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Semiconductor-metal transition in doped polyacetylene
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We present studies of the stability and electronic structure of doped fimte model polyenes as a function of dopant
concentration. The results illustrate the nature of semiconductor-metal transition in doped polyacetylene which
differs qualitatively from an impurity-band insulator-metal transition in a conventional semiconductor. The
evolution from insulating behavior to metallic behavior is characterized by four regimes: (I) accommodation of
excess carriers in sohtons pinned at impurity sites at low dopant concentration, (II) formation of isolated .

quasimetallic regions resulting from statistical fluctuations in dopant density. at slightly higher concentrations, (III)
formation of a dense band of localized states resulting from the disordering of an incommensurate charge density

wave in the random field of the ionized impurities at stiB higher concentrations, and {IV) suppression of bond
alternation in the presence of strong disorder due to a dense distribution of impurities at extremely high

concentrations. The insulator-metal transition occurs at the onset of regime III, and is found at a -10at. % dopant
.concentration in a strictly one-dimensional theory. Including three-dimensional interchain coupling the density is

expected to be reduced below S% where it is observed experimentally. Direct probes of the Fermi level state density
are expected to show a smooth evolution through the transition region due to statistical fluctuations in the local

dopant density.

I. INTRODUCTION

Polyacetylene, long known to synthetic chemists
as a black amorphous powder, has recently under-
gone a renaissance of interest among solid-state
researchers. This revival follows the successful
synthesis of the material into self-supporting
films"' and the subsequent observations of pro-
foundly altered electrical properties upon doping
with a variety of donors and acceptors. '4 Super-
ficiaQy, the behavior of polyacetylene upon doping
appears rather similar to that of a conventional
semiconductor; i.e. , a pristine insulator shows
semiconducting properties when lightly doped. s~

and undergoes an insulator-metal transition at
high doping levels. Upon closer consideration,
however, it becomes apparent that the behavior
of polyacetylene upon doping is qualitatively dif-
ferent from that of a conventional cxystalline
semiconductor. The m-electron manifoM in (CH),
is a quasi-one-dimensional electron gas, with
an estimated bandwidth parallel to the chain axis
exceeding the interchain bandwidth by nearly 2
orders of magnitude. ' Such a system is suscep-
tible to a variety of electronic and/or structural
instabilities' "; in the work that follows we focus
on the Peierls instability, which provides a con-
venient and familiar framework with which to
interpret bond alternation, which is observed to
occur in neutral long chain polyenes" and is anti-
cipated to persist in the (infinite) polyacetylene
limit. """"That is, the elastic energy required
to deform the system from a unfform bond length
structure is overcome by the tendency of the
electron gas to form relatively weak n bonds in

half the bonds on the chain, transforming the in-
finite polyene from a paramagnetic conducting
structure to a diamagnetic insulating one. Upon
addition of a few carriers to the chain, such an
argument predicts that the chain will again seek
a diamagnetic insulating ground state. Physically
this is manifested by the trapping of added carriers
in solitons, ~ ' discommensurations in the bond
alternation which reverse the magnitude of the
bond alternation (i.e. , the order in which the
bonds alternate). Each of these defects produces
a half-fiBed midgap level when neutral, and
accommodates an excess carrier in a diamagnetic
center in the charged polyene. This theoretical
expectation is borne out in a number of experi-
mental studies of the magnetic character"'" of
and the low-lying electronic excitations from"
the doped ground state, and vibrational excitations
of such kinks have even been observed. "'" Such
behavior contrasts markedly with the behavior
of a substitutionaQy doped crystalline group-IV
semiconductor in which defect formation in re-
sponse to an excess carrier is strongly inhibited
by the constrained geometry of a three-dimen-
sional covalently bonded network. In fact, behavior
similar in spirit to that observed in (CH)„ is pre-
sumed to occur in doped trigonal Se where this
structural constraint is relaxed. "

In this paper we examine the behavior of the
polyene at higher doping levels and follow the
implications of a Peierls model through the semi-
conductor -metal transition in polyacetylene. "
%e find a semiconductor-metal transition in this
system which differs markedly from an impurity-
band insulator-metal transition in a conventional
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semiconductor. " We find that the polyene as de-
scribed by an ideal Peierls model shows a strong
tendency to seek an insulating ground state, even
for deviations in band filling from the half-filled
band exceeding 14%, i.e. , well past the observed
insulator -metal transition. Upon closer study
we note that this tendency to form an incommen-
surate insulating structure is strongly suppressed
by interactions between the polyene g electrons
and impurity sites randomly situated adjacent
to the chain. This interaction, which is treated
alternately by models in which the impurities
interact via a screened Coulomb interaction or
via direct hybridization with nearby g orbitals,
stx'ongly stx ucturally disox'ders the ideal incom-
mensurate lattice and leads to a semiconductor-
metal transition near the 10 at. % doping level. This
transition density is further suppressedby inter-
chain coupling in this quasi-one-dimensional
system, and including such effects the transition
density is suppressed below 5' where it is ob-
served experimentally. We. find that the metallic
structure which occurs just above this threshold
is characterized by a nonzero order parameter,
i.e. , bond alternation persists into the metallic
state, stabilized by a pseudogap in the density of
states. At still higher impurity concentrations,
a further structural transformation occurs where
bond alternation becomes strongly suppressed
ap well.

As will become apparent, the semiconductor-
metal transition in this material is a collective
process involving all the g electrons in the sys-
tem, not merely the extrinsic carriers. Since
the number of added carriers required to seed
this process locally is quite low, we expect sta-
tistical fluctuations in the local dopant density
to be very significant. Consequently, most macro-
scopic experimental probes of the metallic charac-
ter of this system are expected to show a smooth
evolution through the "transition" as microscopic
quasi metallic regions flourish. This seems to
be in general accord with most of the experimental
information reported on this system to date.

In this paper %'e will px'oceed as follows. In
Sec. II we present the mechanics of the studies,
specifying the Hamiltonian we employ and the
numerical techniques which are used in these
calculations. The reader who is merely inter-
ested in the results of these calculations is ad-
vised to inspect the trial functions we describe
in Sec. IIC and then pass to Sec. III where we
discuss the results of 'calculations on ideal in-
commensurate structures. In Sec. IV we consider
the effects of the ionized impurities and the'ee-
dimensional coupling in this system and amend
our Hamiltonian to include these effects. In Sec.

V we examine the effects of these perturbations on
the ideal incommensurate structures, and in Sec.
VI we show the emergence of an insulator-metal
transition due to the rancom potential. In Sec.
VG we consider the role of statistical fluctuations
in the dopant concentration and discuss some
experimental implications of the model. A syn-
opsis is given in Sec. VIII.

II. THEORETKAI. FORMULATION

A. Hamiltonian

To study the coupling of the m electrons to lattice
displacements in the polyeee, me adopt an ideal-
ized HRDlllt011lan fox' a linear chain:

H= g, c,e, ,+H.c. + & E u„„-u„

+ Q{M/2)u'„- Q I'(u„„-u„).
Here c'„,annihilates a ~ electron of spin o' on
site n, u„ labels the longitudinal displacement
of the nth site from its position in an ideal un-
distorted metallic chain and M is the CH mass.
The {t,~} define a set of nearest-neighbor hopping
integrals which depend parametrically on the
displacement (u„):

t„., „=t,—a[(u, —u„)] . (2)

The final term in Eg. (1) is a repulsive energy,
linem in the atomic displacements, which is re-
quired to stabilize a finite chain against a tendency
to uniformly contract and thereby lower its elec-
tronic energy I'=va/4. eliminates this pathology.
We note that the model Hamiltonian (1) has been
used in several previous studies of defect energies
in polyene chains. '*

It is well known that an infinite chain described
by Eg. (1) with one electron per site is unstable
in the configuration (u„=0) and will relax into
a ground state described by

u„=a (-1)W, .
This distortion introduces a gap at the Ferini
level and the consequent gain in electronic energy
drivesthe relaxation. Asdiscussedinaef. 27, we
choose t, =3 eV, &=68.8 eV~, and a =8 eV/A,
which yields a 12-eV m-electron bandwidth, a 1.4-eV
Peierls gap, and an equilibrium distortion uo 0.0228
A. These parameters provide a reasonable, though
simplified, description of the optical threshold
observed, s' '" and bond alternation anticipated,
in infinite A"ens-polyacetylene.

Several cautions concerning Hamiltonian of Eq.
{1)are in order. First, while we will employ
Eg. (1) to study the static properties of the polyene,
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this Hamiltonian yields a description of the dy-
namics of the polyene which is deficient in three
respects (a} The zigzag planar nature of the
polyene requires that inplane vibrations of the
structure couple longitudinal and transverse mo-
tions of the atoms. 34 Such a possibility is excluded
if one studies the temporal evolution of the scalar
order parameter (u„). (b) The second term in Pg.
(1) defines a potential well for the atom displace-
ment which is perfectly harmonic. This is quite
justifiable for static studies since we are inter-
ested in the value of the total elastic energy U

at some fixed configuration (u„). The fundamental
quantities entering a lattice-dynamics study are,
on the contrary, the second derivatives of U in
(uj.. Thus, we may well expect that a harmonic
form (1) while giving an acceptable description
of the magnitude of U(u„f, will poorly describe
the curvature of this function. Indeed lattice-
dynamics treatments of polyene chains" "prin-
cipally attribute the difference in single-bond
and double-bond stretching frequencies to the
anharmonic character of U, ignored in Eg. (1).
(c) The H atoms are assumed to move adiabatically
with the C sites. Again this is sensible for a
static Hamiltonian but not for lattice dynamics
where it is well established that H bending mo-
tions hybridize with C stretching motions in the
polyene. ""

The second principal difficulty with the Hamil-
tonian (1}is the approximate treatment of even
the electronic contribution to the total energy.
We take the electronic energy as a sum over
the filled one-electron eigenvalues obtained from
the first term in (1). Since the (t,.&) implicitly
include contributions from the electron-electron
interaction this double counts the electron-elec-
tron contribution to the polyene energy. The em-
pirical choice of the remaining terms in (1) cor-
rects ~ for this error in the half-filled-band
limit. However, for deviations from the half-
filled band we ignore corrections to these effec-
tive lattice-energy terms due to changes in band
filling. In view of this assumption ind the approxi-

I

mate nature of the electronic term in (1) one ex-
pects the following results to be of only semi-
qualitative validity. These simplifying assump-
tions are ultimately useful as they allow us to
compare the electronic spectra and stability of
a large number of complicated structural config-
urations involving many atoms.

ti= Q6 c c +(t „c„c„+i+H.c.),
and introduce the resolvent operator G(a),

G(e) =(eI- h) '.
The density of states, n(&), is then

n(e) =—Im TrG(e)=-2

(4)

(5)

(6)

so that evaluation of the diagonal terms in (5)
allows a straightforward integration of the elec-
tronic energy of the system. Note that Eg. (5)
defines a coupled set of linear equations for G, &

(~):

(G,~(() =5,~+(,G,~(()+ Q t, ,G,~(() .

Iterative elimination of the off-diagonal terms
in (7) shows that we may expand the diagonal
Green's function at site i:

B. Numerical methods

In the following calculations we will restrict
our attention to long finite polyene chains. The
chosen chain length is 256 atoms which is long
enough to provide results which are represen-
tative of an infinite polyene chain and short enough
to keep the evaluation of the electronic spectrum
tractable. Direct diagonalization of the Hamil-
tonian is an inefficient procedure for eigenanalysis
of a system of this size and we proceed with a
continued-fraction expansi, on"' ' for the diagonal
Green's function for this system, which exploits
the simple connectivity of the linear chain.

First we suppress the spin index and generalize
the electronic Hamiltonian of (1) to include diag-
onal terms,

Bi„.(&) =

I ti, i-iI
(6)

E —E, j-1

Thus the diagonal terms in (5) are obtained in
a straightforward manner by a finite iterated
sequence of divisions and additions. A power-

series expansion of the right-hand side of (8)
yields an infinite sequence of terms each of which
may be interpreted as an independent real-space
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excursion on the chain which starts and stops
on site i. Though G;~(&) is singular at each eigen-
value of the structure, the problem is remedied
by displacing the poles slightly from the real axis
(i.e., & -e+ H), which induces a Lorentzian
broadening of the spectrum, n(e). This Lorent-
zian broadening may make identification of true
gaps in the spectrum difficult and more impor-
tantly makes the electronic contribution to the
total energy logarithmically divergent. " Both
of these difficulties are circumvented by decon-
volution of the Lorentzian and reconvolution of
a Gaussian line shape into the resultant spectrum.
Though the density of states thus obtained never
truly vanishes, we may in practice identify a gap
as a region in which the density of states does
not exceed a threshold value. We take as this
value 0.005 states/eVatom which, though ar-
bitrary, will be seen to accurately determine
the presence of gaps in the following spectra.

Having determined the electronic spectrum, we
calculate the free energy, 4'

F = Q v, —ln(1+e ~"» " ')/P,

whe~e 0 =1/AeT, the sum is taken over all the one-
electron eigenstates and p is determined by the
requirement of particle conservation for m elec-
trons in the system at finite temperatures,

Z e~ "» " '+ 1
'

We present .calculations for k~T =10 meV and
note that even up to room temperature for most
structures we will consider (9) is well approxi
mated by a simple sum over the filled states.
Finally, the evaluation of the remaining static
terms in (1) is straightforward given a set of
lattice coordinates (u„}.

C. Trial functions

In principle we should now proceed by seeking
the set (u„j which minimize the free energy as
calculated by the methods outlined in the pre-
vious section. In practice this requires the mini-
mization of a complicated nonlinear function in
a space of 256 dimensions, which is clearly an
intractable task. We seek instead to minimize
the energy in a restricted subspace of lattice
displacements in which each solution is speci.-.

fied by one or two trial parameters. We define
such a trial function as follows. We consider
any lattice distortion to consist of a spatial modu-
lation of the bond alternation a given by Eg. (3),
z.e.,

u„= (-1)"u,(x) .

We know'"" that for band filling deviating from
the half-filled band by a single carrier', the modu-
lation (11) takes the form

«,(«}=«,t«««( } '), (12)

while for deviation far from the half-filled band,
u„should describe a periodic sinusoidal lattice
distortion given by

u, (x) =u, sin(5qx) (13)

with 5q = v5v/a, 5v denoting the excess carrier
concentration per site and a denoting the nearest-
neighbor separation on the chain. A continuous
function which conveniently bridges these two
limits is the elliptical sine, ~'

u(x) =u, sn(gx+ q; m), (14)

in which case it it clear that we require m =0
(i.e., a sinusoidal modulation) in Eg. (14). Thus
the prescription for the definition of the modu-
lus of sn(fx; m) in the trial function is to take
the solution to (10) for 5v (5v» and m =0 for
5v) 5v~. The wave vector g of the function is
further specified by requiring the elliptical sine
to exhaust a half period in the interval a/5v,

g(m) =—[2K(m)] .

This completes the specification of the trial sol-
ution for a uniformly incommensurate structure,
which we will discuss further in Sec. IV. Only
one free parameter specifies the trial solution,
the amplitude u, . This is variationally deter-
mined by minimizing the free energy in the space
described by the trial solution (14).

We will also be concerned with the effects of
disorder on a modulation of the bond alternation
of the form (11). This disorder with which we

with a period f =4K(m) where K is the complete
elliptical integral of the first kind. The character
of the function is defined by the modulus m (0 ( m

(1). For m =1 u(x) describes a periodic array
of solitons (i.e., tanh-like solutions) and as m
decreases from 1 the sn rapidly becomes sinu-
soidal in character. Thus the magnitude of m

becomes significant only when m approaches 1.
In this limit we can adopt the continuum results
of Rice and Timonen4' which fixes the modulus
of m to the excess carrier density 6v:

4K(m)[2(1+ m)]'~'= 2a/5vlo, (15)

where 4IO is a full soliton width which is roughly
10a. Equation (15) has no solution for 5v past
a critical concentration 6v* given by

5v*=a/2vf&»
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electrons. We ignore the presence of the impurity
atoms and thus consider the trial solutions de-
scribed in Sec. II C with P =1 a,nd u, taken as
a variational parameter. We refer to such struc-
tures as ideally incommensurate. This investi-
gation amounts to an assessment of the strength
of the Peierls instability in (CH) as we proceed
away from the half-filled band. The one-dimen-
sional system must distort for arbitrary band
filling opening a gap separating the highest filled
and lowest empty one-electron levels; here we
consider the magnitude of the distortion and the
size of the gap one should expect in such a situa-
tion.

In Fig. 2 we show densities of states obtained
in the ground-state configuration for a variety
of polyenes doped to the concentrations shown in
the insets. There is a striking regularity in
these spectra. At low concentrations we obtain
a narrow band which is associated with a lattice
of isolated solitons, i.e., kinks in the amplitude
of the bond alternation as given by Eg. (14) with
m ~ i. The Fermi energy for acceptor doping
is given by the large vertical bar. In the midgap
band the dopant induced holes are paired with
an equal number of "holes" from previously
umperturbed conduction band. The ground state
is thus always diamagnetic. The threshold for
single particle excitations is the energy from
the valence-band maximum to this midgap defect
band, i.e., half the original bandgap or 0.7 eV.

As one proceeds to higher dopant concentrations
we observe that this midgap "band" simply grows,
always accommodating the excess dopant induced
charge on the polyene with an equal number of
empty states from the original conduction band.
As required by Peierls theorem the Fermi energy
always falls in a gap, and noting that the elec-
tronic spectrum in Eq. (1) must exhibit symmetry
about the level & =0, a companion gap is always
obtained in the manifold of empty levels above

The midgap band thus defined represents
a "condensate band, " i.e., a frequency regime
in which added charge and intrinsic charge on the
polyene condense and separate from the valence
and conduction continua. Evidently, the system
elects to undergo a distortion with maximum
economy as the one-dimensional spectrum is
completely unaffected except for the emergence
of this gap at the Fermi level (and its companion
gap in the conduction band).

As one proceeds far from the half-filled-band
limit, the resulting spectra resemble the spectra
one would anticipate from the usual treatment
of the incommensurate charge density wave in
a one dimensional system. "' That is, states
at k~ and -k~ are strongly mixed by perturbing
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FlG. 2. Densities of states for m electrons in (CH)„
in uniformly incommensurate structures for the doping
concentrations listed in insets. The vertical line
marks the Fermi level in each configuration.

terms in the Hamiltonian which result from a
lattice distortion peaked at wave vector q =2k~,
and a gap is opened in the spectrum of one-elec-
tron eigenstates. Clearly this treatment breaks
down in the limit that 2k~ approaches n/a. Close
to the half-filled bands there is strong interference
between the mixing of states at k~ and -k~ and
those at (w/a- k~) and (-v/a+ k~), the latter coup-
ling to the phonon distortion at 2k~ through an
umklapp process in the field of the underlying
lattice potential. In this regime the lattice dis-
tortion is poorly described by a single Fourier
component and the modulus of the trial function
(14) closely approaches unity. The tanh-like
solution to (14) is then readily understood as
the self-consistent response of the lattice in the
presence of a strong modulation of the responding
charge density at the higher harmonics of a single
Fourier component of the lattice deformation
potential. " The critical concentration at which
such mixing becomes significant is defined by
the size of the dimensionless expansion para-
meter

~
a/herby~ where 2& is the Peierls gap

for the half-filled band, v~ is the Fermi velocity
in the metallic (undistorted) state and 6q = v5v/a,
6v denoting the excess charge per atom on the
chain. When the parameter is of order unity the
electron density will be strongly perturbed at
the odd harmonics of 5q, which in turn induces
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a lattice distortion at these higher wave vectors. ~'

For the present model for (CH), this occurs for
6n below a critical concentration 6v, where 6v,
-0.04.

In Fig. 3 we examine the behavior of the modu-
lated m-electron charge density as &v passes
through this threshold. All the plots exhibit a
rapid oscillation with wavelength 2a; however,
we are interested in the long-wavelength envelope
which modulates this oscillation. For (.=0.015,
well below the critical concentration, the excess
charge is mell localized on the nodes which occur
in u(x). As c progresses past the threshold the
charge is seen to begin to delocalize on the poly-
ene. Finally for (:=O.j.09, well above the thresh-
old concentration, the envelope has a simple sinu-
soidal form, and an average over the rapid os-
cillations shows that charge is uniformly distri-
buted on the chain. Clearly the effect of the
higher harmonics below ~v, is to localize charge
to isolated defects on the chain, thus allowing
recovery of regions of uniform commensurate
bond alternation. Note that for 6v& 6v, the kinks
thus obtained interact only weakly and thus the

m-electron spectrum of the system would be in-
sensitive to translations of these defects as might
occur in the pinning potential of an ionized im-
purity, for instance. For 5v» 6v, the spectra
will be strongly perturbed by such periodicity
breaking phase distortions. This observation
provides the basis for our discussion of the effects
of disorder due to impurities in Sec. V.

In Fig. 4 we examine the dependence of the order
parameter uo and the Peierls gap E~ on the excess
m-electron density. Again the critical concentxa-
tion 6v, provides a useful benchmark for inter-
preting these results. For (-"&6v, the localization
of the excess charge to kinks in the bond alter-
nation on the polymer leaves large regions which
are unaffected by the excess carriers. Hence
the order parameter uo is largely determined by
these unperturbed regions and recovers to its
half-filled band value. For e& 6v the full chain
is uniformly distorted and the order parameter
decreases from this half-filled-band value. We
obtain a minimum value uo =0.01 A just below
(."-0.10 and thereafter uo increases again as (:
approaches the next concentration which will be
highly commensurate with the underlying lattice.
At such highly commensurate densities the m-

electron gas will be especially susceptible to
static modulations of the charge density and hence
will support larger values of uo.

After addition of the first carrier to the polyene,
E~ drops to O.V eV, half the value for the neutral
chain, and smoothly tracks the order parameter
uo thereafter. Note that we do not obtain a pxe-
cipitous drop in the gap as a function of increasing
dopant concentx ation. Over the concentration
range in which the insulator-metal transition
is experimentally observed, E~ always exceeds
0.5 eV and even for dopant concentrations up to
14 at. % the gap is of order 0.25 eV. Noting that
the parameters in our model provide the smallest
reasonable gap for the neutral (CH)„chain, we
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FIG. 3. Distribution of the excess charge density in a
(CH)„chain in the uniformly incommensurate structures
obtained at the doping concentrations of 1.6, 5.5, and
10.S at. %.

FIG. 4. Peierls gap E~ and order parameter uo as
functions of dopant concentration for the ideal incom-
censurate structures.
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expect that these energies are lower bounds for the
Peierls gaps expected at these dopant levels.

Thus the Peierls instability in (CH)„ is a very
formidable obstacle to metallic behavior even
at very high dopant levels. (We note in passing
that this simple model is not inconsistent, in
principle, with the specific observation of en-
hanced conductivities in samples below 5 at. %
impurity concentration, as these incommensurate
structures conduct via a sliding mode mecha-
nism." However, the Peierls ground state is
incompatible with the preponderence of experi-
mental data '4' which indicate the existence
of a finite density of states at the Fexmi level
in the "metallic" state. } Having noted that the
ideal doped system exhibits a rather strong ten-
dency to seek an insulating ground state, we con-
sider, in the next section, the nonideal character-
istics of the real system which are particularly
likely to suppress this tendency.

IV. DISORDER AND THREE DIMENSIONALITY

The treatment of Sec. DI focused, on the response
of the polyene to excess charge in the r manifold
while ignoring the effect of the ionized dopant
sites which are the source of this charge. In
the following we consider the ionized dopants
to reside at random sites adjacent to the chains
to which they have donated charge. In such a
configuration we conceive of two important pos-
sible perturbations introduced by the dopant.

First, the dopant may have chemically attacked
the polyene. '0 That is, one may consider the
charge transfer to result from the foxmation of
a bond between the dopant and a polyene ~ orbital
which has a large ionic character. %'8 may de-
scribe such a bond a simple 2 && 2 linear com-
bination of atomic orbitals model. %8 define
two basis orbitals pc and pa which denote or-
thogonal functions localized on the carbon P or-
bital and the singly occupied dopant level, re-
spectively. The diagonal Hamiltonian matrix
elements in these states are &c and ea, respect-
ively, whose difference is expected to be large.
For definiteness we consider the case of acceptor
doping where &~«&c. In the presence of a mixing
term Vthe new eigenstates at the site are

(2o)

with eigenvalue s

The lower filled state describes charge transfer
to a bonding level primarily localized on the do-

pant, the upper antibonding level is primarily
localized on the polyene. Mixing with othex states
on the polyene occurs primarily thxough the upper
antibonding level; hence we ignore the bonding
state and redefine an effective m-electron Hamil-
tonian in which the diagonal matrix elements on
such bonded sites are displaced by V =& -&c.
This introduces a random diagonal potential in
the Hamiltonian of Eg. (l) and depending on the
strength V we expect distortions of the lattice
configuration discussed in Sec. IH to result.
We refer to this model as the covalent-bond
model.

A second important possible consequence of the
proximity of an ionized dopant molecule, which
differs in spirit from the covalent bond model,
but induces a similar effect, is simply a pinning
potential on the chain due to the screened Coulomb
interaction with ~ electrons on the polyene. This
represents a long-range analog of the effect de-
scribed by the covalent-bond model. One pro-
ceeds in principle to screen self-consistently
the l/0' potentials induced on the chain by the
dopants. In the following we approximate this
screened potentia, l by a static screening of the
ion potentials, defining a diagonal potential for
the nth w orbital on the chain:

with e =0.6 eV, d = 2 A, x„denotes the location
of the nth ~ orbital on the chain and the sum is
over sites adjacent to impurity positions. This
effect also induces a random diagonal potential
on the chain which is similarly expected to dis-
order the response of the underlying lattice. We
refer to this model as the Coulomb-coupling
model. In both calculations on the cova, lent bond
model and the Coulonlb-coupling model the im-
purity sites are selected at random until the
chain is doped to the desired density.

Finally we recall that the real system is only
quasi-one-dimensional and we must ultimately
be concerned with the presence of a three-dimen-
sional network of weakly interacting chains. To
expolit the efficiency of the numerical techniques
described in Sec. II 8 we model this 30 network
by a finite Cayley tree~' with anisotropic inter-
actions. The Cayley tree is in fact an infinite-
dimensional network, but for the present appli-
cation it is best described as a mathematical
lattice which contains no closed rings, so that
any two points in the lattice are linked by only
one path of bonds. In such a lattice one may
straightforwardly generalize the continued-frac-
tion expansion (8) to obtain the diagonal Green's
function at any site in the network. In the pre-
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sent model, at each site in the lattice we couple
strongly to two nearest-neighbor sites (represen-
ting nearest neighbors on the same chain) and
weakly to & nearest neighbors (which represent
neighbors on adjacent chains). We take z = 5
(representing close packing in the two dimensions
transverse to the chain axis") and adjust the
interchain overlap integral to provide an inter-
chain bandwidth of 0.2 to 0.3 eV near the Peierls
edges. ' The strong nearest-neighbor interaction
integrals are parametrized in the form -of Eq.
(3). The treelike network, thus constructed,
ignores ring-like interaction paths which are
introduced into the system by interchain coupling.
However, we note that the only effect of the in-
creased dimensionality is to provide a slight
shift of the band edges of the 1D spectra and
thus we expect only a slight dependence of this
shift on the dtails of the interchain Hamiltonian.

In our 3D calculations which include a random
impurity potential, constructed as described
earlier in this section, each one-dimensional
limb of the multidimensional network is
doped to an identical density, and the impurity
distribution on each limb is given by a cyclic
permutation of the impurity distribution on the
other lixnbs. This prevents charge transfer be-
tween such 1D limbs and allows us to consider
a trial function of the form (14) with a common
pinning parameter P for all the chains. The dia-
gonal Green's function, written in the form (8),
is then summed over the centermost 1D limb
in this multidimensional network and the free
energy is minimized with respect to the vari-
ational parameters u~ and P.

We observe lastly that modelling the three-di-
mensional network by a Cayley tree in this manner
provides an attractive alternative to inclusion
of a lifetime broadening of the one-dimensional
spectra due to phenomenological 1D mean free
path (or correlation length) in the presence of
a 3D potential. ' '" In the former approach band
edges are shifted but remain well defined (as
one expects in the true system) whereas in the
latter approach the long tails induced by the
Lorentzian make identification of true band edges
difficult.
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FIG. 5. Densities of states for x electrons in (CH)„
with 5.5 at. % acceptor doping: (a) ideal incommensurate
structure, (b) impurity potential treated in the covalent-
bond model (c) impurity potential treated in the Coul-
omb-coupling model, and (d) impurity potential treated
in the Coulomb-coupling model and 3D interactions in-
cluded. The vertical bar gives the Fermi energy in
each configuration.

V. DISORDERING OF THE INCOMMENSURATE
CHARGE DENSITY %AVE

In Fig. 5 we examine the effects of the disorder-
ing influences outlined in the preceding section on
the electronic spectra calculated at a 5.5 at. %
concentration of acceptors. The top panel (a) is
for reference and shows the spectrum obtained
for the ideally incommensurate structure which

we calculate ignoring the impurity potential. In
panel (b) we show results obtained by treating the
impurity potential in the chemical bond model
with v=1 eV. At this interaction strength the
equilibrium solution occurs at P=0; i.e. , the
charge density wave is optimally pinned to the im-
purity sites. The diagonal I andom potential in-
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troduced in this model has the effect of introduc-
ing penetrable barriers ori the chain which thus
tends to break our very long chain into rather
short finite segments. This in turn introduces
the scatter in the eigenvalue spectrum which is
seen in Fig. 5(b). The midgap condensate band
is still prominent, though it is broadened slightly
by the random potential. This effect and the
broadening of the valence band edge reduce the

gap from its uniformly incommensurate value of
-0.6 eV to just below 0.4 eV.

Generally similar results are obtained for the
Coulomb-coupling model shown in Fig. 5(c).
Again the equilibrium solution has the charge den-
sity wave optimally pinned with P=0. The effects
of the random potential on the condensate are
more pronounced in this model; however, this
feature is still prominently separated from the
valence and conduction continua. The gap between
the highest filled and lowest empty levels is fur-
ther suppressed to -0.3 eV in this model.

Finally Fig. 5(d) shows the results treating the
impurity potential in the Coulomb-coupling model
and including 3D interactions with other chains in
the solid. Here again the lattice distortion is
commensurate with the impurity potential with
P= 0. Unlike the results in 5(b) and 5(c) the gap
between the valence band and condensate has
closed, with the Fermi energy located at the level
given by the dashed line. Nonetheless spectral
features due to the condensate band are still quite
evident in this spectrum. In fact the amplitude
of the order parameter u„recovers to 75/0 of its
half-filled band value at this concentration. In
this structure the order parameter is thus stabi-
lized by a pseudogap rather than a true gap in the
density of states.

There are two important points which are illus-
trated by this survey at a 5. 5 at. /z impurity con-
centration. First, we see that reasonable esti-
mates of the random potential due to impurities
indicate that the incommensurate charge-density-
wave solutions discussed in Sec. III are likely to
be strongly pinned at this concentration. While
one expects the CDW to become more resilient at
higher concentrations, we note that for all. con-
centrations we have studied in which the order
parameter go is stabilized at a non-negligible
value, an equilibrium P -0.25 is obtained. Thus
for all concentrations at which we may sensibly
speak of a charge density wave in the system,
the lattice distortion is expected to be strongly
pinned by impurity sites. Second, we note that
the concentration treated in this example is very
close to the observed insulator-metal transition
density in polyacetylene. While we will deal with
this transition in more quantitative detail in the

next section we presently remark on the relative
contributions of the strictly one-dimensional dis-
order and three-dimensional coupling to the sup-
pression of insulating behavior at c =0.055.
From the trends displayed in Fig. 5 we conclude
that 1D disorder and 3D coupling are of roughly
equal importance in suppressing the 0.6-eV in-
commensurate gap and thus producing a metallic
state by a 5. 5 at /z impurity concentration. A re-
duction of the gap by several tenths of a volt can
be reasonably attributed to either effect separate-
ly, so that the combined effect is likely to close
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FIG. 6. Densities of states for m electrons in (CH)„,
doped with acceptors to the concentrations shown in
the insets, including an impurity potential treated in
the Coulomb-coupling model. The Fermi energy in each
configuration is given by the vertical bar.
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the ideal incommensurate gap at this concentra-
tion. Note that in spite of the rather severe spec-
tral smearing, the Peierls instability remains
very strong in this system as evidenced by the
deep pseudogap and large amplitude of the order
parameter which persist in Fig. 5(d).

VI. THE INSULATOR-METAL TRANSITION

In this section we examine the behavior of the
density of states and order parameter obtained in
both one-dimensional and three-dimensional dis-
ordered models as me proceed thxough the in-
sulator-metal transition. We consider first the
one-dimensional models. The results for the co-
valent-bond model and the Coulomb-coupling
model are similar, ' in the following we restrict
our attention to results employing the Coulomb-
coupling model. In Fig. 6 we show spectra ob-
tained for equilibrium configurations at three eon-
eentrations as me proceed through an insulator-
metal transition. The top panel is for c =0.055
[identical to Fig. 5(c)j in which a gap of 0.8 eV
is obtained as shown and as described earlier.
At c=0.109, shown in the second panel, me have
just crossed the 1D transition density. The sys-
tern is characterized by a finite density of states
at the Fermi energy but a pseudogap or deep de-
pxession in the density of states persits. Finally
at very high concentrations, e.g. , c =0.141 in
panel (c), the amplitude of the order parameter is
strongly suppressed as mell and the pseudogap
disappears from the density of states.

The evolution of the metallic character and
oxder parameter of this system through this tran-
sition are examined in Fig. V. A gap persists in
the spectrum up to a eoneentration near c =0.08.
Above c =0.10 the Fermi level state density in-
creases rapidly, finally saturating at a one-di-
mensional midband value at c =0.141. The am-
plitude of the order parameter no remains close
to its half-filled band value up to c =0.05. There-
after, uo is gradually suppressed by the increased
disorder in the system. Note that near the metal-
lic threshold (c =0.10). uo is quite sizable and is
suppressed only slightly from its ideal incommen-
surate value (see Fig. 4). Thus bond alternation
pexsists into the metallic state which occurs just
above this critical concentration. For still higher
concentrations bond alternation is severely de-
pressed in the presence of increased disorder.
In these calculations, uo does not vanish but is
negligibly small for c ~ 0.14. The concentration
range over which there is no gap, but bond alter-
nation is stabilized by a pseudogap, is quite small
extending for 5c =0.04 above a threshold near
c=0.08. (This regime in which a gapless Peierls
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FIG. 7. Fermi level density of states, N(e), and
order parameter I 0 for the one-dimensional disordered
models for doped (CH), as a function of dopant concen-
tration e.

distortion is obtained appears Quite similar to
the gapless stabilization of a condensate knomn in
dirty superconductors. )

The picture which emerges from the three-di-
mensional models is qualitatively similar. Elec-
tronic spectra for three representative equilib-
rium configurations near the insulator-metal
transition are given in Fig. 8. For c =0.031,
just above the transition, a very deep pseudogap
is obtained, at the center of mhich is positioned
the Fermi level. A smeared remnant of the con-
densate band is evident in this spectrum above
the Fermi level. As the dopant concentx'ation in-
creases me obtain a gradual filling in of this
pseudogap mhich is seen to track the Fermi en-
ergy through the p bands. For c=0.078 the
pseudogap is evident as a slight depression in the
density of states, ' by & =0.109 it is entirely filled
in.

The behavior of the Fermi level state density
and the order parameter as a function of dopant
concentration in the 3D models are investigated
in Fig. 9. A gap occurs at very lom concentra-
tion, finally being closed at an impurity concen-
tration near 2 at. /q. Thereafter the density of
state at the Fermi energy increases smoothly,
eventually saturating at a concentration near 10
at. /0. As expected, the order parameter remains
close to its half-filled band value, beginning a
smooth descent near c =0.03, and finally becom-
ing severely depressed above c =0.10. As in the
one-dimensional calculations the metallic state
just above the transition is characterized by a
nonzero-order parameter. The bond alternation
found in this regime is again stabilized by a
pseudogap in the electronic spectrum, and indica-
tion of the underlying strength of the Peierls dis-
tortion in this system. The severe depression of
No below 0.005 A near c =0.10 may be interpreted
as a further structural transformation to a
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FIG. 8. Densities ef states for m electrons in a multi-
dimensional model for {CH)„, doped with acceptors to
the concentrations shown in the insets, including dis-
order in the Coulomb-coupling model. The Fermi ener-
gy in each configuration is given by the vertical bar.

(nearly) uniform bond length metallic state.
The three-dimensional disordered models thus

studied differ from the one-dimensional disor-
dered models in two important ways. First the
one-dimensional transition density (-10%%u&) is sup-
pressed to near 3/q by three-dimensional coupling,
(nearly where it is observed experimentally). Sec-
ond, , the concentration range over which the order pa-
rameter persists into the metallic state is sig-
nificantly larger in three dimensions than in one
dimension. Evidently the important consequences
of the three-dimensionality of this system are
thus a suppression of the transition density and a

FIG. 9. Fermi level density of states, N(e), and
order parameter u 0 for the multi. dimensional disordered
models for doped (CH)„as a function of dopant concen-
tration c.

smearing of this transition as a function of con-
centration.

From these calculations we conclude that the
insulator-metal transition in polyacetylene in-
volves the following elements. First, in the con-
centration range over which the transition is ex-
perimentally observed, simply the addition of
charge to the polyene is responsible for a reduc-
tion of the gap by about a factor of 3. This re-
duction is an intrinsic Peierls effect and occurs
as the polyene spatially modulates the amplitude
of its bond alternation with a, wavelength incom-
mensurate with the underlying lattice. Second,
the presence of ionized dopants near the chain
introduces a random diagonal potential in the
Hamiltonian describing the m electrons on the
polyene. In response to this random diagonal
perturbation the ideal incommensurate wave is
severely distorted on the polyene, strongly pre-
ferring a structure which is commensurate with
the i

maturity

potential. This introduces strong
off-diagonal disorder on th'e polyene as well. The
combined effects of these two disordering influ-
ences are to broaden band edges, and these one-
dimensional effects will themselves lead to an
insulator-metal transition near a, 10 at. % dopant
concentration. Third, a slight broadening due to
interchain interactions contributes to this closing
of the gap and is reasonably expected to suppress
this transition density to -3% where it is seen ex-
perimentally. Fourth, in either a one-dimen-
sional or three-dimensional theory bond alterna-
tion persists into the metallic state. For very
high concentrations past this initial transition we

expect a further structural transformation in
which bond alternation is itself suppressed to
negligible values. Fifth, the electronic states
which occur at the Fermi energy in the strongly
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disordered structures just above the insulator-
metal transition are expected to be localized.

VII. FLUCTUATIONS AND EXPERIMENTAL
IMPLICATIONS

In the preceding we have focused on the struc-
tural response of a finite polyene (N= 256 atoms)
to the presence of a random distribution of a
specified number of dopant atoms. We note how-
ever that the electronic spectrum of a homoge-
neously randomly doped macroscopic sample is
not correctly given by these results on a single
finite sample doped to an equivalent density. (By
homogeneous doping, we mean that the mean den-
sity averaged over a macroscopic volume does
not depend on the region of the sample over which
the average is taken. ) In the true system, doped
to a concentration c, we expect that in an N-atom
sample selected at random there is always a non-
zero probability P(n;N) that n impurity sites will
be found where

t
~(+.N)

'
&I(1 c)N -n (22)

Thus when considering any macroscopic experi-
mentally determined parameter y in this system
we should adopt a statistical point of view in which
we weight the result of a measurement at any
density c' by the probability of its occurrence at
an average density c. That is,

(23)

Clearly we require N to be large enough that we
can sensibly speak of the measurement y in this
sample population. For the transition under con-
sideration in polyacetylene N is evidently man-
ageably small. For N= 256 atoms we have identi-
fied, to a resolution k~T at room temperature,
a continuum of electronic states at the Fermi
level, and the concomitant metallic response of
the population. This is so despite the fact that
such a test population may contain only 10-20
impurity sites at the semiconductor-metal tran-
sition. Thus near the transition dopant density
we certainly expect fluctuations in the local dopant
density to significantly affect the result of any
macroscopic measurement on the sample. Phy-
sically this occurs because the metallic structure
involves a response of all the w electrons in the
polyene, but is locally driven by the presence of
a relatively small number of added carriers.
This behavior is in marked contrast to that of an
impurity-band insulator-metal transition in which

N is properly chosen to include a large number
of dopgnt sites, n, hence fluctuations on the order
I/Wn are strongly suppressed.

Adopting this point of view we have calculated
an ensemble average of the Fermi level density
of states for both the one-dimensional and three-
dimensional models we have discussed in Sec. VI
as a function of average impurity concentration c.
The results are given in Fig. 10. In both one and
three dimensions the density of states at the Fer-
mi level exhibits a smooth onset, gradually in-
creasing and saturating at 0.11 states/eV atom.
The presence of a finite density of states at the
Fermi level, even at negligibly small impurity
concentrations is due to the statistical chance of
finding a locally dense quasimetallic region at any
macroscopic concentration c. Note that in this
theory, the occurrence of such quasimetallic
regions is a purely statistical event, and does not
require a correlated aggregation of impurities
forming macroscopic metallic islands. (Such in-
homogeneous aggregation may occur in a real
system '"',' we emphasize, however, that such
correlated "island" growth is not required to ex-
plain quasimetallic behavior at very low concen-
trations. ) The probability of the occurrence of
such regions below c =0.03 in our one-dimension-
al theory is indeed infinitesimally small (the
local concentration must exceed 0.08 for signifi-
cant metallic behavior). However in three di-
mensions the intrinsic "transition" dopant density
is sufficiently small that one expects a measurable
quasimetallic volume even for c =0.01. The satu-
ration of the density of states at 0.11 states/
eV atom in these calculations marks the onset of
the high concentration regime in which even bond
alternation is strongly suppressed in the presence
of strong disorder due to impurities in the sample.

Finally we should comment on the relevance of
these theoretical observations to several experi-
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FIG. 10. Ensemble averaged Fermi level densities of
states, N(e), for (a) one-dimensional and (b) three-di-
mensional models as a function of macroscopic dopant
concentration, c.
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mental probes of the metallic character of doped
samples. From the arguments just given we
would expect a direct probe of the Fermi level
state density, like the Pauli susceptibility, to
show a smooth turn on near 2-3 at. % dopant den-
sity, increasing smoothly and eventually saturat-
ing at a "metallic" value (-0.11 states/eV atom)
near c=0.09-0.10. Such behavior has been re-
ported by Epstein ef al. ' for 13-doped (CH)„and
similar results have been obtained with other
dopants as well. I3, which is known to aggregate,
may present a particularly pathological dopant to
interpret within a statistical theory. The reported
presence of a small nonzero Pauli susceptibility
for c ~ 0.01 (Ref. 49) is understandable in terms
of the inevitable local dopant density fluctuations
described above.

Next we consider the ultimate figure of merit
for assessing the metallicity of these samples,
namely their conductivities. We expect that due
to the reduced dimensionality and complicated
(and poorly understood) morphology of these sys-
tems, that a, reliable description of the dc con-
ductivity is an elusive goal. Nevertheless, we
proceed as follows. Note that the states we have
found at the Fermi energy are expected to be
localized due to disorder induced by the impuri-
ties; thus the intrinsic transport mechanism is
expected to be a hopping process. Let us assume
that this hopping at e~ is described by a simple
variable range hopping model. We can then use
the ensemble averaged Fermi level state density
to estimate the mean hopping distance and hence
the concentration dependence of the conductivity
at a fixed temperature. It is unclear whether a
one-dimensional or three-dimensional hopping
description is to be preferred in this context; re-
sults for both theories at T =300 K are given as
a function of dopant concentration in Fig. 11.' In
these calculations we assume a localization length
along the polymer axis of 50 bond lengths; the re-
sults are weakly sensitive to this choice and we
expect a value between 10 and 100 lattice spacings
to be realistic. The important result is that the
conductivity shows a sharp increase at concentra-
tions below 2 at. /o and rolls over to a saturation
value near 3-5 at. /o impurity concentration. The
conductivity below 2 at %is almo. st certainly due
to hopping between the quasimetallic regions we
have attributed to impurity density fluctuations.
At densities above 5 at. % we obtain hopping in a
dense spectrum of localized levels. The shoulder
on these curves may be estimated to occur at the
density at which the mean hopping distance is on
the order of the localization length at the Fermi
energy. Note that in this three-dimensional theory
this always occurs near or below c'=0.05 (while
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the Fermi level state density shows a smooth
transition through this region). Thus one need
not expect a simple correlation between the satu-
ration of the Pauli paramagnetic response and the
saturation of the conductivity in this system.
The absence of such a correlation is characteris-
tic of the currently available experimental data
on this system.

This discussion opens a number of intriguing,
unanswered questions. The estimated mobilities
in highly doped (CH)„are uncharacteristically
large for a system in which the transport is due
to hopping, for instance. A second and not unre-
lated question is how the characteristic electronic
localization length itself varies as a function of
concentration. We may expect that the localized
states are more delocalized at e=0.10 than
c =0.03. Finally the use of the variable-range
hopping models is poorly justified if the disorder
on the chain is correlated over the length of an
average hop, as quite probably occurs in this sys-
tem. A further speculation worth mentioning is
that some remnant of a collective transport mech-

FIG. 11. Conductivity at 300 K estimated from a var-
iable range hopping model based on our 3D electronic
structure for doped (CH)„: (a) assumes one-dimensional
variable range hopping and (b) assumes three-dimen-
sional variable range hopping. The localization length
along the chain is -50 bond lengths, o& is the saturation
value of 0.
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anism occurs in the doping regime ovex which
the distorted charge density wave survives the
d'sorder. Frequency-, temperature-, a d elec-
tric-field-dependent studies of the conductivity of
iodine-doped polyacetylene in the concentration
regime which encompasses the insulator-metal
txansition show that disorder plays a dominant
xole.4'

Finally the picture of a closing gap due to dls-
ox'der seems to be generally consistent with the
core level excitation spectroscopy reported by
Ritsko which shows a qualitative change of the
carbon E-edge absorption spectra in highly doped
(CH)„compared with core excitation spectra ob-
tained in pristine (CH)„. The characteristic in-
sulatorlike excitonic edge in pristine spectra is
found to be replaced by a rounded featureless
edge characteristic of metallic systems in doped
samples in these studies.

are given at the conclusion of Sec. VI. The fun-
damental picture to emerge from this study is
that polyacetylene at an arbitrary doping level
within 20'g& of the balf-filled band has a strong in-
trinsic tendency to seek an jnsllating state. The
metallic state occurs when this tendency finally
yields to the stronger influence of disorder in the
sample due to the added impurities. The per-
sistence of a pseudogap and bond alternation into
this metallic state are both evidence of the strong
underlying preference of (CH)„ for an insulating
ground state. The metallic state which occuxs at
the insulator-metal "transition" is chax acterized
by a finite density of /ocglized states at the Fermi
energy. At very high impurity concentrations
(+10%a) a metallic structure with nearly uniform
C-C bond lengths is anticipated. Finally, this
transition is not abrupt as it is particularly likely
to be smeared by inevitable fluctuations in local

~ dopant density.
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