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Phase-shift calculation of ionized impurity scattering in semiconductors
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Partial-wave phase shifts for the scattering of electrons and holes of arbitrary degeneracy by a screened Coulomb

potential have been calculated assuming isotropic, parabolic energy bands. For free particles in the effective-mass

approximation, all such interactions can be characterized by two parameters. At each point in this two-dimensional

space, two final results have been obtained from which the transport integrals can be evaluated. One is a sum of the

phase shifts which must be employed in satisfying the Friedel sum rule, while the other corresponds to the total
momentum-transfer cross section due to all partial waves, For a parametric space which includes nearly all

experimental conditions of interest, these results are presented in approximate analytic form. Over a broad range of
electron and hole concentrations and temperatures in Ge, Si, and GaAs, comparison is made between ionized-

impurity mobilities calculated from the phase shifts and those obtained in the Born approximation.

I. INTRODUCTION

Brooks-Herring theory'" has been used exten-
sively in calculating ionized-impurity mobilities
in semiconductors. While one obtains simple an-
alytic expressions for the scattering cross sec-
tion, the Born approximation employed in this
theory is invalid for many experimental conditions
of interest. An attractive alternative is the par-
tial-wave phase-shift method, which yields an
essentially exact solution to the scattering prob-
lem for a specific potential. This technique was
first applied to the screened Coulomb potential by
Blatt, ' who calculated phase-shift cross sections
for various values of the sc3ttering parameters.
While Blatt's results apply mostly to nondegener-
ate semiconductors, Csavinszky' employed a
variational technique to obtain analytic approxi-
mations for the zero-order phase shifts in the
limit of extreme degeneracy. Neither of these
authors attempted to satisfy the Friedel sum rule. '
This shortcoming was corrected by Krieger and
Strauss, ' who provided an essentially "complete"
phase-shift treatment for the scattering of degen-
erate electrons by a screened Coulomb potential.
Because scattering in the extreme degenerate
limit can be formulated in terms of only one par-
ameter, ' Krieger and Strauss were able to present
a universal curve for the ratio between the resis-
tivity obtained from the phase-shift method com-
pared to the Born approximation result. In the
case of arbitrary degeneracy a comprehensive
treatment is more difficult since two independent
parameters are required. ' Boardman and Henry'
have performed the phase-shift analysis for the
nondegenerate scattering problem, using the gen-
eralized Friedel sum rule. ~ However, they re-
ported only sample calculations rather than gen-
eral results. Thus, while a number of phase-shift
treatments of ionized-impurity scattering have

The Schrodinger equation for a free electron or
hole of scalar effective mass m* in the presence
of a scattering potential V(r) can be written

(
~S„v'+|(r)) =E (2.1)

where E is the particle's total energy. For a
radially symmetric potential, the wave function
u may be expanded

been reported, it is not possible to employ previ-
ously published work to obtain quantitative trans-
port results in any extended regime except that of
extreme degeneracy.

Presented in the following sections is a compre-
hensive treatment of electron scattering by the
screened Coulomb potential. For broad ranges
of the two independent parameters, total scattering
cross sections are calculated from the partial-
wave phase shifts. Weighted sums of the phase
shifts are also presented so that the generalized
Friedel sum rule can be satisfied for electrons or
holes of arbitrary degeneracy. Results are given
in approximate analytic form in order to minimize
the tabular material which must be presented.
Using the final expressions, scattering probabil-
ities can. be calculated for almost any experimental
conditions of interest. As an illustration, the
cross sections obtained are applied to ionized-
impurity scattering of electrons and holes in Ge,
Si, and GaAs for a broad range of temperatures
and doping levels. The resulting mobilities are
given primarily for comparison with the Born ap-
proximation, since mechanisms other than ion-
ized-impurity scattering are ignored. However,
for the cases of n-type silicon, GaAs, and ZnSe,
detailed comparisons between a complete trans-
port theory and experiments will be provided in
later publications. '

II. THE PARTIAL-WAVE FORMALISM
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u(r) = QB,„S,(r)y,.(e, y) (2.2) cr = —,Q(l+1)sin'(5, —5„,).
1=0

(2.10)

where the Y, are spherical harmonics. The ra-
dial part of Eq. (2.1) can then be separated from
the angular part, giving

(
-g' 8, 8 I(I+1)h' e'a2

2m*r' ar sr 2m*r' ' 2m*
(2.3)

where the quantity k2 is introduced through the
definition E = g'k'/2m*. If the new variables x =kr-
and R, —= xS, are introduced, Eq. (2.3) becomes

-8'R, i(I+ 1), '+, +U(x)-1R, =O, (2.4)
X x'

where U(x) =-V(r}/E. This form has the advantage
that the normalized potential U(x) contains all de-
pendence on the material properties of the semi-
conductor+

It can be shown that for a vanishing potential the
general solution to Eq. (2.4) is"

That is, once the phase shifts have been deter-
mined from Eq. (2.4), the scattering cross section
is easily evaluated.

So far, this discussion has been general with
respect to the choice of a potential. We now con-
sider the specific case of a screened Coulomb in-
teraction

(2.11)

where q, and Zl .are the charges of the mobile
carrier and ionized impurity in units of e, and Kp

is the static dielectric constant. For the screen-
ing length A., we write A., = XgX, , where x, is an
adjustable screening parameter (discussed below)
and A. O is the Born approximation screening len-
gth"

R, -x[a,j,(x)+B,s, (x)], (2.5)
~-~(n. ) 5' ~(n.)

&~

xok~T Fg~(g„) 5'~(g~) &

' (2.12)

where j, and n, are spherical Bessel functions.
Here B, = 0 in order to satisfy the boundary con-
dition that R,/x be well behaved at the origin. At
large x, Eq. (2.5} has the asymptotic form R, - sin
(x ——,

' lv). If one now introduces a potential U(x)
with finite range, the solution at large x must
still have the form of Eq. (2.5}, except that B, 40.
It can be shown that in the large x limit R, be-
comes

U(„) V(&) 1 a.(n'~'-

gy

where we have introduced the definitions

(2.13)

where n and p are the electron and hole densities,
E~/ksT i-s the reduced Fermi energy, and F„

is the Fermi integral of order x." With Eq. (2.11),
the normalized potential U(x) can be written

R, - sin(x --,' lv + 5,), (2 6)
iz, i

y =-—'kap
'6 I

(2.14)

where 5, is known as the phase shift of the lth par-
tial wave. The 6, must be determined from a so-
lution of the radial wave equation (2.4).

It is well known that the scattering amplitude

f (8) depends on the phase shifts through the re-
lation

where ap is the effective Babr radius

m*(z, ~e' '

(2.15}

(2.16)

f (8) = . g (2l + 1)(e"~'-1)P, (cose),
1

2gk s=o
(2.7)

For an attractive potential y = —,
'

kap, whereas for
a repulsive potential y = --,' ka,. It is useful to
introduce the additional parameter

c(e}= (f(e)(' (2.8)

can then be employed to determine the total mo-
mentum-transfer cross section

o~= 2n o 8 1 —cos8 sin8d8.
0

(2.9)

It was first shown by Huang' that the integral of
Eq. (2.9) can be performed analytically to yield
the relatively simple result

where 8 is the angle between the incoming and out-
going particles and P, is the Legendre polynomial
of order l. The differential scattering cross sec-
tion

2x, 2x,
ao X,a, ' (2.17)

In the discussion which follows, the differential
equation (2.4) will be treated in terms of the three
independent parameters I, y, and F(a,). The value
of the adjustable screening parameter X, must be
determined from the generalized Friedel sum
rule, which was first obtained by Stern. '

The sum rule can be understood in terms of the
following picture'. " involving a plasma of free
electrons in the presence of a donor ion. Each
electron state is characterized by four quantum
numbers n, l, m, and s. The E andm are indices
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N, = 2v, g g{2i+1)f,(z„',), (2.18)

where the sums over m and s have already been
performed. Here v, is the number of degenerate
electron valleys, f,(z) =(I+e' ") ' is the Fermi
"'"'"ibution function, and z„,is the reduced energy
for an eigenstate characterized by the quantum
numbers n and E:

0 &.r I'X„',
k,T 2~*@,TB' ' (2.19}

If we now introduce the potential, zo, in E(l. (2.19}
must be replaced by s„,:

2

*k,rR { "'

of the spherical harmonic Fg~(8, Q) which appeax's
in the electron wave function [see E(l. (2.2)], s is
the spin state (not explicitly included above},
while n characterizes the various solutions to the
radial wave e(tuation R, (k„,r). Although wave vec-
tor k„,has been treated in the discussion above
as if it mere continuous, it is in fact quantized.
Employing the boundary condition that 8, -0 at the
surface of a large sphere with radius x = 8, one
finds that in the absence of a potential the ko, must
satisfy ko,R = X„„mhereX„,is the. nth zero of
j,(z). In the presence of the potential U(x}, each
zero at large x is displaced by the phase shift 5, :
k„)R=X„)-6).

To derive the generalized sum rule for arbitrary
degeneracy, me note that the total electron den-
sity in the absence of the potential is given by

(2m*kzTRz). One finally obtains for the general-
ized Friedel sum rule

Z, = — ' ' dz f,(1 -f,)S (z, x,),2v, q,

8 {,, ~,) -='g {2l+1)b,[y( ),F(X,)]. (2.22)

The sum rule is satisfied by varying the ad}ust-
able screening parameter X, in calculating 5, until
both sides of E(l. (2.22) are equal. The same b,
(y, E) are then used in E(l. (2.10) to obtain the to-
tal scattering cross section o~. For degenerate
electrons with v, = 1, E(l. (2.22) reduces to the
result originaDy obtained by FriedeV:

(2.24)

where y~ = —,
'

k~ao and k~ is the Fermi wave vector.
Our solution to the scattering problem can thus

be expressed in terms of tmo results: the total
scattering cross section o~ which is given by Eq.
(2.10), and the (luantity S (z, X,) which is defined in
E(l. (2.23) and is needed to satisfy the Friedel sum
rule. Note that for a particular set of experiment-
al conditions, me need not know each individual
phase shift but only the two weighted sums which

appear in the expressions for o~ and 8. It is con-
venient to normalize these sums to the corres-
ponding Born approximation results. For exam-
ple, the total Born cross section ise

, (x„,-2x„,6,).Sl
(2.20)

cz{y,F)=, , In(b+1}-2k'y' &+1 (2.25}

The Friedel sum rule states that the additional
electron charge which is present within the sphere
of radius R due to the perturbing effects of the
potential, must'be equal and opposite to the donor
charge Zl. That is, the donor must be completely
screened at large x. We thus have

z, = -q.(N-x, )

= -2v. e. g g(»+1}[fo .() -fo(z.'i)l
I= 0 n=O

- -mv. q. g (2(+ (( „&&&', f,(c.,() ~

g=O n=

(2.21)

therefore define the normalized cross section

e,(y, g -=c,/o;

6„(y,F) = — ~,'(x)xe- ~'

7 0
(2.2V)

can be used in E(l. (2.2$) to give the Born result"
8z = F'y. By analogy to E(I. (2.26), we define the
normalized sum

8y' Q (l+ 1)sin'[b, (y, F) —6„,(y, F)]
l=O

ln(b + 1) -b/(b + 1}
{2.26}

Similarly, the phase shifts which one obtains in
the Born approximation"

Using the property"

X„,= k„,R+ 6,„=(n+ —', l)z=nv, g,(y, F) =—z =, g (2l + 1)6,(y, F) .j.
+ 3' r=o

(2.28)

the sum over n can be converted to an integral
over the reduced energy z -=Elk, T = k'n'z'/

Hence the generalized Friedel sum rule can be
written
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oo

rrerEg(&q) dafo(1 fo-)yr~~ )

(2.29)

where the index i has been included to account
for the possibility of simultaneous scxeening by
more that one species of carrier, such as some
combination of electrons, heavy holes, and light
holes.

As discussed in the following section, S,(y, E)
and H (oy, E) have been evaluated for a very broad
x ange of g and E. The foregoing analysis hRS

demonstrated that these two results represent a
complete solution to the problem of free-particle
scattering by a screened Coulomb potential.

m. EVALUATION OF THE PHASE SHIFTS

Boardman RQd Henry hRve pointed out that when

Zrl. (2.4) is solved numerically, one must often
integrate to very large ~ before the wave function
obtains the form of a sine function as in Erl. (2.6).
We have therefore employed a technique discussed
by those authors which allows one to find the phase
shifts as soon as the integration has proceeded
beyond the range of the potential.

%ith respect to convergence in $, several previous
authors have asserted that 5, - 5,~ converges rapidly
withincreasing E, so thatonly afewlow-orderphase
shifts must be calculated. While we found this to
be true under certain conditions, notably for ex-
treme degeneracy, convergence is quite slow in
other experimentally interesting regions of the

yE space. For this reason, uy to 49 phase shifts
wexe calculated numerically by computer. In
cases for which additional phase shifts were re-
quired, the error proved to be acceptable when

the Born values g, ~ were employed for ) 50.
As shown in the previous section, the solution

for scattering by a screened Coulomb potential
can be considered generally in terms of So(y, E)
and Po(y, E), which are defined in Eris. (2.28) and

(2.26), respectively. We have evaluated S,(y, E)
and rfo(y, E) to within 1% computational error for

I y I
~ 0.01 and 0.1 &E & 400, a range sufficiently

broad to cover virtually all conditions of experi-
mental interest. - The dex'ived quantities are plot-
ted in Figs. 1-6 as functions of y for various con-
stant values of E.

Figures 1-6 can be used to estimate the cox'-
rection of the phase-shift. cross section to the Born
approximation result. However, it is im-
practical to use the graphical data in detailed
calculations of electron and hole mobilities. For
this reason, approximate analytic models have
been obtained by fitting to the calculated results
for 80 and Po. These are presented in the Appen-
dix. In the well behaved regions of Figs. 1-6, the
error introduced by the modeling is at most a few
percent. However, at small y and large E the
functions show wild oscillations in both parame-
ters, In this. xegion, the presentation of highly
accurate modeling would require a prohibitive
amount of tabular material. At present, such an
effox't does not seem worthwhile since the regime
is difficult to reach experimentally. Although

the models in this region show the same oscil-
lating structure as the exact functional forms
of So and Ho (as represented by the figures), the
precise magnitude of the model cross sections
should not be taken too seriously at 0.01 ~ y ~ 0.1
and E» 8.5. For all regions, the maximum mod-
eling errors are specified in the Appendix.
Special care was taken to assure that the error is
held to a minimum in the crossover region where
the Bol Q appl oximation is )ust beginning to be-
coDle invallcl.

In order to understand the behavior of the func-
tions So(y, E) and Ho(y, E) which are illustrated in
Figs. 1-6, we now make some qualitative observa-
tions concerning the solution to the differential
eciuation (2.4) for the lth partial wave. It can be
shown that Erl. (2.4) is erluivalent to the integral
equRtlon

sin6, = — R, (x)j, (x)e '"~' dx.
3' 0

f
I I I I

TIAL

0 g
I I I I I I I

—0.04
l r I I r I

ka

» I

-1.0

FIG, 1, 80(y P') versus negative y (repulsive potential) for several constant values ofE,
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F = 0.251

0.4 TIAL

Ho

0.04

0.001—0.01
I»I
—0.1

I I I I I I I I I

—1.0
y=-'/2 k ao

-10.0

FIG. 2. Ho(y P') versus negative y (repulsive potential)
for several constant values of E.

From Eq. (2.12), the potential is "weak" if [ y~ » 1.
In this case the perturbed wave function will be
very similar to the unperturbed result [R, = xj(x)],
5, will be small, and Eq. ($.1) reduces to Eq.
(2.27). That is, the Born approximation is valid
for a sufficiently "weak" potential. Since S, and

Ho are normalized to Born results, these quan-
tities must be close to unity in this regime, as

is found to be the case in Figs. 1-6. On the other
hand, for a"strong" potential ( ~ y j «1) the U(x)
term significantly influences the solution and A,
is very dissimilar from R~. Here the Born ap-
proximation is invalid and S, and Ho usually differ
a great deal from unity.

Another aspect of interest is the "range" of the
potential, as characterized by the quantity b~'/2
If the range is very short (i.e., b ~'/2 «1) and l & 0,
the l(l + 1)/x term in Eq. (2.4) washes out U(x)
= (1/xy) exp(-2' ) over its short range, and the
term U(x) has little effect on the wave function
even when

~ y ~
is quite small. Because l(l + 1)/x'

vanishes for E = 0, 50 is the only phase shift which
must be considered here. It can be shown that in
the limit of a strong, short-range potential, the
zero-order phase shift has the form'~ 60(y, F)

gA (F)y. From Eq. (2.28), one then obtains
SO=A(F)/F'. That is, S, is independent of y in
the limit of small y, as is illustrated in Figs. 1
and 2 (in Fig. 5, the small-y limit has not been
reached at y = 0.01). Similarly, from Eq. (2.25)
one obtains FI,„„=[A(F)/F']' = S2~ as is seen from
a comparison of Figs. 2 and 4 with Figs. 1 and 3.
It can be shown that as the range of the potential
is increased, terms up to" l =5 '/2 must be in-
cluded in the sums of Eqs. (2.26) and (2.28). In
some cases, the higher-order phase shifts can be
approximated by the Born phase shifts, 5».

We also point opt the resonance peak which oc-
curs for attractive potentials at small y near F
= 1.7 (see Fig. 4). This is a quantum-mechanical
effect which involves the existence of a bound

100 I I I I I I I I I I I I I I I I I I I l I I I

P +1) dp (y, F)

TENTIAL

8, 10

1
0.01 0.1

I
I I I I ~

1.0
I I I I I

10.0
y ='/a kao

FIG. 3. So(y,E) versus positive y (attractive potential) for several constant values of E ~ 2.51.
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I I I I [ I I I
j

I I I I I III)

1000—

0.01 0.1
l l III

1.0
~ I ''~

104

PIG. 4. Hp(y, E) versus positive y (attractive potentia
for several constant values of~ ~ 2.51.

state with binding energy very close to zero
we approximate the sc reened Coulomb potential by
a square well with depth Vo= ZIe'/xoX, and width

a = X„the condition for resonance of the k = 0 par-
tial wave in the low-energy limit is" V, a' = (I + -', )'
v%2/2m*, which becomes E = (n+-', )'v'. Thus the
n = 0 resonance for a square well occurs at E= 2.5,
which is close to the value observed in the figure.
At II = 1.V4, the phase-shift cross section for low

y is over 100 times larger than the classical re-
sult, o~ = mA, ,'. Resonances for higher n and l are
responsible for the oscillatory behavior at small
y and large I' .

Numerically derived phase shifts have been ob-
tained in the past by several authors. The first
was Blatt, s who obtained the total transport cross
section as a function of two parameters (k' = 31.5y'
and R' = 0.178E). While his approach was similar
in some respects to that described above, the pre-
sent calculation is much more comprehensive in
several ways: (1) Blatt did not give a result 8guiv-
alent to So, so that the Friedel sum rule could not
be satisfied; (2) phase shifts were calculated only
for l ~ 5, which caused relatively large error in
some regions; (3) Blatt considered only the space
4.7 &E & 28 and 0.018&

~ y ~
& 5.6, which excludes a

number of experimentally interesting regions
(the space covered in the present work is 0.1 & E
& 400 and )y~ o 0.01) (4) Blatt gave only graphical
results at sample values of his parameter A ', so
that it is extremely difficult to use his work in
general transport calculations. The present re-
sults have been modeled to approximate analytic
expressions with tabulated parameters, in ad-
dition to the graphical representations of Figs.
1-6.
Overall, Blatt' s curves are in fair agx cement with
the present results, although they appear to be
in error by as much as about 40%%uo in some re-

gionss

Krieger and Strauss' investigated the case of
extremely degenerate electrons (q, » 1) in a single
band (v, = 1) scattered by a singly ionized donor

(q,Z~ = —1), for which y- (w/2)/(x, E)'. Since there

I I I I I I I I I I I I I I I I I I I I I I I

(2f + 1) dy (y, F)

OTENTIAL

So '1 0

1.0
0.01

I I I I I l I I

10.0
y =%kao

FIG 5 Hp(p E) versus positive y (attractive potential) for several constant values ofE ~ 3.02.
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1.0

I I I I I t I 1 l I I lit I l I I I (I1
(4 1)

where m,*,
„

is the "conductivity" effective mass
and the relaxation time & as a function of reduced
energy s is given by

~ '(z) = N, vcr(y, F) . (4.2)
0.1

0.001
0.01

y=~hk Io
1.0

FIG. 6. IIO(y,I') versus positive y (attractive potential)
for several constant values of F ~ 3.02.

%'e now demonstrate how electron and hole mo-
'bilities can be obtained from the numerically de-
rived values of So and II, which are given in the
Appendix. It is emphasized that the mobilities
calculated in this section are presented only for
comparison with the Born approximation results.
Since no mechanism besides ionized-impurity
scattering is considered and compensation and
carrier freeze-out are ignored, we do not at-
tempt to compare with experimental data. A de-
tailed transport model suitable for comparison
with experiment is presented in a separate paper. '

Since we are considering only elastic scattering,
the Boltzmann equation can be solved exactly in the
relaxation-time approximation. For isotropic par-
abolic bands one obtains the following expression
for the drift mobility ':

is then only one independent parameter, Krieger
and Strauss were able to obtain a universal curve
for the phase-shift resistivity divided by the Born
resistivity as a function of kza, (= 2y), where k~ is
the Fermi wave vector. The curve obtained by
Krieger and Strauss agrees to within 2'$ with the
equivalent curve which can be generated using the
present analytic models. Boardman and Henry'
obtained numerical phase shifts in the nondegen-
erate regime. For the sample. cases they con-
sidered, agreement with the present results is
good.

IV. CALCULATION OF THE MOBILITY

TABLE I. Material parameters.

Gea GaAs'

Ko

~e

m, (con)
m~ (DS)
Bl

pg

PÃ f

16.0

0.126
0.224

12.0

0.59
0.16

13.2
1
0.068
0.068

~M. Neuberger, Handbook of Electronic Materials
(IFI/Pl. enum, New York, 1971), Vol. 5.

"M. Neuberger, Handbook of E/eetxonic Materials
(IFI/Plenum, New York, 1971), Vol. 2.

Here Nz is the density of ionized donors (s type)
or acceptors (P type), v = (2xk~T/m*)~' is the par-
ticle s velocity, and o~ is the total momentum-
transfer cross section for scattering by a screened
Coulomb potential. In Sec. II we obtained o~ = a~~HO

(y, F), where the Born approximation result or' is
given by Eq. (2.25) and FI, is the correction obtain-
ed from the phase-shift calculation, which may be
found from the approximate analytic expressions
given in the Appendix. The parameters y and I
are given by Eqs. (2.14) and (2.17). Before F can
be evaluated, the adjustable screening parameter
X, must be determined by satisfying the general-
ized Friedel sum rule, Eq. (2.29). The quantity
S,(y(x), F(X,)) can be found using expressions
given in the Appendix.

Figure 7 shows the results of evaluating Eq.
(4.1) numerically for a wide range of temperatures
and doping levels in n-type germanium. (The ap-
propriate material parameters are listed in Table
I). The quantity plotted is the ratio between the
phase-shift mobility and the Brooks-Herring re-
sult obtained using the Born approximation. At
300 K, the phase-shift correction is negligible
for doping levels below 10"cm '. This result
can be obtained readily from the data summarized
graphically in Figs. 5 and 6. In order to approxi-
mate A., so that E can be determined, we rewrite
the sum rule Eq. (2.29). Assuming that the scre-
ening is by a single type of carrier (omit the sum
over i), the equation can be evaluated in the Born
approximation by setting So-1 and E'- J'~0, where
Fo= 2XO/ao and F =—FOIL, . Next, divide the left-
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20.0

10.0—
8.0—

QERINANIUM
n-TYPE

~PS
&BORN

4.0—

80 K
o ~ ~ e ~ ~ ~ o ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

1.0—
0.8—

0.6
q p13

I

q 014
I

q p15
I I

)016 q p17

n(cm s)

~ ~ ~ ~ + ~ ~ ~

I I

q 018 q p19 )020

PEG. 7. Ratio of the phase-shift mobility to Brooks-Herring theory as a function of carrier density for three different
temperatures in n -type germanium.

hand side and right-hand side of this new equation

by the same sides of the general equation. One

obta, ins

w here
01 0/$0 gz

(s,) ='
dzfo(1 -fob

0

(4.8}

(4.4)

As an approximation (which we recommend only
for estimating purposes), one may use (S,) =S,
(y(zr), F0), where zr is an "average" reduced
energy (for nondegenerate statistics zr = —,

' and for
degenerate statistics zr =q). This approximation
for (S,) should be reasonable as long as 8, is not too
rapidly varying and A., is not too large or too
small. If we consider the specific case of T =300
K and n = 10"cm ' in germanium, w'e can use
the evaluations of y and E given by E|ls. (Al) and

(A2) of the Appendix to obtain y(zr- ~z)=0.9 and

&0 8 0 From Fig. 5 we find that S, is clos e to
unity, from which it follows that X, =1. The ratio
of the phase-shift mobility to the Brooks-Herring

result can them be found by approximating the in-
tegral of Eq. (4.1}with the value of the integrand
at z = zr. Using Eg. (4.2) for r(zr), Eg. (2.25) for
o~, and the relationo~ =H, o.~, one obtains

(1n(b, + 1) b, /(5, + 1}-
u &.(y(z, ), F./~, ) I, in(&+1)-h/(5+1)

(4 5)

w'here b = 4y'I', = A.,'b' and both b and b are evalu-
ated at z = z~. The ratio in brackets is due to the
fact that the screening length is different for the
phase-shift calculation than it is for Brooks-Her-
ring. Figure 6 shows that H, (y = 0.9, E = 8.0) is
also quite close to unity. Since b,-b when A., —1,
we have determined that Brooks-Herring theory
works well under these conditions. At lower car-
rier densities, So and Ho are approximated even
better by unity.

However, if the carrier density is increased to
n = 10'9 cm ', y(zr = 1.98) = 1.04 while ED= 0.92.
From Fig. 8, 80( y = 1.04, F = 0.92}= 1.16, which
implies A,, =1.08. The meaning of this result is
as follows: That So&1 indicates that the phase
shifts are larger than they had been in the Born
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approximation. Thus in order to assure that the
sum rule is still satisfied, we use a potential
which is weaker than the Born potential. This is
accomplished through increasing the effectiveness
of the-screening, that is, using X, greater than
unity. From Fig. 4, Ffo(y = 1.04, F = O.S2/X, }= 1.42,
indicating that the scattering is 42% more effect-
ive that it mould be in the Born approximation had
both results employed the same screening length.
However, since we are using the more strongly
screened potential obtained above, the net mobility
reduction as compared to Brooks-Herring theory
is only about 24/&, which can be obtained from Eq.
(4.6). This result is shown in Fig. 7 for T = 300
K and n = 10" cm '.

Figure 7 also shows that while the behavior at
80K is similar to that at 300K, qualitative dif-
ferences are evident at 10K for low carrier den-
sities. For example, atm= 10"cm ': y=0.17
and Ep 14 6 This places one in the regions of
Figs. 5 and 6 where not only is the potential weak-
er (X, =1.2), but the cross section is also smaller
than in the Born approximation for the same
screening (H, =0.6). Consequently, the phase-

shift mobility is larger than Brooks-Herring by
a factor of 1.8.

Figure 8 shows the results of a similar calcula-
tion for p-type silicon. Here one must take into
account the presence of two different hole species,
heavy holes and light holes with masses m„and
m, listed in Table I. The composite mobility is
g~ = (n„p,» +n, p, , }/p, where p = n„+n, and n, /p
=m,.~/(m„~ +m, ~ ), with i =h or j. lf we ignore in-
terband scattering events, the mobilities p.„and
g, can each be found from Eq. (4.1). Since both
types of carriers simultaneously screen the same
impurity, a single X, characterizes all interac-
tions. In Fig. 8, the high-temperature behavior
is similar to that for n-type germanium. To un-
derstand the 10K curve, consider the case of
heavy holes at p = 10"cm ', where from Eqs.
(Al) and (A2) of the Appendix y„=0.08 and F„
= 14/X, = 8.8, since X, = 1.64. This places one in
the regime where II, shows large oscillations
when either y or E is varied. Although'the light-
hole mobility is better behaved at this temperature
since y, is larger and E, is smaller, the com-
posite mobility is dominated by p.„sincen, »n, .

20.0

10.0—
8.0-

6.0-

4.0
PpS

P'BORN

2.0

80 K
~ ~ ~ ~ ~ ee

~ ~ ~ ~ ~ ~ ~
~ ~ ~ ~ ~ ~ e ~

1.0—
0.8-

300 K

0.6
q 013

l

q 014
I

q 015
l

Sp"
l

10
I

Sp'
I

10" q p20

p {cm s}

FIG. 8. Ratio of the phase-shift mobility to Brooks-Herring theory as a function of carrier density for three different
temperatures in p -type silicon.
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Considerations such as a randomness in the poten-
tial' or the anisotropy of the hole bands will
smooth out any experimental peaks. Moreover,
it is difficult to probe the conductivity at very low
temperatures because of carrier freeze-out.

Figure 9 shows the results of the calculation for
n-type GaAs. Since y is larger for the smaller
electron mass of GaAs (m, =0.088m,}and y~T~'
for nondegenerate statistics, one must decrease
the temperature to about 3 K before the oscilla-
tory regime is reached. We emphasize again that
Figs. 7-9 are in no way intended to be compared
directly with experiment. A detailed mobility
calculation must include a number of additional
mechanisms, such as neutral impurity scattering,
phonon scattering, electron-electron or hole-hole
scattering, compensation, carrier freeze-out, and
screening by electrons bound to donors. For n-
type silicon, Gahs, and ZnSe at low temperatures,
comprehensive comparisons between the available
experimental data and the results of such a cal-
culation are presented elsewhere. "

V. VALIDITY OF THE BORN APPROXIMATION

Over the years, a serious misconception has
persisted concerning the criterion for validity of

20.0

the Born approximation. In this section, we seek
to clarify the misunderstanding.

In general, the Born approximation is valid if
the electron wave function in the presence of the
scattering potential is "similar" in form to the un-
perturbed wave function. It can be shown that for
a spherically symmetric potential, this criterion
is satisfied when 3

lyl »1 (»&1) (5.3)

Similarly in the small-b limit the Born approxima-

u=-, f V(r)(e""—l)dr «1. (5.1)

With Y(r) = (Zz em/a, r) exp( r/X-, ), the integral can
be performed to yield ~

u = ([ln(b + 1)+]'+ (tan '5+)')~'1
kao

lnb lnb
ua, 4~y(

y yh yy'2
(5.2)~"& kao 2(y(

Since —,
' lnb is on the order of unity for large 5, we

obtain in that limit the criterion'4

10.0—
8.0-

6.0—
GaAs
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4.0-
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I BORN
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1.0—
0.8-

300 K
~as

~ ~

0.6
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I

q0)4
I

q0'15
I I
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n {cm a}
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FIG. 9. Ratio of the phase-shift mobility to Brooks-Herring theory as a function of carrier density for three different
temperatures in n -type GaAs.
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tion is valid when
~ y ~

» —', b~, or

F«1 (b«1). (5.4)

arbitrary degeneracy can be obtained if we re-
write inequality (5.2) as b ~'/2F» 1, or

Combining the two results, we find the Born ap-
proximation is always valid when ~y ~

(or —,
' ka, )

»1, since in the small-5 limit, ~y~ »1 and 1
» ,' b~'—imply inequality (5.4}. Furthermore,
while

~ y ~
» 1 is a sufficient condition for all b, at

small b the Born approximation may also be valid
for

~ y ~

&1 as long a.s F«1. These conclusions
are illustrated in Figs. 1-6. The quantities So

(y, F) and P,(y, F) are always near unity when

~ y ~
» 1. They are also near unity whenever F

«1, even at small ~y~. Recall from Sec. III that
the quantity

~ y ~

' characterizes the "strength" of
the interaction potential U(x). The present result
confirms the assertion made in that section that
the Born approximation should be valid for a
"weak" potential

The criterion

(5.5)

has frequently been used to justif y the use of
Brooks-Herring theory. While this criterion is
appropriate for degenerate semiconductors, "it
has been applied by a number of authors to
cases governed by nondegenerate statistics. In
these instances, reference is often made to an
assertion by Blatt" that the validity of the Born
approximation implies b»1 (Sclar" had earlier
made a similar observation). While this state-
ment usually holds, the converse is by no means
generally true. A criterion which is valid for

Q»4+2. (5.6)

Since I' is usually large for nondegenerate carrier
populations, inequality (5.5) is clearly incorrect
as a general criterion. As an example, we note
that for n-type germanium at 10 K with Ã~ = 10"
cm ', N„=0, and z = g'b'/2m*eST = -'„oneobtains
b = 1200 and F = 142. While inequality (5.5) is
easily satisfied, inequality (5.6}does not hold,
since 4F'=80000. It can be seen from Fig. V

that the use of Brooks-Herring theory in this ex-
ample causes error of more than 40/~.

VI. CONCLUSIONS

It has been nearly twenty five years since the
partial-wave phase-shift formalism was first
applied to the scattering of free electrons in a
semiconductor by a screened Coulomb potential.
The approach has clear advantages over the Born
approximation in that one can obtain highly accu-
rate scattering cross sections for potentials of any
strength and range Howe.ver, beyond certain
specific regimes it has not been possible to apply
previously published results to the calculation
of electron and hole mobilities for arbitrary ex-
perimental conditions.

In the phase-shift formalism, the scattering
problem can be considered generally in terms of
two universal parameters, which we call y and

For an extensive space in these parameters
we have obtained the two final results required to

TABLE II. a&(E) and b&(E) to be used in Eqs. (A4) and (A5) for y+ -0.01. The maximum
modeling error is given by Eq. (A6), where &~ ~ 0.011 and c&& 0.019 in this range.

~og fp(R

-1.00
-0.80
-0.60
-0.40
-0.20

0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40
1.60
1.80
2.'00

2.20
2.40
2.60

0.100
0.158
0.251
0.398
0.631
1.00
1.58
2.51
3.98
6.31

10.0
15.8
25.1
39.8
63.1

100.0
158.0
251.0
398.0

ap

-20.72
-13.35
-8.657
-5.676
-3.793
-2.598
-1.831
-1.313
-0.9973
-0.7673
-0.5967
-0.4847
-0.4131
-0.3745
-0.3616
-0.3699
-0.3987
-0.4552
-0.5685

ai

0.9023
0.6619
0.5328
0.3214
0.1025

-0.1680
-0.5610
-1.830
-2.203
-3.790
-6.408
—9.585

-13.33
-17.40
-21.64
-25.87
-29.64
-31.53
-27.05

a2

-0.8724
-1.362
-2.184
-8.389
-5.247
-8.097

-12.44
-16.55
-28.54
-42.26
-60.30
-87.45

-130.1
-201.3
-321.8
-526.7
-878.3

-1498.0
-2663.0

bp

-10.23
-6.611
-4.285
-2.816
-1.888
-1.297
-0.9183
-0.6713
-0.5060
-0.3910
-0.3077
-0.2453
-0.1987
-0.1657
-0.1443
-0.1308
-0.1229
-0.1170
-0.1131

b(

-0.077 23
-0.039 06
-0.058 86
-0.05400
-0.042 16
-0.023 26
-0.012 30
-0.021 87
-0.083 35-
-0.240 9
-0.540 4
-3..030
-1.699
-2.506
-3.393
-4.397.
-5.528
-6.957
-8.665

-0.1882
-0.2197
-0.3311
-0.5025
-0.7601
-1.137
-1.663
-2.373
-3.276
-4.338
-5.472
-6.495
-7.377
-8.193
-9.190

-10.24
—11.61
-12.06
-12.18
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TABLE III. ag(F) and b (E) to be used in Eqs. (A4) and (A5) for y~ 0.01(&g~ 0.024, &@~0.016).

log(p(E)

-1.00
—0.80
-0.60
-0.40
-0.20
-0.16
-0.12
-0.08
-0.04

0.00
0.04
0.08
0.12
0,16
0.20
0.24
0.28
0.32
0.36
0.40

0.100
0.158
0.251
0.398
0.631
0.692
0.759
0.832
0.912
1.00
1.10
1.20
1.32
1.45
1.58
1.74
1.91
2.09
2.29
2.51

Qp

19.10
11.85
7.280
4.349
2.478
2.194
1.934
1.694
1.473
1.264
1.073
0.8934
0.7206
0.5483
0.3600
0.1978
0.2017
0.2103
0.2176
0.2241

0.893 0
0.529 0
0.1186

-0.055 98
-0.160 1
-0.173 2
-0.1984
-0.202 3
-0.186 6
-0.120 4
-0.057 51

0.058 52
0.268 4
0.692 8
1.748
3.522
3.168
3.203
3.482
3.928

0.7364
1.204
2.051
3.307
5.319
5.843
6.472
7.130
7.844
8.594
9.451

10.39
11.33
12.07
11.51
8.066

10.46
12.05
13.42
14.91

bp

9.654
5.948
3.621
2.152
1.219
1.077
0.9462
0.8261
0.7153
0.6151
0.5198
0.4301
0.3443
0.2594
0.1691
0.1479
0.2614
0.4180
0.7172
1.719

0.047 54
0.09124
0.1368
0.1874
0.269 1
0.296 1
0.327 0
0.366 9
0.415 7
0.463 6
0.544 9
0.659 3
0.833 2
1.128
1.765
2.202
1.785
1.893
2.220
0.9360

0.1507
0.2335
0.3657
0.5889
0.9787
1.087
-1.211
1.350
1.510
1.704
1.911
2.141
2.378
2.562
2.359
2.369
3.530
3.918
3.956
4.910

perform a calculation of the transport properties.
One, called S,(y, F), is needed to assure that the
generalized Friedel sum rule is satisfied. The
other, Ho(y, F), is the total momentum-transfer
scattering cross section in units of the Born ap-
proximation result. Using the approximate an-
alytic expressions for S, and ff, given in the Ap-
pendix, one can calculate ionized-impurity mo-
bilities for almost any desired experimental con-
ditions. As examples, results for n-type ger-
manium, p-type silicon, and n-type GaAs at a
broad range of carrier densities and temperatures
have been compared with mobilities obtained from
Brooks-Herring theory. It is found that in general,
Brooks-Herring tends to underestimate the phase-

shift mobility in regions governed by nondegene-
rate statistics and to overestimate it when degen-
erate statistics apply. It is also observed that
Brooks-Herring tends to be less accurate for a
carrier species with a large effective mass. The
two mobilities agree when the Born approximation
is valid, which occurs when either ~y~ »1 or F

In many regions of experimental interest,
neither of these conditions is satisfied and the use
of Brooks-Herring theory can cause serious er-
ror. Although the present mobility results are
not suitable for direct comparison with experiment
since scattering mechanisms other than ionized
impurities have not been included, a detailed trans-
port theory is presented in a separate paper. '

APPENDIX: MODELING OF Sg(& F) AND Ho~~.~
The results of the phase-shift calculation can be summarized in terms of two quantities, S,(y, F) and

H, (y, F), which are defined by Eqs. (2.28) and (2.26), respectively. The two universal parameters y and
I' are given by

TABLE IV. c&(y) and d&(y) to be used in Eqs. (A7) and (A8) for 2.51 ~ +~ 398 (Eg, fg + p.p11).

iogfp(y) y Cp Cg do di d2

0.6
0.4
0.2
0.0

-0.2
—0.4

3.98
2.51
1.58
1.00
0.631
0.398

0.003 359
0.002 201
0.000 136

-0.001 265
-0.002 889
-0.005 619

-0.019 71
-0.016 36
-0.006 783

0.004 242
0.024 61
0.073 87

0.019 58
0.032 18
0.053 07
0.105 6
0.221 9
0.442 0

0.010 90
0.002 569
0.007962

-0.01798
-0.056 48
-0.1018

-0.051 77
—0.050 33
-0.1563
-0.236 4
-0.514 6
-1.166

0.089 68
0.1517
0.398 1
0.750 7
1.538
2.935
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TABLE V. e&(y) and d;(y) to be used in Eqs. tA7) and (A8) for 2.51 ~ E~ 4.79, along with the
maximum &s,& for each y.

-0.6
-0.8
-1.0
-1.2
-1.4
-1.6
-1.8
-2.0

0.2512
0.1585
0.1000
0.0631
0.0398
0.0251
0.0158
0.0100

0.7033
1.603
0.2591

-1.659
-2.465
-2.653
-2.569
-2.348

-2.674
-6.529
-2.154

5.260
9.360

11.49
12.74
13.54

3.610
8.474
6.213
0.6190

-2.557
-4.211
-5.185
-5.819

2.993
6.995

-2.634
—31.25
-52.62
-47.01
-42.70
-40.35

-14.80
-34.47
-8.687
84.38

154.5
133.3
117.4
109.0

17.07
38.39
21.81

-54.00
-111.6
-91.93
-77.47
-69.94

0.001
0.003
0.004
0.002
0.002
0.001
0.001
0.001

0.003
0.014
0.016
0.026
0.049
0.156
0.298
0.474

"I,/2 I/2

a=a~./a. =3870' "
(
—"')"'(

)( "„)"'(, I"'( "'")"'.
For convenience, we also evaluate the related parameter b:

r(gi @4~ =s=z'q'='( . 6x2|& i —o*(—"')( X
—"„

i ~, ) (
"*").

(A2)

The effective mass has been written ngos to indi-
cate that in eases such as n-type germanium and
silicon, the "density-of-states» effective mass
should be employed rather than the "conductivity"
effective mass m,*,„." [Were m*

„

to be employed
in Eqs. (A1) and (A2), the generalized Friedel
sum rule Eg. (2.29) wouM not be satisfied in the
Born approximation. ]

Values of8o and Ho for ly) o 0 01 and 0 1
~ 298, have been fit to approximate analytic ex-
pressions by subdividing this area of y-I" space.
For y ( —0.01 (and certain positive y specified
below), results have been fit to the following
forms:

~.(y, &) =exp[[so(&) +s.(&) Iy I

where the six parameters c,(E) and b, (E) are given
in Table II for values of E between 0.1 and 398.
These forms are well suited to the functions since
they asymptotically yield unity for Iy I » 1 and
are independent of y at ly I «1-

%'e can define the relative error E which is
introduced by the modeling as follows: E = IA
-A I/A, where A is the value for 8, or H, which
is calculated directly from the phase shifts, and
A is the approximate value given by the model.
The actual error characterization will be given
in terms of the error parameter cs ~ which is
related to E by

+s,(&)y'j 'j (A4) E
&s 1+3 l lnA }

(A6)

TABLE VI. c;(y) and d;(y) to be used in Eqs. (A7) and (A8) for 4.79 ~ +~ 10, along with the maximum &s,& for each y.

log(0(y)

-0.6
-0.8
-1.0

1y2

-1.4
-1.6
-1.8
-2.0

0.2512
0.1585
0.1000
0.0631
0.0398
0.0251
0.0158
0.0100

-0.07895
-0.557 4
-0.891 0

4.036
11.07
13.86
14.55
14.89

0.6326
3.740
7.138

-16.26
-51.20

64,40
-65.34
-64.27

0.1180
-3.644
-8.711
20.25
65.22
83.05
83.91
82.03

-0.6267
-4.434

-19.33
-47.89
-90.55

-116.3
-134.9
-140.9

0.7699
20.38

100.7
257.3
481.3
605.5
699.1
728.8

0.3403
—26.73

-137.9
-355.9
-644.7
—789.3
-904.0
—939.6

0.001
0.002
0.013
0.032
0.029
0.051
0.057
0.048

0.001
0.006
0.033
0.077
0.175
0.124
0.234
0.405
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TABLE VlI. c;(y) and d&(y) to be used in Eqs. (A7) and (A8) for 10 ~ E(398, along with the
maximum &s and Eye.

&ogio(y) co cg C2 d2 H

—0.6
-0.8
-1.0
-1.2
-1.4
-1.6
—1.8
—2.0

0.2512
0.1585
0.1000
0.0631
0.0398
0.0251
0.0158
0.0100

-0.010 71
-0.023 17
—0.042 87
-0.056 57
-0.051 70
-0.046 13

0.029 75
0.233 8

0.1902
0.5173
1.194
2.196
3.680
6.338
9.271

11.47

0.8442
1.227
1.423
1.705
0.9815

-2.853
-8.679

-13.24

-0.173 1
-0.264 1
-0.430 7
-0.464 2
-0.013 82
-0.3188
-2.691
-5.371

-2.133
-3.382
-4.186
-8.649

-25.90
-37.73
-19.37

6.117

5.031
6.953
4.729
8.836

54.13
96.94
63.81
10.65

0.001 0.005
0.001 0.007
0.002 0.009
0.012 0.018
0.037 0.095
0.040 0.277
0.052 0.364
0.051 0.371

The purpose of the weighting factor 1+3 llnA. I is
to require the model to be much more accurate
in regions where the Born approximation is
nearly valid than in regions where S, and II, are
very different from unity. W'e illustrate by noting
that from Table II 4'g(y & —0.01) & 0.011. From
Eg. (A6), this means that when' =8, =1.0, the
maximum relative error E is 0.011, or 1.1/0.

However, if S, =10 or 0.1, the maximum error
can be as large as 1+3 ln 10= 8.7'. Of course,
the value &s =0.011 given in Table II is a maximum
for the entire space y ~ —0.01 and the actual error
is much smaller than this in most regions. The
use of a numerical technique such as four-point
Gaussian interpolation" to evaluate S, at values
between those given in Table II should contribute
little additional error. For If,(y(O, E), the
maximum error is only slightly higher, as char-
acterized by E~ ( 0.019.

For the range y & 0.01 and 0.1 (F ( 2.51, S,
and H, have also been fit to expressions (A4) and

(A5), where the parameters a,.(E) and 5,.(E) are
given in Table III for F values in this range.
Since S, and H, are relatively well behaved in
this region, the modeling error is modest (as
& 0.024, ~„&0.016).

For y & 0.01 and 2.51 -F 398, S, and 8, have

been fit to the following forms:

~.(y, E) = exp[c.(y) +c,(y)/E"'+ c.(y)/Ej (A7)

and

&.(y E) =exp44(y)+d (y)/E'"+d. (y)/E] (A8)

Because of the less well-behaved nature of the
functions S, and H, at large F, it is necessary to
further break the (y, E) space into several regions.
For y) 0.398, a single set of values for c,(y) and

d, (y) can be used for the entire range 2.51 &E
&400. These are given in Table IV for y values
between 0.398 and 3.98 (when y) 3.98, S„and
H, approach unity, as seen in Figs. 5 and 6). In
the range covered by Table IV z s, z~ ~ 0.011. As

y decreases below 0.398, one enters the oscillatory
regime of Fig. 6. Here Eqs. (A7) and (A8) must
be used in three F segments for each y. The
parameters-c, (y) and d, (y), along with the maxi-
mum values of es s(y) for the three segments are
given in Tables V-VII. Because of the strong
oscillatory behavior at small y and large F, ac-
cur'ate modeling is very difficult in this region
(a prohibitively large amount of tabular material
would be required). Fortunately, this regime is
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