction-band minima are
anisotropic. (For isotropic minima, there appears
to be a supersymmetry and the transition remains
dipole forbidden.)

As discussed in Sec. II B, the donor-pair approx-
imation is expected to be valid for transitions be-
tween 1s states up to densities n,=10'® cm™? in
Si:P. We have therefore calculated the forbidden
transition line shape and intensity using the Heit~
ler-London approximation for the energies of the
different valley-orbit split 1s states in donor
pairs. We include the oscillatory term due to
phase mismatch of the Bloch wave at the donor
sites, and convolute the result with the probability
density [Eq. (2.3)]. The matrix element for the
transition is also calculated using the Heitler-
London wave functions. For the energy curves,
we use spherical envelope functions with the re-
duced radii to take the central-cell potential into
account. However, for the matrix elements, we
must use the Kohn-Luttinger anisotropic envelope
functions!! (ranodiﬁed by a shrinkage factor for
the central cell), as they vanish for the spherical
case. The calculations omit mixing of the triplet
(T,) and doublet (E) states which would be valid if
the two were well separated in energy. Thus the
results obtained for the intensity and half-width
are approximate. The details of the calculations
are outlined in Appendix B, and the comparison
to experiment is made in Sec. IIIC.

E. Intermediate density: Statistical theory of cluster
absorption

At higher donor concentrations (z, >2%10'7 cm™3

in Si:P) larger clusters of donors rapidly become
prevalent, giving rise to absorption at energies
below the pair bands. As discussed earlier, no
distinct density-of-states features may be assoc-
iated with n-donor clusters for »> 3, and there-
fore one must analyze the optical absorption in
terms of a statistical ensemble theory of donor
clusters. The distribution of clusters for random
donors at a concentration z, will be the usual
Poisson distribution, i.e., the probability of find-
ing N donors in a volume v is given by

P, (N) = (npv)¥ exp(-npv)/NI . (2.12)

The trend of decreasing excitation energies in
in larger clusters shows up clearly by plotting
the absorption at fixed energies as a function of

density. It is found that the absorption scales as
nk, with p increasing at low excitation energies to
a value as large as 10. From Eq. (2.12) it is
apparent that cluster sizes of up to ten donors are
required to get such high values of p.

Bhatt and Rice** have derived an expression for
the low-energy absorption edge in the case of low-
density fluid mercury for the same range of den-
sities (0.1 Sny/ny < 0.5). In their theory, the
absorption is obtained by summing over absorp-
tion due to clusters of all densities in a clustering
volume v:

a(E)= [ ANP(Mpu(E), (2.13)

1
where ¢,(E) is the absorption spectrum of an N-
atom (N-donor in the case of Si:P) cluster. Using
invariance properties of the tight-binding matrix
of the N-donor states, the mean energy of the ran-
dom N cluster is shown to be

EN)~E(1)-Z(N)WV, (2.14)

where V is an ensemble-averaged diagonal energy
shift and Z(N), an effective coordination number
in the N cluster, is approximately given by

N-1

Z(N)= Tw-D/is (2.15)

In the case of mercury, the absorption spectrum
turned out to be relatively insensitive to the width
of ¢py(E) (ratio of width to shift~1/VN), because
the width due to density fluctuations was dominant.
For the Si:P system, with no hard-core repulsions
as in mercury, the density fluctuations are even
greater, and we therefore neglect the width of ¢,(E)
completely, i.e., take ¢y(E)=fNO(E - E(N))
where f is a proportionality constant. By fitting
the absorption data at one donor concentration we
can determine values of f and the average diagon-
al matrix element V, and from these predict the
absorption at other densities. As will be shown
in Sec. III, this statistical theory with phenomeno-
logical parameters is found to describe the data
very well and in addition provides a simple phys-
ical picture of the absorption spectrum.

IIl. MEASUREMENTS OF THE DONOR OPTICAL
ABSORPTION

We shall discuss, in turn, the experimental pro-
cedures, the isolated-donor limit, the donor-pair
regime [including the allowed transitions (D*D",

D Dy, and Dy D,, ) and the forbidden transitions
(between the 1s levels)], and finally, the larger
cluster regime. Absorption spectra illustrating
these three regimes are shown in Fig. 2. The ab-
sorption cross section a/nD is plotted versus pho-
ton energy kv =E. At very low densities, one sees
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FIG. 2. Overview of the absorption coefficient (norm-
alized to np) as a function of photon energy for three
widely separated donor densities ny in samples of Si:P
at T~ 2 K. The three curves illustrate regimes of
broadening (1.4 x 10'") and larger cluster absorption
(1.9 x10'%,

the sharp lines of isolated donors, then at higher
densities asymmetric broadening on the low-en-
ergy side of these lines due to donor pairs and
finally absorption over almost the entire.energy
range due to larger clusters.

A. Experimental procedures

We used uncompensated crystals of Si:P grown
from the melt. We obtained sample thicknesses
varying from 5 mm down to 0.005 mm by conven-
tional polishing and etching. Conventional far-in-
frared, Fourier-transform spectroscopy was
used to obtain the absorption coefficient o from
the transmitted intensity 7, in the photon energy
range 20 cm™' to 470 cm™! (2.5 to 58 meV). For
samples of uniform thickness,

I=Iref e~ ’ (3.1)

where I,;, the (reference) intensity in the absence
of the donors, was measured using pure Si. Do-
nor concentrations, n,, were determined by mea-
suring the room-temperature resistivity®® on the
same slice of Si:P.

The samples used were obtained from several
sources (see Table III) with facilities for pro-
duction of ultrahigh-purity Si. Only P impurities
were added and no evidence was observed of com-
pensation or of other donors in the optical spectra
of our selected samples. The measure used to
check for compensation was the magnitude of @
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FIG. 3. Room-temperature resistivity p as a function
of donor density in Si, as determined for an average of
donors in Si by Irvin and for Si:P by Mousty et al. (Ref,

60).

at photon energies E ~30-40 cm™!, where transi-
tions to ionized donors have been observed by
Millward and Neuringer.®! We see no signal of
this type within the limits of our signal-to-noise
ratio. In the best case (z, = 1.2X10'" cm™3) we
measure @(5 meV) 2107 %a(E,), where E, = 45.5
meV (367.1 em™!) is the ionization energy'? as

np = 0.

The single-crystal boules were initially cut in
slices (~0.5 mm thick and, as grown, 2.5 to 5 cm
in diameter). The disks were polished and etched
with CP, to remove cutting damage. The resisti-
vity p,, was then measured at room temperature,
T~294+1 K, using both point probe and contact-
less resonant bridge methods. The resistivity
was converted to values of », using Irvin’s data®
reproduced in Fig. 3, and the results are listed
in Table III.

The curves shown in Fig. 3 are a composite of

TABLE III. Si:P samples.

P
Qcm) np(Irvin) 2, (Mousty)
Supplier +10% 1016 cm=? 101 cm=®

Dow Corning 2.1 0.24 0.23
Texas Instruments 1.13 0.47 0.44
Merck 0.38 1.6 1.4
Bell Laboratories 0.20 3.5 3.1
General Diode 0.177 4.1 3.7
Wacker Zero 0.110 7.6 6.8
Monsanto 0.073 14 12
Bell Laboratories 0.036 45 38
Metron 0.028 72 60
Recticon 0.022 120 105
General Diode 0.0172 190 180
General Diode 0.0140 265 260
General Diode 0.0133 310 310
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results from various sources for several donors
and acceptors. The best values of n, were obtain-
ed by introducing calibrated trace amounts of’
radioactive isotopes of the dopants or by neutron
activation of stable donor isotopes as summarized
by Irvin.®® In both cases the absolute gamma-ray
flux was measured and n, was calculated by
scaling the radioactive fraction of donors. A
single curve is used for different donors because
the 10% uncertainty in determining #, was found
to be comparable to the variation in#n, vs Prr
among donors. Careful Hall-effect measure-
ments®+® indicate effective values of n§2!! at room
temperature that are consistently smaller than
the absolute measurements of #, at the same Br *
For example, we can fit the results of Yaman-
ouchi et al.® to n,~1.5nfa for 1< n, <5x10'°
cm™3,

In order to measure @, a square (0.6X0.6 cm?)
was cut from the center of each disk and then
polished with Syton and etched with dilute CP,,
to the desired thickness d. For observation of the
transmitted light the optimum thickness is d= 1/a.
Since a varies with E and »n,, samples with thick-
nesses from 5 to 0.005 mm were used, usually
several at eachn,.

The samples were glued, only at one corner,
with a small spot of GE7031 insulating varnish,
over a 0.28-cm diameter hole in a brass disk.
Very thin samples were fixed to a thicker pure Si
sample with a very thin layer of a cyanoacrylate
glue before final polishing. The thick samples
and the substrates for thin samples were polished
to a wedge with an angle of 3.5° to reduce inter-
ference effects. The sample assembly was moun-
ted as illustrated (not to scale) in Fig. 4(a). The
black polyethylene filter (0.02 ¢m thick) eliminates
radiation at photon energies E = 100 meV. The
He exchange gas (pressure= 100 um) cools the
sample to a temperature close to the surrounding
liquid-He bath which is pumped to 7= 1.1 K.

Since the incident power on the sample is quite
small (< 0.5 uW) we estimate the sample tempera-
ture to be under 2.0 K.

The detector output as a function of mirror
translation in the Michelson interferometer [Fig.
4(b)] is digitally recorded and Fourier transformed
to obtain the transmitted intensity as a function
of photon energy. Inside the interferometer, a
Mylar sheet splits the beam. A sheet 0.05 mm
thick is used for #v roughly from 0.5 to 8 meV.
This thick sheet is replaced with a sheet of thick-
ness 0.025 mm for the range 1.0 to 16 meV and
0.0064 mm for 6 to 60 meV. Along with each
transmission spectrum a reference spectrum for
a pure Si sample (2,7, ~1.0X10*® em™®) is re-
corded and the ratio of the sample to reference

spectra is computed.

The data handling is accomplished as illustrated
in Fig. 5. Beginning with the interferometer mir-
rors at the position of maximum interference in-
tensity, light is chopped mechanically at a fre-
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FIG. 4. (a) Schematic view of Dewar-sample assem-
bly indicating path of light through pipe, 5-mil cold
black polyethylene filter, sample or reference chip, and
into detector chamber, One of three samples or a ref-
erence crystal can be rotated into the beam without
warming the assembly. (b) Detailed sketch of Michelson
interferometer showing Hg-arc source, Mylar beam
splitter, mirror moved by stepping motor.
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FIG. 5. Overview of the experimental apparatus show-
ing schematically the path of light from the interfero-
meter [shown in detail in Fig. 4(b)] through the Dewar-
sample assembly [shown in Fig. 4(a)] to the detector.
The detector output is amplified synchronously, inte-
grated digitally and stored, after which the interfero-
meter mirror is stepped to a new position and the pro-
cess repeated.

quency VY, and then transmitted through the appa-

ratus as discussed above and in Figs. 4(a) and 4(b).

The intensity hitting the Ge:In detector causes
heating and a change in resistance at v, = 100 Hz.
A constant current dc bias converts the signal to
a voltage which feeds into a phase-sensitive de-
tector referenced to the chopper. The amplifier
output is integrated with a digital voltmeter for
0.1 to 10 sec and then fed to the computer system
for storage on magnetic tape. The computer then
signals the stepping motor to advance the inter-
ferometer mirror to begin the next measurement.
After a spectrum is completed, it can be plotted
on a recorder and is stored in the remote com-
puter memory. This same computer is used to
perform fast Fourier transforms of data sets and
to ratio sample-to-reference data, then to convert
the ratio to an absorption coefficient & or cross
section o/n,. The result is then plotted on the
recorder and some examples are reproduced in
Fig. 2.

Since wedge-shaped samples were used in many
cases, a modified version of Eq. (3.1) was used.
For a sample with average thickness d and dif -
ference in thickness 0 between maximum and min-
imum thicknesses, we use a computer iterative
solution of the analytic expression for « at d.

o= (d-1)n[(1/1,) sinh(ad/2)/(a5/2)].  (3.2)

Although the Si reflectivity is accounted for in
I, an additional correction is required for the
donor reflectivity. We have made this correction
empirically by using a series of samples of dif-
fering thickness at each n, and using the data
where the donor reflectivity is smallest relative
to the bulk absorption. In the heavily doped cases
we have combined this procedure with an anal-
ytical correction based on the Kramers-Kronig
relations, **'% particularly for »n, near n,,, where
the donor dielectric susceptibility tends to di-
verge.*’

The spectra obtained are shown in Fig. 2. Be-
cause the Mylar beam splitter (thickness 0.0064
mm for the data of Fig. 2) used in the interfero-
meters has an efficiency which falls off at the low
and high ends of the range of E shown, the random
errors in « are largest in these limits. The spec-
tral intensity variation of the high-pressure Hg-
arc source also limits the accuracy of a at small
E., The accuracy of the absolute magnitude of o
is limited by the accuracy of dand 6 through Eq.
(3.2) This uncertainty is largest for a very thin
sample such as that with n, = 1.9X10'® cm™3 shown
in Fig. 2, where d = 0.005+ 0.001 cm.

B. Isolated donors and donor pairs

At the lowest donor densities measured, as il-
lustrated in Fig. 2, sharp absorption lines are
seen in the spectrum. These arise from transi-
tions between the donor ground state and a series
of excited states analogous to the levels of a hy-
drogen atom, as discussed in Sec. IIA. The line-
width observed at n,=4.7x10' cm™ (Fig. 2) is
dominated by the spectrometer resolution.

The excited states giving rise to these lines are
well known and are listed in Table IV along with
the peak positions obtained with a resolution of 1
cm™ forn,=2.4X10" cm™. As shown in the table
our transition energies agree with previous photo-
conductivity measurements summarized by Fisher
and Ramdas.'®* Our energy differences for higher
excited states also agree with the effective-mass
calculations of Faulkner,'? so we have obtained a
(theoretical) value for the donor ionization energy
(E; =45.5 meV) using his values for the higher
states. This value is indicated in Fig. 6.

Asnp is increased, we expect the optical ab-
sorption spectrum to be modified first by the
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TABLE IV, Donor energy levels for Si:P relative to
the 1s (A) ground state.

Wave number Energy Energy
(this work) (this work) (Fisher and Ramdas)

State (em™) (mev) (meV)
1s(T) 11.73
1s(E) 106 +22 13.1 +0.2°2 13.10
29, 274.9 £0.1 34.09 +0.01 34.09
2p, 315.7 39.15 39.15
3, 323.2 40.08 40.08
3p, 342.3 42.44 42.43
4p, 340.6 42.23 42.24
4p ,(5py) 349.7 43.37 43.36
55 355.5 44.09 44.09
60, 358.6 44.46
E, 3670 45.5 45.31

2Position of pair interground-state transition at z
=1.4 x 10" cm™3,

b This value is taken from the effective-mass theory
of Faulkner which agrees with all of our excited-state
energies within our uncertainty.
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FIG. 6. Absorption coefficient, normalized to np, ver-
sus photon energy for two Si:P samples indicating the
growth of pair absorption as a broadening of the lower
edges of the sharp peaks, The sharp peaks are higher
than the broadened ones, but are plotted as a reduced
scale at left for easier comparison; the areas under the
two curves are equal within experimental error. The
lowest pair bands are shaded and labeled and are anal-
yzed in Figs. 7, 8, and 9. The ionization energy for
small zj, is labeled E;.

interactions between randomly occurring close
pairs of donors. We find such contributions to
allowed transitions to be identifiable for 2 X10'®
<np,<2X10"7 ecm™. We also find pair transitions
within the 1s-state manifold, but only at higher
values of n,. We identify the origin of these ab-
sorption bands using their energy positions, -their
line shapes, and their intensities.

We consider first the allowed transitions which
are illustrated on an expanded linear scale in Fig.
6. The figure shows the absorption cross section
a /ny, for two values of n, as a function of E. Each
spectrum was taken several times as described
above to check for reproducibility.

Asymmetric broadening of all of the lines for
the sample with 1, =3.5X10'® ¢cm™ can be seen in
Fig. 6. We will concentrate on the energy inter-
vals that are shaded and labeled D*D", Dlsszo,
and D, Dy, - The arrows correspond to the char-
acteristic energies of the stationary points of
these pair bands which have been calculated in the
previous section. Because of the asymmetry of
the pair broadening, the maxima in the spectrum
shift. This shift has been noted previously by a
number of workers!® %25 and analyzed for a se-
quence of samples by Kuwahara et al.2® The shift
is larger for levels with a larger effective radius
and can be seen clearly, for example, in the 3p,
line. Our results are in qualitative agreement
with all of the previous measurements except for
the large apparent shifts with small broadening
observed by Townsend.?> We suggest that his an-
omalously shifted 2p, peak may be due to the peak
for 2p, in Si :Sb at about the same n,,. We have
checked our results for reproducibility in a series
of measurements at the same n, with different
thicknesses d and other variations of the experi-
mental conditions. Since a does not vary linearly
with the transmitted intensity, the agreement be-
tween different d values rules out most potential
sources of systematic error.

An expanded view of the pair bands below the 2p,
line is shown in Figs. 7 and 8. Figure 7 shows
the excitation energies to the D*D™ and DISD%0
states of a pair of donors separated by a distance
R that result from the theoretical analysis dis-
cussed in Sec. IIB. The oscillations that occur in
this energy (with a period of the order of the Si
lattice constant) due to the phase mismatch of the
Bloch-wave part of the total wave function at the
donor sites, are shown schematically. The ener-
gy scale shown at the top of the figure is measured
relative to the 2p, isolated donor line. As dis-
cussed in Sec. IIB, the D,D,, pair band has only
one saddle point in its density of states, which is
indicated by the arrow (shifted by 1.3 meV) in
Fig. 6. (The D,D,,, is similar in this respect,
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FIG. 7. Expanded view of the pair bands below the
2p, transition (lower part) and calculated pair transition-
energy differences for the same pairs (upper part). The
energy difference between the pair ground state and
Dstzpo or D*D” excited states as a function of donor-
donor separation is calculated by scaling the results for
H pairs. The shaded areas are experimentally defined
energy shifts which in turn define the values of the inter-
action radii, e.g., Rp;sDy, as indicated. The experi-
mental results, solid circles, are compared with theo-
retical line-shape curves, dashed lines and their sum,
solid line, on a semilogarithmic scale.

with two saddle points shifted by 2.2 and 1.1 meV.)

A comparison of theory and experiment is shown
in the lower half of Fig. 7 on the same energy
scale as the top part but in meV units relative to
the ground state [1s(a) level]. The solid circles
represent experimental data and the two dashed
curves are estimates of the pair band line shapes
whose sum is the solid curve.

The theoretical line shape is obtained by con-
voluting the energy versus separation curves in
Fig. 7 with the probability of finding the donors
at that separation, Eq. (2.3). We have approxi-
mated E(F) for D, oDz, With a generalized Morse
potential in which an empirical anisotropy para-

a(emt)

Ezpo— hv (mev)

FIG. 8. Comparison of pair band absorption at two
densities with the same variables plotted as in Fig. 7.

meter is used to incorporate the cubic symmetry
of the Si lattice. We have also included the rapid
oscillations in E(¥) broadening. We estimate these
oscillations at the minimum of the E(¥) curve in
the upper part to be of the order of 2 meV—about
the size of the shift of the D ,D,, pair energy from
the 2p, isolated-atom line. Since the oscillations
have a period short compared to the Bohr radius
and are large only when distances get comparable
to the stationary point distance, they are wll ap-
proximated as a smearing of the calculated o (E)
at the loweyr edge. We assume this smearing to
be Gaussian with a fitted broadening parameter o
and, thus, we compare the experiment with a
smeared a(E):

a(E) =(a(E)),

= 1 ” -(g-p)% /2% ’ ’
=) e o(ENdE".  (3.3)
The other ingredients of «(E) for the D, D,, band

are straightforward, namely the py,(r) discussed
in Sec. II and a constant matrix element (indepen-
dent of 7) since the excited electron remains on the
same donor. For the data shown in Fig. T,

the peak in dPyy(»)/dr [see Eq. (2.3)]occurs

at »=(2mmp)~/*=105 A, where there is little
shift in E(¥) as seen in Fig. 7. Thus the peak
is only slightly shifted from the 2p, line as
discussed above, even though substantial low-
energy broadening is present.

The second pair band analyzed in Fig. 7 is an
important one because it involves a large energy
shift. This band arises from charge-transfer
transitions to the D'D” state of a donor pair. This
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pair, like the other pair exciations, may be refer-
red to as a donor exciton?®® in the Mott-Hubbard
gap. It is important to keep in mind the distinction
between charge transfer within a pair and the addi-~
tion of a single electron to the system. The opti-
cal excitation process to form D*D” thus differs
from charge transport in D™ band states.

The line shape for the D*D” band differs in two
respects from that described above for D, D,, ,
although again we use Eq. (2.5) for a(E). First,
the E(F) curve is simpler because, as mentioned
above, the D*D” bands are approximately isotropic
so they produce a one-dimensional threshold
o 1/VE = Eg, in the density of states. We smear
this threshold with a Gaussian arising from the
rapidly oscillating exchange energy discussed
above. Second, the matrix element M(¥) falls off
exponentially with distance [Eq. (2.9)], reflecting
the decreasing probability of electron transfer to
distant atoms. Because of this factor, the absorp-
tion attributed to the D*D™ band falls off rapidly
at increasing E, well below the D" energy, in
striking contrast to the rising intensity in the
D,sD,,, band, as can be seen in both Figs. 7 and 8.

We combine the two pair contributions to fit the
observed spectrum in Fig. 7 using 0, En,, and
the D1sDz,,0 saddle-point energies as fitting para-
meters. While a good fit is obtained, it is impor-
tant to consider if these parameters are reason-
able in magnitude in order to evaluate the success
of the model. The Gaussian broadening parameter
o used is 2 meV which is in agreement with esti-
mates of the magnitude, though a detailed calcu-
lation of o is beyond the scope of our study at this
time. More important are the fitted energy posi-
tions of the minimum in the E(¥) curve for D*D”
at 29.0+ 0.5 meV (or a shift of 14.8+0.5 meV
from D*D" as »— «) and the saddle point in D, D,, ,
which both agree within the accuracy expected for
our theoretical calculations, with the results sum-
marized in Table V.

To illustrate the growth in intensity of the pair
absorption, we have shown a comparison of two
samples in Fig. 8. Here, a is plotted on a log
scale as a function of photon energy relative to the
2p, energy E%. The growth in pair intensity can
be seen between n, =7.6x10'® cm™ and n,=1.4
X107 ¢m™3, 1.8 times higher. The bands are
labeled as in Fig. 7 and fits with smaller broad-
ening for the D, D,, band are shown. The same
value for Em, of D'D” is obtained.

The third parameter determined by the analysis
shown in Figs. 7 and 8 is the magnitude of the
pair absorption relative to the isolated donor,
which we translate into an interaction radius for
each of the pair bands using Eqs. (2.8) and (2.11).
We have divided the absorption spectrum into en-
ergy intervals to analyze different contributions to
o(w). For the “isolated”-atom contribution we
take an energy interval 5;=0.66 meV encompas-
sing the 2p, line peak at low n,. For the D,D,,
pairs, for example, we take the interval AEZI,0
which is shaded in Fig. 6. These empirically
chosen energy boundaries then define theoretical
interaction radii on the E(¥) curves discussed
above.

The integrated intensities within these intervals
are plotted as I, in Fig. 9, with the results for
each of the bands labeled. The 2p, line is used as
Lingies fOT both the DlsDZ,0 and D*D" pairs and the
2p, line is used for D;;D,, pairs. The Iyuuge values
scale linearly with »;, within our accuracy, but
this normalization eliminates experimental uncer-
tainties associated with determining absolute in-
tensities. The solid lines are fits to the data
which are linear, as indicated in Eqs. (2.8) and
(2.11). The slopes of these lines give the experi-
mental interaction radii for each of the pair states
(DysDyp s DysDyy,» and D'D7). These values are in
good agreement with the theoretical estimates ob-
tained from the E(¥) curves, as can be seen from
the list in Table V.

TABLE V. Comparison of calculated and measured parameters for the final pair states
listed as studied by optical transitions from initial D, D, states. For the donor exciton
D*D ", the minimum absorption energy Emin (see Fig. 2) is dramatically reduced from the
energy, Ep-, needed to create the isolated D* and D~ centers (see Ref. 7). The experimen-
tal interaction radii are defined by Eqgs. (2) and (3) and by the fits in Fig. 3, while the theore-
tical values are obtained from the scaled E(R) curves as, for example, in the upper part of
Fig. 2, with the error limits arising from different possible scaling methods.

Pair state:parameter

Theory

Experiment

D*D~:Ep-—Emin

14.0 + 0.5 meV

14.8 + 0.5 meV

D*D iR} 64 104 68 + 54
DyyDyy iRy 90 =104 110 =104
115 +104 125 +1034

DysDyy, iRy
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FIG. 9. Ratio of pair to single-atom absorption as a
function of n,. The data are taken from the measured
areas shown shaded in Fig. 6 and the solid lines are fits
to the data whose slopes determine the interaction radii
listed in Table V. The 2p, line area is used as Ij,g10s
for D1sD2,,° and D*D” and the 2p, line for DisDap,.

An analysis in terms of these pair bands for
ny 2 1.5X10' becomes inappropriate because con-
tributions from triplets and larger clusters be-
come increasingly important. This breakdown in
the pair approximation occurs at smaller %, for
states with larger radial extent. We turn now to
higher n, and a consideration of pair transitions
within the ground-state manifold where the radii
are smaller.

C. The forbidden inter-ground-state transition

There is an absorption peak near 12 meV that
deserves a separate treatment since it involves
transitions that are forbidden for isolated atoms.
This peak, shown in Fig. 10, falls at an energy
close to the energy difference between the lower
A, combination of 1s states and the E and T,
states. In Raman scattering, a transition between
the A, and E states is allowed and has been stud-
ied 5%5% At temperatures ~20 K, transitions from
the upper levels have been observed at different
doping levels in optical absorption as thermally
populated initial states for allowed transitions to
donor excited states, and values determined by
this method are given in Table IV. The splitting
of the ground-state results from the valley-orbit

E (meV)
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e »
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FIG.10. Semilog plotof normalized absorption coeffi-
cient versus photon energy for a series of Si:P samples be-
tween n,=0.12 and 1.9 x10'® cm™3, as labeled, showing

the forbidden 1s ground-state transition near 100 cm™!,

The shaded area illustrates how the intensity is estima-
ted for analysis in Fig. 12. The transition is allowed
for pairs. Absorption from transition to the T, and E
levels at the energies indicated is not resolved and is
dominated by the E level,

interaction associated with the central cell of the
impurity atoms as discussed in Sec. IIA.

We wish to verify this origin of the peak in our
data and study its intensity as a function of #,.
We have observed the 1s transition in our data
for concentrations between 0.12 and 1.2x10'8
cm™, as shown in Fig. 10. Our observations are
in detailed agreement with similar measurements
of 8i:P by Toyotomi'® at n, =0.68 and 1.2x10'®
cm™, but do not agree with the values quoted by
Townsend®® on Si:P at n,=0.6, 1.0, and 1.7
x10'® cm™3. We note, however, that Townsend’s
values agree with those quoted by Fisher and
Ramdas for Sb impurities in Si and this suggests
that he has measured Si:Sb rather than Si:P.
The most important point in identification of the
peak is that its energy position is 106+ 2 cm™ or
13.1+£0.2 meV, for n,=1.4%X10" cm™®, in agree-
ment with the photoconductivity measurements.
The peak shifts slightly to lower energies with in-
creasing »n, as we expect due to asymmetric
broadening within pair bands. Determination of
the peak position becomes increasingly difficult
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for larger n, because of broadening and the rise
of absorption from other donors.

The peak we see is close to the isolated-donor
1s(A4,) — 1s(E) transition; we do not see another
peak close to the isolated-donor 1s(A,) — 1s(T,)
transition in Si:P at any density studied. This
may be indicative of a relatively weaker transition
probability (by about a factor of 3) of the latter,
leading to part of the asymmetry of the single
peak observed. However, an asymmetry of the
line shape is to be expected if the transition is due
to randomly occurring pairs. The necessity of a
large background subtraction makes a detailed
analysis of the line shape sufficiently uncertain
that we have not carried it out.

In an attempt to observe two separate peaks we
examine a spectrum for Si:As at n, =1.35%x10'®
cm’® as shown in Fig. 11. Here the two peaks are
clearly seen and they have similar intensities.
The peaks are only slightly below the positions ob-
served at lower density by other measurements.'®
The slight shift to lower energy seen here is simi-
lar to that seen in Fig. 10 for Si:P, as discussed
above. At higher densities, the peaks apparently
broaden sufficiently that they are hard to distin-
guish in our data at 1.9x10*®, in Fig. 10, and in
similar data by others.!%:'%2% The arrows in Figs.
10 and 11 label the low n, transitions energies and
the shifts are seen to be 3+1 cm™ for Si: P, n,
=1.2X10" cm™ and 4+ 1 cm™ for Si:As, n,=1.35
X 10'® cm™. These shifts are consistent in mag-

10 20 30
020 : :
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~ T, E
o6l T 2K . -3 2 |
Np =1.35%10" cm l 1
“e o2} _
o
o
=
<
3008 .
004} N
o 1 | |
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FIG. 11. Normalized absorption coefficient as a func-
tion of photon energy for a sample of Si:As. In contrast
to the Si:P samples discussed in the rest of this paper,
the T, and E levels are resolved, confirming the identi-
fication of the peaks shown here and in Fig. 10.

nitude with each other.

In order to verify that the forbidden transitions
are due to pairs of donors that are closely spaced
by chance, as discussed in Sec. IID, we have plotted
the integrated intensity of the forbidden peak ver-
sus np in Fig. 12. For donor pairs the intensity
is expected to increase as #%, and thus a straight
line of slope 2 is expected on the log-log plot. The
integrated absorption intensity is obtained as illus-
trated by the shaded area for n,=1.2x10'® cm™?
in Fig. 10, subtracting an approximately exponen-
tial background that is fitted at higher energies.
This background shape is calculated as discussed
in Sec. IIE and below in Sec. IIID. The results
for the four curves in Fig. 10 are plotted in Fig.
12 along with the one point from the data by Toyo-
tomi,'® for comparison. The agreement is good
between the two experiments. The solid line
through the data is the expected slope 2 and the
experimental magnitude of the ground-state inten-
sity I,, is given by

I,,=940+30 cm™ (,/10'® cm™)%. (3.4)

The error quoted here is determined from the
error bars shown in Fig. 12 and does not include
the systematic uncertainty associated with the
background subtraction. The intensity is of the
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FIG. 12. Growth in the intensity of the 1s ground-state
transition with increasing np, obtained from the data
shown in Fig. 10. The line of slope 2 on this full logar-
ithmic plot is the behavior expected for pairs.
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order of magnitude expected from the Heitler-
London calculation of Sec. IID.

Based on the good agreement of the measured
inter-1s-state transition with other data on its
energy position and with a reasonable analysis of
its relative intensity, we feel that the identifica-
tion is clear. There also are other interesting
aspects of the spectrum that merit future analysis.
These include the relatively weak intensity of the
T, transition for P but not for As, the width and
shape of the peaks, and the broad extra weight at
lower energies seen most clearly for Si:P at
0.72%X10'® em™ and for Si:As at n,=1.35X10'®
em™, This extra weight may be related to small,
self-compensation. Alternatively, although the
compensation is nominally negligible in all of the
samples discussed here, our upper limit on pos-
sible acceptor concentration is about 1% since we
see no modifications of the curves at 1072 of the
peak value of & /n,;,.

D. Random clusters at np >2 X 107 ¢m™3

As discussed above in Secs. II E and III B, an
analysis of o in terms of pairs becomes inade-
quate beyond the highest densities shown in Fig. 9,
i.e., n,~2x10" cm™3~pn,\,/20. At these densities
larger clusters become more probable than isola-
ted close pairs. This region of n,, up to ny,, is
referred to by many authors as “intermediate” and
it is the region where the temperature dependence
of the electrical conductivity can be described in
terms of a conductivity activation energy ¢, at-
tributed to an impurity band. Within this analysis,
it is inferred, from the decrease in ¢, with n,,
that the impurity band edge moves down toward the
impurity ground state. This behavior is often
treated qualitatively within a Hubbard model in
which the D™ excited state broadens as a result
of overlap to produce the shift.

Building upon this analysis of the dc conductivity,
a number of studies'™® of the optical absorption
have been interpreted in terms of this same low-
ering of an impurity band edge as a result of im-
purity overlap broadening. An overview of o
through this range of #n, is presented in Fig. 13.
The results show qualitatively the rapid increase
of @ with n,,, from the lowest density shown where
the D*D", D, D,, , and D, D, pairs are still iden-
tifiable, through the region where the forbidden
transition increases and broadens.

We consider'now the growth in the broad absorp-
tion seen in Fig. 13 for n,=1.2, 2.65, and 3.7
X10' ¢m™, As discussed above, we shall consid-
er an extension of our analysis in terms of ran-
dom pairs to higher density and larger clusters.

As shown in Figs. 9 and 12, one fundamental
characteristic of the pair absorption is the varia-
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FIG. 13. Overview of the increasing absorption with
increasing nj for Si:P samples in the region where the
pair approximation becomes inadequate and larger ran-
dom clusters must be considered,
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FIG. 14. Absorption coefficient at fixed energy as a
function of nj for four energies wy. Assuming that a
cluster of size N absorbs near a characteristic energy
wy, a power-law dependence of the intensity with »nj is
expected. The lines with slopes N are shown for com-
parison on this log-log plot and the reasonable agree-
ment with the data motivates the analysis shown in Figs.
15 and 16.
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tion of @ at the energy of the pairs as a function of
n%. To search for absorption from larger random
clusters, N=3,4,..., we need to consider & such
as that shown in Fig. 13 at fixed energies w, below
the pair bands and see if we find a(wy)«n) in the
density region where these clusters are still rare
[i.e., @(wy) < @may). The results of this investi-
gation are shown in Fig. 14.

This figure provides strong motivation for con-
sidering a cluster approach to the growth of the
absorption coefficient with n,. The full-logarith-
mic plot shows o at fixed values of w=w), for a
series of six samples with varying »n,. The val-
ues wy shown here were chosen to correspond to
the energies of N-particle clusters obtained as
we shall discuss below.

For these four values of wy, we obtain reason-
able agreement with the expected simple power-
law dependences:

Ot(wN) zao(nb/nM)N’

where a, is a constant and 7,=4X10" cm ™2 is used
for normalization. We have shown only N=4, 5, 8,
and 10 because the absorption near w, for N=6
and 7 falls near the transition between the valley-
orbit split 1s states. At very low frequencies,
i.e., w=<20 cm™, the uncertainty in & is too large
to make such a plot; besides at very low frequen-
cies the simple theory of Sec. II E is not expected
to be valid. Even in the data that are included,
the uncertainty in determining absolute values of

a over four orders of magnitude, as indicated by
the sample error bars shown, is too large to allow
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FIG. 15. Variation of the energy Ey of N atoms within
a fixed volume. The curve shown is given by Eq. (2.14)
with the constants determined by the fit shown in Fig. 16.
Theoretical calculations show that the energy of charge-
transfer excited states such as D*D”drop as the number
of nearest neighbors is increased. The results in Fig.
14 indicate a correspondence between lower energy ex-
citations and larger N,
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FIG. 16. Normalized absorption coefficient as a func-
tion of photon energy showing a comparison of the meas-
ured (solid lines) and calculated (dotted lines) behaviors.
The calculations combine the Poisson distribution with
the energy versus cluster size curve of Fig. 15 using
Eq. (2.14), Once the parameters are chosen to fit the
data at n,=4.5x10'" cm™, the theoretical predictions
contain 7z, as the only parameter and are then compared
with the data at larger nj as shown.

a very precise determination of the exponent. How-
ever, the comparison with the expected slopes is
quite satisfactory, and the trend to larger N with
decreasing frequency is clear.

Reflectivity corrections were accounted for ap-
proximately by using data from thick samples for
which ad was large and by assembling data sets
from a series of sample thicknesses at each ;.
Such corrections can also be made by using the
Kramers-Kronig relations to obtain the reflectivity
from o and then renormalizing a iteratively .55

We have made a comparison of the random-im-
purity-density model discussed in Sec. IIE in
two ways. First, we have combined the results
from all samples to consider o as a function of
n, for fixed values of energy, as shown in Fig.

14. Second, we have fit @ as a function of energy
for a sample at a value of n,=4.5%X10"" cm™, as
shown in Fig. 16, and then, using the parameters
of this fit and the model of Sec. IIE, calculated
the curves for @ versus energy at other densities.

Let us consider first the data at lowest density
in Fig. 16. The absorption cross section a/xn, is
plotted on a semilogarithmic scale as a function of
photon energy. The semilog plot is chosen be-
cause the exponential in the Poisson-distribution
function P (N) in Eq. (2.13) leads us to expect a
nearly linear curve in this plot at small values of
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a/n,. The label on the curve R=130 A indicates
R=n;'/® at the density n, =4.5X10"" cm™. This
separation is about twice the value of either the
peak or the average in the Poisson distribution of
neavest neighbors.

In order to obtain reliable values of o for this
np, over two decades of @, we measured a series
of samples from the same original crystal with
different thicknesses, as mentioned above. The
thicknesses were chosen in the range from about
10 microns to several millimeters in such a way
that the ranges in which the values of @ were re-
liably overlapped. Small differences in absolute
values were attributable to uncertainties in mea-
suring sample thicknesses, and the curves were
normalized to the thicker sample in which this
uncertainty was small. The combined data are
shown as the solid curve. A small peak remains
in the curve which is a remnant of the 2p, line and
we ignore it in the fitting.

In order to make the fit shown for R =130 A,
four parameters in Eq. (2.13) must be considered.
The prefactor f merely shifts the curves vertically
on the logarithmic scale and is chosen last. The
characteristic volume » for defining a cluster was
fixed at the beginning of our analysis at (100 A)?
and was not varied. This value was chosen based
on our analysis of pairs, discussed above, in
which we found the donor-interaction radii to be of
that order. In the fits we varied the two parame-
ters E(1) and V in Eq. (2.14). For the fit shown
by the dotted line in Fig. 16, we used E(1) =44
meV and V=8 meV.

In considering the fit in Fig. 16 for R =94 1“&, np
=1.2X10'® cm™3, we need to account separately for
the peak near 12 meV, which arises from the val-
ley-~orbit split 1s levels. In the analysis shown,
we ignore the fit near this peak. It is possible to
subtract thistransition from @ (w) and obtain a bet-
ter fitthan that shown. Theremaining analysis of
the curvesat R="72and 94 A (z,=2.68and 1.2x10'8
cm’3) in Fig. 16 is performed with no further ad-
justments: the values of n,, measured as dis-
cussed above, are put into Eq. (2.13) for o to ob-
tain the dotted curves. The reasonable fit of
these curves by the phenomenological model using
the same parameters determined by the fit to the
data at n, =4.5x10'" cm™ provides support for
the random cluster approach. The temperature of
the samples during the experiment was about 2 K
as discussed above, and was assumed not to affect
a. No changes were observed with variations in
the He exchange-gas pressure which varied the
sample temperature from 2-10 K. The same an-
alysis was performed on four other samples (in
the same range of energy and »n,) with comparable
results. These data are not included in Fig. 16

for clarity, but are presented in part, in Figs.
13 and 14.

IV. CONCLUSIONS

In this work we have followed the optical absorp-
tion from the low-density regime with isolated
donors through the donor-pair regime and up to
densities just below the metal-insulator transition
where the absorption edge arises from larger
clusters of donors. We have shown that the first
effect on the isolated donor lines is an asymme-
tric broadening on the low-energy side and it is
accurately described by a theory which incorpor-
ates the occurrence of statistically close donor
pairs. The lowest pair excitation band is shown
to be the charge-transfer excitation (D*D"), indi-
cating the importance of charge-transfer proces-
ses in low-energy excitations of monovalent sys-
tems, unlike the closed-shell divalent case such
as fluid Hg.*

At higher densities, we do not observe any dra-
matic shift in the positions of the sharp lines, but
instead a rising background of absorption due to
interactions between the donors; the lower energy
the faster is the eventual rise in the absorption.
A simple phenomenological model of absorption
by donor clusters, where a characteristic excita-
tion energy is associated with each cluster size,
is found to describe the data very well. Because
the donors are incorporated in the Si lattice at
high temperatures, they are totally random in
position and there are no hard-core repulsive ef-
fects (on the scale of the Bohr radius, az). Con-
sequently the density fluctuations are even larger
than in fluid Hg,* and this is reflected in the
broader shape of the absorption edge.

From a theoretical point of view, two further
developments would be desirable. First it should
be possible to estimate the excitation energy of a
cluster of N donors and make a comparison to the
phenomenological form of E, shown in Fig. 15.

In the optical excitation process, one is rearrang-
ing the charge distribution in a cluster. (Judging
from the result for pairs, the charge redistribu-
tion could be substantial—in terms of localized
basis orbitals on donors, akin to a charge transfer
from one donor to another.) The energy for such
a rearrangement may well be quite sensitive to the
cluster shape and not just to its average density
and size. Given that in this system, one knows
well the microscopic model it is clearly desirable
to make contact with microscopic theory for E,.

In this regard we note that we have reported else-
where® the behavior of the static polarizability
obtained by integrating over a(w). By scaling the
polarizability, an average energy gap can be ob-
tained and this energy gap was found to be in quite
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good agreement with the values calculated from
microscopic theory.*?

A second interesting development would be to
make a connection between the scaling theories
of localization and the phenomenological cluster
model. The former are clearly most important
for np ~ny; and also at lower energies for np <ny;.
These theories have focused mostly on the dc con-
ductivity®® but recently have been extended to dis-
cuss the frequency-dependent conductivity as well.
At a finite frequency there is clearly a corre-
sponding length scale as in our cluster model, and
the frequency-dependent conductivity therefore
offers a way of probing the dependence of the con-
ductivity on length scale.

We conclude by noting that the doped semicon-
ductors are an ideal random system which have
a number of important advantages. Firstly the
samples are well characterized. The microscopic
description is well understood and the inelastic
scattering processes are well known. The only
disadvantage is that one must work on a reduced
energy and temperature scale, but these can be
handled by working in the far infrared at low tem-
peratures.
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APPENDIX A: SHRINKAGE OF 1s WAVE FUNCTION
DUE TO CENTRAL CELL

In the spirit of estimating the effect of a not too
strong, short-range potential (extent much smaller
than the Bohr radius) on the 1s hydrogenic wave
function in terms of a shrinkage of the Bohr radi-
us, we may use a delta-function potential —V,56(¥).
In doing so, we must discard the unphysical mini-
mum in energy for a wave function of zero extent,
which would not be present for potentials of finite
extent. For the Hamiltonian

ﬁz
= om*

2
H va_% - V,5(%) (A1)

using a trial function

1
V= Gam7E e (a2)
one obtains

__R? et vV,
2m*a*®  €a* qa*d’

(A3)

which has a physical minimum at

aX, =ag/2(1 -v1T=v) (a4)

(for v<1) with an energy

8E
Enin =28 [3v =1+ -0)*/7, (45)
where
ay =€n?/m*e? (A6)
and
E,=-m*e*/2€%;2 (am

are the effective-mass values for the Bohr radius
and ground-state energy, respectively, and

v =12V e*m**/ren* (A8)

is a dimensionless number characterizing the
strength of the central cell. By fitting E i, to the
diagonal term in the Hamiltonian matrix of the 1s
manifold (i.e., mean energy), one obtains v using
(A5), which in turn allows an estimation of the
shrinkage of the 1s wave function through (A4).

APPENDIX B: HEITLER-LONDON THEORY OF THE
INTER-GROUND-STATE TRANSITION
IN DONOR PAIRS

In this appendix, we give the relevant formulas
for the excitation energy from the ground state to
the valley-orbit split excited 1s state for a pair
of donors as a function of their separation ¥, as
well as the dipole matrix element connecting the
states. The calculations have used the Heitler-
London approximation. In the calculations of the
energy we assume spherical hydrogenic envelope
functions, though the radius may be chosen differ-
ently for the symmetric ground state and the ex-
cited 1s states. (The results for the hydrogenic
case are given, for example, by Slater.®®) For the
dipole matrix element, it is necessary to take into
account the anisotropy of the Kohn-Luttinger en-
velope functions, because there appears to be a
supersymmetry for the two-donor case which
makes the transition dipole forbidden for spherical
envelope functions (if they are the same for the
ground and excited states). We have further ne-
glected the complications due to mixing among the
excited states. This, like the Heitler-London ap-
proximation, is in the spirit of an order-of-magni-
tude calculation rather than an exact one, which
would, in addition, have to take into account non-
hydrogenic modifications of the wave function due
to the central cell. We give below the results for
the ground-to-triplet transition; the one for the
doublet works similarly, but the expressions are
even more tedious.

The 1s symmetric ground state and 1s x-triplet-
state donor wave functions in effective-mass
theory for Si are given by
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wg<f~-§)=r% L r(E- R, (), B1)
JEE- =P (F-Ro,0-6.(D],  (B2)

where ¢,(¥) is the Bloch function associated with
the vth conduction-band minimum (v =x, -x,y, -y,
z,-z) and F, the hydrogenic (or Kohn- Luttmger)
envelope, centered around a donor at R. [The
tilde in (B2) is to allow a different radius for the
envelope function in ¥, and zp,.] In the Heitler-
London approximation, the wave functions of the
J

R,) =9, (F,-R )y (F,~

+PF(F, -

X/ " .
q’T( 1'1, I‘2, Ray
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ﬁb)"' Zl)g(?l -

R (F,- R,) + 97 (F, -

space part of the spin-singlet state derwmg from
the ground state (wg) on a pair of donors at R and
R, is given by (apart from normalization)

R.fa)zrl)g(.l.‘z— Rb)
ﬁb)ng(.fz = Ra)9

(I’G(Y'u-f'z; Ra ’ Rb) = wg(.f'l -

+ Zpg(-fl -
(B3)

while the corresponding (spin-singlet) pair state
deriving from one electron in the ground state
(¥,) and another in an x-triplet excited state (y;)
is

R )pz(F,-R,)

R,y (F,- R,). (B4)

By taking the expectation value of the Hamiltonian for the pair of atoms

1 1

2
3 = - — 1 (V2+V2)+——~< = +——=
2m 1T, =R, IT, =R,

e2

-

+ [V, (F)+ V,(F)+ V,(F)+ V,(F,)] +

(here V is the short-range central-cell potential)
we may show that for isotropic envelope functions
F(¥)= (ra*®)/2% "/“* we obtain the following ex-
pressions for the palr ground- and excited-state
energies (R=R, - R,):

Ec(ﬁ)a%% =2E, + 6B, (R) (86)
and

E"T(ﬁ)E%ﬁ = E +E,+5E%(R),  (B)
where

B (b -gmr v e YO %) oo
and

1 e?
E,=(yf|- V2 = )| oF B9
t <‘pg‘ am* +€|Y‘—R1+V(r) ¢t> ( )
are the one-donor 1s symmetric ground-state and
1s triplet-excited-state energies. The shifts 0E;
and 8E, are given by

= 2 +J"+ fo(2KS +K’)

6E4(R)= 15 (B10)

and
J+J+J'+2f‘”KS+f;2’ (&s +Ks)+f;3’K'
1+f7.)5%+ f‘z’SS

SE 4(R) =

(B11)

AE S

1
+‘..+_,..)
1T,-R,|  |T,- R,

a

(B5)

I -
where the terms S, J, J’, K, and K’ have their
usual meaning as for the hydrogen molecule®®:

SR)= fder(Y')F('f+ﬁ), (B12a)
3, 2( % 82
I®)= [ ar D (B12b)
K(R)= fd F(r)F(r+ﬁ)-—:2_—§Ts (B12c)
J'(R)= fd%'ld%fz,l"‘z(rJL Fz(r2+§) —, (B12d)
rl—rzl
K'@®)= [ dr,dor F(%)F (%, + RIF (F,)
X F(E,+R) (B12e)

—r2|

The tildes in Eq. (B11) refer to the use of F in-
stead of F in Egs. (B12). A single tilde requires
only half the F’s in the integrand to be converted
to F, while the double tilde is for all of them to
be replaced.

Analytical forms for the integrals in Eqs. (B12)
are available in literature, e.g., Ref. 66. The
phase factors f; and f§) are given by

- 2
fa=(% 2 cos @-R)) , (B13)
©w=x,9,2
fi)=5sin*(k,+ R), (Bl4a)



f§) =3 cos(K,- 'ﬁ)( 2 cos(k,- -ﬁ)) , (Bl4b)

=X,02
£ =3 {1+ cos(k, R)[cos (K,  R) +cos(k,  R)]}.
(Bl4c)

(Phase factors for the y and z triplet states may
be obtained by appropriate permutations of x, ¥,
and z.) Eu (k=x,y,2) are the wave vectors asso-
ciated with the conduction-band minima.

In obtaining Eqs. (B10) and (B11) we have ne-
glected: (i) the extent of the central-cell potential,
i.e., set terms like

f & F(3-R)V,(DF(F-R],) =0,
and (ii) intervalley-matrix elements, in which the

oscillatory Bloch function is part of the integrand,
)

M, =i§% (L+feS2H/2(1+ F)52+ fg>s§)-1/=sm(ﬁ,- R)
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i.e., set terms like

[@ro,z-R)F(F-R,)

X, (¥-R,)F(¥-R,) =0, for p+v.

The excitation energy of the pair state is thus
given by

E: =(E,- E,)+[8E%(R) - 6E4(R)]. (B15)

Proceeding similarly, except maintaining the
the anisotropy of the envelope wave functions
F,(T), the dipole matrix element connecting the
pair-excited [Eq. (B4)] and ground [Eq. (B3)]
states may be shown to be

x [cos (K, B)S,3, - 5,3) + cos (k,- )G, - S,3,) + cos(k, BE.I, - S8, (B16)

where S, and au are the overlap and dipole matrix
elements of the envelope function for the p(=x,y,x)
conduction-band minimum:

s, (R)= f & F, ()F, (F+ ), (B17a)

3= f 4% F, (T)VF, (¥+T), (B17b)

and the tilde refers to the use of F' instead of F in
one of the factors in the integrand of Eqs. (B17).

The line shape of the isolated-donor-forbidden
singlet symmetrical 1s to the three triplet 1s
states in donor pairs is thus given by

I
¢(B)~ 2 pun(R) 2 |, (R))*6(E - B4(R)),
Ry
(B18)
where ﬁ, are the various lattice sites, while the

total intensity relative to the 1s - 2p, isolated
donor line is given by

QZpN“(ﬁ,)zu:lﬁu(ﬁ,)lz

l2

I forbidden _

I2p°

(B19)

-
¥y,

€ is the volume of the primitive cell in Si.
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