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The nonorthogonal-tight-binding (NTB) method is applied to calculate the electronic-defect states in silicon which
are produced by intrinsic, extrinsic, and twin stacking faults (ISF, ESF, and TSF, respectively) along a {111 axis.
This NTB scheme, which utilizes a supercell geometry, includes s-p orbitals at each atomic site and contains two-
center energy-overlap parameters spanning three shells of neighbors. The NTB parameters are determined by an
accurate fit (rms error ~0.1 eV) to the bulk silicon band structure of Chelikowsky and Cohen. These NTB results are
also applied to calculate the stacking-fault energies y; neglecting relaxation effects, this calculation yields a value for
71sr Which is about twice the observed value and the relative values ¥ gz =% gsr~2¥ 15 It is shown that relaxation of
the perfect-crystal interlayer spacings near the fault planes reduce the corresponding y’s by about 50%, thereby
bringing the calculated and observed values for ¥4 into close agreement. The defect states produced by these three
types of stacking faults are all qualitatively similar. They include states which are located about 0.1 eV above the
valence-band maximum. However, contrary to a recent experimental study on an ESF, no fault states are found with

energies below the conduction-band mimimum.

I. INTRODUCTION

In recent years, there has been an increased
interest in the electronic structure of defect states
in homopolar tetrahedral semiconductors such as
silicon. The majority of these studies has con-
centrated on what can be described as bond-break-
ing defects. These include surfaces, vacancies,
and dislocations. There have been comparatively
fewer studies of defect states produced by stack-
ing faults. These correspond to errors in the per-
fect-crystal stacking sequence and, at least for
the lower-energy faults which are considered
here, they do not involve the breaking of nearest-
neighbor bonds. One therefore expects that the
energies, wave functions, and charge distributions
of such stacking-fault defect states would be only
mildly perturbed from those of a perfect crystal,
especially when compared to those produced by
the bond-breaking defects.

At present, there exist relatively few experi-
mental data on stacking-fault states in silicon.

A charge collection scanning-electron-microscopy
study by Kimerling et al.! on an extrinsic stacking
fault in n-type silicon has provided strong evidence
for the existence of defect states with energies
~0.1 eV below the conduction-band minimum.
Other studies?® have determined that the energy

of intrinsic stacking faults in silicon g~ 5158
erg/cm?,

Most theoretical studies®® of stacking faults in
silicon to date have been concerned with the cal-
culation of intrinsic stacking fault energies ¥ gp.
More recently, Weigel et al.® have determined the
fault energies of intrinsic, extrinsic, and twin
stacking faults (hereafter denoted ISF, ESF, and
TSF, respectively) using the extended Hiickel

theory (EHT). The only detailed study of one-
electron stacking-fault states in silicon has been
carried out by Louie’ for an ESF.

The purpose of the present investigation is to
determine the fault energies ¥. and the energy-dis-
persion curves E(ﬁ) for ISF, ESF, and TSF states
in (111) silicon. The calculations involve the non-
orthogonal-tight-binding (NTB) method® with s-p
orbitals at each silicon site and interactions ex-
tending over three shells of neighbors. The NTB
parameters for this study have been determined
by means of an accurate fit to the bulk empirical
nonlocal~-pseudopotential band structure of Cheli-
kowsky and Cohen® for silicon.

The calculations utilize a hexagonal “supercell”
geometry such that the stacking faults extend in-
definitely in the basal plane and repeat periodically
along the ¢ axis. The supercells for the ISF, ESF,
and TSF contain a total of 16, 20, and 20 atomic
layers, respectively.

Although most previous tight-binding fits to the
bulk silicon band structure!®*® provide an adequate
representation of the valence bands, only the
most recent treatments'® ! have succeeded in fitt-
ing the conduction bands as well. Using an NTB
approach similar to the present one, del Sole and
Hanke'® obtain a fit over a 22-eV energy range
with an rms error of 0.35 eV. Papaconstantopou-
los and Economou,'® assuming an orthonormal
basis, obtain a slightly more accurate tight-bind-
ing fit with an rms error of about 0.30 eV. By
comparison the present NTB model for silicon
reproduces the bulk band structure over a more
restricted energy range of 18 eV with an rms
error of about 0.1 eV.

The organization of this paper is as follows.
Section II contains a discussion of the stacking-
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fault geometry, a review of the NTB model, and a

summary of the stacking-fault energy calculations.

The results of this investigation are presented in
Sec. III. These include the NTB bulk silicon band
structure and density of states, the calculation of
stacking-fault energies, plots of the ISF, ESF,
and TSF dispersion curves, and a discussion of
relaxation effects.

II. DETAILS OF THE CALCULATION
A. Stacking-fault geometry

The perfect diamond lattice consists of an
infinite sequence of (111) atomic planes
...AA’'BB'CC'AA’BB’CC’. .. that are stacked in
proper registry along a (111) axis (see Fig. 1).
The repeated symbols AA’, etc., reflect the pres-
ence of two atoms in the primitive unit cell. The
atomic positions ¥, = gt} nt?2+ §F3 can be represent-
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FIG. 1. {a) Projection on a (111) plane of atomic
positions for AA’ (unshaded), BB’ (cross hatched), and
CC’ (shade i) type atoms. (b) Brillouin zone for the
hexagonal 1 ittice. Symmetry-related Brillouin-zone
segments for the ﬁu space group are indicated.

ed in terms of a hexagonal lattice with primitive
vectors

f=%a(v3i-7), §=df, T,=ck, 1)

where a=v2a,/2 and a, is the cubic lattice para-
meter. The separation between these adjacent
(111) planes is either V3a,/4 (AA’,BB’,CC’) or
v3a,/12 (A'B,B’C,C’A) so that for » double
layers, c=vV3na,/3. If one represents the perfect
diamond lattice in terms of this hexagonal coordi-
nate system, then the smallest nonprimitive unit
cell corresponds to n=3 and contains a total of
six atoms.

One can readily describe the geometry of the
ISF, ESF, and TSF as variations from this ideal
stacking sequence. For example, the ISF is ob-
tained by removing a pair of atomic planes (such
as AA’) from the ideal stacking sequence. On the
other hand, an ESF is produced if one inserts, for
example, a pair of BB’ atomic planes between the
CC' and AA’ planes. Finally, the TSF is produced
by imposing reflection symmetry through a plane
midway between a neighboring pair such as AA’,

For investigating the electronic structure of
these stacking faults, it is convenient to utilize a
supercell geometry such that the stacking fault
extends indefinitely in the basal plane and repeats
periodically along the hexagonal ¢ axis. This
technique avoids the introduction of surfaces,
whose effects would dominate and perhaps even
mask the more subtle electronic effects that are
due to stacking-fault defects. On the other hand,
it is necessary to make the supercell sufficiently
large in order to minimize the interaction between
neighboring stacking faults.

As a compromise between these requirements
and computational efficiency, we have chosen the
supercells for the ISF, ESF, and TSF so as to in-
clude 8, 10, and 10 double layers, respectively.
The space-group symmetries, lattice parameters,
and atomic positions are summarized in Table I.
For comparison, the corresponding results for a
9-double-layer perfect-crystal (PC) supercell
are also included. From the results of this table,
it is seen that the ISF is produced by removing
the BB’ pair (i=9,10) from the PC cell while the
ESF results from the insertion of the CC’ pair
({=9,10). In the case of the TSF, the supercell
geometry requires the introduction of two fault
planes between the pairs A’A’ (i -1, 20) and CC
({=10,11), As a result, the TSF planes are sep-
arated by only 5 double layers. The corresponding
separations in the case of the ISF and ESF are 8
and 10 double layers, respectively.

As noted in Table I, the space group for the PC
and TSF supercells is D§,, whereas the ISF and
ESF supercells have reduced symmetry corres-
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T_éBLE I. ~.Summary of space-group symmetry, lattice parameters, and atomic positions '1."
= (Ety+ty+ Etg) = (£, 1, &) for the perfect crystal (PC) and ISF, ESF, and TSF supercells, re-
spectively. ay=5.4307 A is the cubic lattice parameter for silicon.

PC(DE,) ISF (D3, ESF (D}, TSF (DY)

a V2ay/2 V2ay/2 VZay/2 V2a,/2

c 3vV3a, 8v3a /3 10v3ay/3 10v3a,/3
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T T 5 T N N R
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8 ©0,0,8) A 0,08 A’ (0,0,1 A’ G20 B
s ¢t B 45 c ¢.545 c G2 B’
0 ¢y B LD RS ol é.: 0 c
noo@LD o 00B 4 dEB B @LB
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130 00% A4 GRY B LB o LB s
14 0% A (LY B’ ¢.558 c’ 0,0,% A’
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wooeL® e ¢3® B &L c
18 @l o (N TS
19 én® c G.2.% B
20 .15 c’ ©0,0,3 A’

ponding to the D3, space group. As a result, the
energy bands E(E) for the ISF and ESF supercell
geometries have trigonal rather than full hexa-
gonal symmetry. This is illustrated in Fig. 1(b),
where the symmetry-related portions of the
Brillouin zone are indicated by cross hatching.
It is noted that full hexagonal symmetry is re-
stored in the limit where the number of double
layers n - and the Brillouin zone becomes two
dimensional.

Although the introduction of stacking faults does
not alter the nearest- and second-neighbor coor-
dination of the individual atoms from that of a per-
fect crystal, it does modify the number of third
neighbors. The manner in which this occurs is
illustrated in Fig. 2. Shown in Fig. 2(a) is a
“chair” -shaped six-membered ring which is char-
acteristic of the perfect diamond lattice. The in-
troduction of a stacking fault transforms some of

the chair-shaped rings near the fault plane to

the “boat” -shaped rings of Fig. 2(b). The posi-
tions of these boat-shaped rings with respect to
the fault plane is indicated by braces in Fig. 2(c)
for an ISF, ESF, and TSF, respectively. Thus, a
single boat-shaped ring results from a TSF,
whereas the ISF’s and ESF’s produce pairs of such
rings.

In particular, each atom in a perfect diamond
lattice has 4 nearest neighbors at a distance d,
=vV3a,/4, 12 second neighbors with d,=vV2a,/2,
and 12 third neighbors with d,=vV11a,/4. For
atoms at the ends of the boat-shaped rings, the
number of third neighbors is reduced by 3 and
these are replaced by a single neighbor at a dis-
tance dj=5v3a,/12. Since d} is only 2% greater
than d,, this effectively increases the number of
second neighbors from 12 to 13 for theite end
members of boat-shaped rings.
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(a) (b)

1SF ESF TSF
c c’ A’
¢’ A B
A A’ B’
FAULT A c _c
PLANE | 7777 py c
¢ 8 8’
A B8’ B
A c A’

(c)

FIG. 2. (a) Chair-shaped six-membered ring which is
characteristic of the perfect crystal. (b) Boat-shaped
ring that occurs near stacking-fault planes, (c) Braces
indicate position of boat-shaped rings with respect to
fault plane in ISF, ESF, and TSF, respectively.

In the presence of a stacking fault, the long-
range symmetry of the perfect diamond lattice is
lost and it is no longer necessary for the spacing
between adjacent atomic planes to retain their
ideal values, V3a,/4 and V3a,/12, respectively.
Relaxation effects (deviations from these ideal
separations) which are symmetric with respect
to the fault plane can change the lattice parameter
¢ without altering the space-group symmetry of
the ISF, ESF, and TSF supercells.

B. NTB model

The present NTB model contains s=p orbitals at
each atomic site and includes energy-overlap in-
teractions that extend over three shells of neigh-
bors. As described previously,® this NTB scheme
reduces the Slater-Koster?® energy integrals
Ea'B(F) to the two-center approximation and treats
these and the corresponding overlap integrals as
fitting parameters. If we denote the two-center

energy integrals for the ith neighbor by (11'm),
and the corresponding overlap integral by [II'm],,
then four energy and four overlap parameters
[(sso);, (spo);, (ppo);, (ppm);, etc.] are required for
each shell of neighbors. Adding the orbital ener-
gies E  and E,, this yields a total of 26 NTB pa-
rameters.

We have determined these 26 NTB parameters
for bulk silicon by means of a nonlinear least-
squares fit® to the empirical-nonlocal-pseudopo-
tential results of Chelikowsky and Cohen.® This
fit was carried out at twelve points in the Brillouin
zone. The band energies at these points were esti-
mated from the published E(K) curves. Since these
curves included only states with energies less than
6 eV above the valence-band maximum, the re-
maining states with higher energies were assigned
zero weight in the fitting procedure.

The resulting NTB parameters that have been
obtained from this procedure are listed in Table
II. The rms error for this fit is about 0.1 eV.
Clearly, this error is comparable to the uncer-
tainty with which individual energies can be ex-
tracted from the published energy-band curves.

As discussed in Sec. ITA, one effect of the in-
troduction of a stacking fault is to change the
third-neighbor coordination for atoms near the
fault plane. For these atoms, the fault eliminates
3 of the 12 third neighbors (d,= V1la,/4) and re-
places these with a single neighbor at a distance
dy=5V3a,/12 which is only 2% larger than the sec-
ond-neighbor distance d,. The corresponding two-
center NTB parameters at the distance dj have
been determined using a three-point Lagrange
interpolation of the NTB parameters at the dis-
tances d,-d;. They are listed in parentheses in
Table II.

C. Stacking-fault energies

Weigel ef al.® have applied the EHT to calculate
the fault energies and electron distributions of
ISF, ESF, and TSF using a slab geometry. They
apply the usual EHT ansatz that the total energy
of the system E, , is given by the sum of one-
electron energies E; weighted by the occupation
numbers n;. The fault energies v are then ob-
tained by subtracting E, , for the perfect crystal
from that of the fault structure and dividing by
the cross-sectional area of the unit cell, v3a2/2.

In their calculations, Weigel et al. have con-
sidered 12-layer slabs containing a PC stacking
sequence, ISF, ESF, and TSF, respectively. They
have averaged E‘(k') over the two-dimensional
Brillouin zone using six special points. One sig-
nificant disadvantage of the slab geometry is that
it introduces unwanted surface states in addition to
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TABLE II. NTB parameters for bulk silicon. The distances d; are in A and the energy
parameters are in eV. The values in parentheses are interpolated results for the stacking-

fault calculations, as described in the text.

Orbital energies
E =-8.5227 E,=-2.2827
Two-center energy parameters

Neighbor i d; (ss 0); (sp 0); (pp 0); (pp m);
1 2.352 -3.2766 3.2668 1.9548 -1.0335
2 3.840 —0.4515 0.7577 1.1798 -0.1535
2’ 3.919 (-0.3797) (0.6688) (1.0992) (—=0.1295)
3 4.503 -0.0955 0.1523 0.3826 -0.0232

Two-center overlap parameters

Neighbor i d; [ss ol; [sp oy [pp dl; [pp 1,
1 2.352 0.2705 —-0.3426 —0.3755 0.2614
2 3.840 0.0152 -0.0377 -0.1141 0.0140
2/ 3.919 (0.0104) (~0.0307) (—0.1036) (0.0092)
3 4.503 0.0021 —0.0077 —0.0368 —0.0001

the desired stacking-fault states. The presence
of surfaces in their calculation causes, for ex-
ample, their surface-layer atoms to contain five
rather than four valence electrons.

As is well known, the EHT ansatz is only an
approximation to the total energy since electron-
electron interaction energies are counted twice

and ion-ion interaction energies are omitted. The

EHT assumes that these extra terms cancel in the

subtraction process.
Chadi® has recently proposed a simplified
scheme for treating these additional terms. He

assumes that
E,=E +U, (2)

where E, is the electronic band-structure energy

Ey= 2 n (RE, (), 3)

ki

and U is the difference between the ion-ion and elec-
tron-electron interaction energies. The change
in total energy AE, , is given by

AE,,,=AE, + AU . (4)

Chadi approximates AU by a short-range force-
constant model of the form

AU = z:(Uxiu'F U.€3) , (5)
Y]

where U, and U, are constants and €, is the frac-
tional change in the bond length between nearest
neighbors 7 and j. The constant U, is chosen to
cancel the linear term in the variation of E,; with
volume at the equilibrium separation while U,
can be determined from the bulk modulus.

In evaluating U, and U,, we have determined

the distance dependence of the two-center NTB
parameters using three-point Lagrange interpola-
tion and the corresponding parameters at the
equilibrium distances d,~d,. This procedure
leads to the values U,;=8.9 eV and U,=36.2 eV,
respectively.

III. RESULTS
A. Bulk band structure

The present NTB E(E) curves for silicon with a
perfect diamond lattice are plotted along symmetry
lines in the face-centered-cubic Brillouin zone in
Fig. 3 (solid lines). For comparison, the fitted
nonlocal-pseudopotential results of Chelikowsky
and Cohen® are indicated by the filled circles. It
is clear that this NTB model with interactions over
three shells of neighbors provides an excellent
representation of both the valence and conduction
bands in silicon.

One possible discrepancy involves the conduc-
tion band with ~, symmetry. It was assumed in-
itially that this band was omitted from the plot by
Chelikowsky and Cohen. Consequently, it was
excluded from the NTB fitting procedure. How-
ever, the pseudopotential bands of Pickett [which
are plotted in Fig. 1(b) of Ref. 19] suggest that
=, and Z, are very nearly degenerate along a
portion of the Z line near I'. This suggests that
the NTB Z, band may be in error by ~0.5 eV.

Despite this difficulty, it is clear that the pres-
ent NTB model provides a more accurate repre-
sentation of the silicon conduction bands than that
obtained by Papaconstantopoulos and Economou!®
using the standard Slater-Koster (SK) scheme
with three shells of neighbors. Along the A line,
the NTB model reproduces the A; maximum
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FIG. 3. NTB energy bands for silicon (solid lines).
The nonlocal-pseudopotential results of Chelikowsky
and Cohen (Ref. 9) are indicated by the filled circles.

whereas the SK model does not. In addition, the
NTB band shapes along the Z, A, and @ lines are
in better accord with the pseudopotential results
than those of the SK model.

In order to further check the accuracy of our
NTB results, we have applied the tetrahedral
method?? to calculate an accurate density-of-states
curve for silicon. These results were obtained
using energy eigenvalues on a uniform cubic
mesh of points with Ak equal to # the I'X line.
This corresponds to 2048 tetrahedra of equal

- volume in $ of the Brillouin zone. The resulting
curves are shown in Fig. 4. A comparison with-
the corresponding density-of-states curve of
Chelikowsky and Cohen (Fig. 4 of Ref. 9) reveals
excellent agreement for energies below 4 eV.

B. Stacking-fault energies

We have applied the present NTB model for sil-
icon to calculate the ISF, ESF, and TSF energies
using Eq. (4). Initially, we have neglected relax-
ation effects so that the nearest-neighbor bond
distances are unchanged for the ISF, ESF, and TSF
(see Sec. ITIA). As a result, AU =0 according to
Eq. (5). In these calculations, E,, has been cal-
culated by averaging E,(l?) over six special points
in the hexagonal Brillouin zone?® for the PC and
TSF and twelve points for the ISF and ESF. The

016
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(STATES/eV ATOM)

0.4

o
-4 -2 -10 -8 -6 -4 -2 (o] 2 4 6 8 10
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FIG. 4. NTB density-of-states curve for silicon.

six additional points are required for the latter
two calculations because of the lower symmetry
(D3, vs DY,) of the ISF and ESF space groups [see
Table I and Fig. 1(b)].

Since the unit cells for the PC, ISF, ESF, and
TSF contain 18, 16, 20, and 20 atoms, respecti-
vely, E,, (PC) must be renormalized by the fac-
tors &, ¥, and i before subtracting to determine
the stacking-fault energy AE, ;. In particular,

AE,,(ISF)= E, (ISF) -2E, (PC)+ AU ,
AE, (ESF)= E,,(ESF) -3, (PC)+ AU , (6)
AE,(TSF)=%[E,,(TSF) - XE, (PC)+AU].

An extra factor of 3 is required for AE, (TSF)
since, as noted in Sec. IIA, the unit cell for the
TSF contains two fault planes.
The results of this calculation of ¥ = 2AE, ,/V3a?

are summarized in Table III. We believe that

the NTB results are accurate numerically to a
few percent. For example, it is found that these
values change (decrease) by less than 2% when
the number of special points is increased by a

TABLE III. Theoretical and experimental values for
the fault energies v (in erg/cm?). The theoretical val-
ues have been obtained using the pseudopotential (PP),
extended Hiickel theory (EHT), and nonorthogonal-tight-
binding (NTB) methods, respectively. The arguments U
and R denote unrelaxed and relaxed geometries, re-
spectively. The latter are described in Sec. III D.

YisF YESF YTSF Reference
PP{U) 55 5
EHT(U) 86 85.5 43 6
NTBU) 110 85 38 present work
NTB(R) 64 44 19 present work
Expt. 51+5 2
Expt. 58+6 3
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FIG. 5. Energy bands in the TMK and ALH planes for a silicon perfect crystal generated using a 9-double-layer
supercell. The dashed lines indicate the (111) projection of the bulk band structure.

factor of 3. of 2, thereby reducing 7,5 to the observed range

For the unrelaxed geometries, the present NTB of values.
values for ¥igp, Yesr, and Yogp agree quite well In addition to calculating 7, this Brillouin-zone

with the EHT results of Weigel ef al.® The main averaging procedure allows one to determine the
difference is in the calculated value for ¥,5r, Where electron occupation of individual layers of the hex-
the NTB value is 25% larger than the EHT result. agonal cell. In the NTB method,® we solve a
Also, the EHT relation that ¥igp ® Ypgr ~ 2V7sr 18 standard secular equation involving the Hermitian
less accurately obeyed by the NTB values. matrix S™/2HS™1/2 where H and S are the Ham-
According to the results in Table III, the un- iltonian and overlap matrices, respectively. The
relaxed EHT and NTB values for y;gr are substan- fraction of the electron density that is associated
tially larger than the experimental values, where-~ with a given layer is equal to the sum of squares
as the pseudopotential result of Chen and Falicov® of the appropriate elements in the unitary eigen-
is in close agreement with experiment. However, vector U, averaged over the Brillouin zone.
as discussed in Sec. IIID, relaxation effects re- The results of this calculation are contained in
duce the calculated NTB ¥ values by about a factor Table IV. The entries under ISF, ESF, and TSF

TABLE IV. Deviations of the valence-electron distribution (N —4) (electrons/atom) for
individual atom layers near ISF, ESF, and TSF planes (dashed line below and in Fig. 9).
The asterisks indicate relaxed interlayer bond lengths that have been increased by +1.25%

(ISF) and +0.425% (ESF and TSF), respectively.

ISF ESF TSF
Unrelaxed Relaxed Unvelaxed Relaxed Unvelaxed Relaxed
0.0003 0.0313* -0.0035 -0.0025 0.0019 0.0052
0.0007 -0.0199 0.0032 0.0048%* -0.0021 0.0085%
-0.0037 ~0.0069 0.0019 0.0042 -0.0011 -0.0110
0.0008 -0.0030 -0.0024 0.0076* 0.0012 -0.0011
0.0014 -0.0004 -0.0007 -0.0108 0.0001 -0.0016
0.0001 -0.0007 0.0013 -0.0009
0.0003 -0.0001 -0.0001 -0.0012
0.0000 -0.0002 0.0003 -0.0005
—0.0001 -0.0004

0.0000 -0.0002
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FIG. 6. Energy bands in the TMK and ALH planes for an 8-double-layer ISF. Shown above are the corresponding
defect states for which the probability of an electron being located in the 6 layers surrounding the ISF exceeds %

represent the deviations (N - 4) of the calculated
electron distributions from the average value.

Of course, these deviations are zero for the PC.
It is seen that for the unrelaxed geometries, the
individual layers remain essentially neutral in
the presence of stacking faults. The maximum
deviation corresponds to 0.1% of the average val-
ence distribution. These deviations from neutral-
ity are enhanced when the interlayer spacings are
allowed to relax.

C. Stacking-fault states

The energy bands for PC silicon using a 9-dou-
ble-layer hexagonal supercell are plotted in Fig. 5
along symmetry lines in the MK and ALH planes
of the Brillouin zone, respectively. The dashed
lines indicate the (111) projection of the bulk NTB

silicon band structure. The areas enclosed by
these dashed lines would be filled by a continuum
of states as the number of double layers in the unit
cell were increased to infinity.

The corresponding energy-band results for the
unrelaxed 8-double-layer ISF, 10-double-layer
ESF, and 10-double-layer TSF supercells are
plotted in the upper portions of Figs. 6-8, re-
spectively. Shown below these are the correspond-
ing defect states which are localized in the vicinity
of the particular stacking fault. The criterion for
identifying these defect states is that they possess

2 of their electron distribution within 3 layers

on either side of the ISF, 4 layers on either side
of the ESF, and 2 layers on either side of the two
TSF’s. These layers are identified by the braces
in Fig. 2(c). They include the end members of the
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FIG. 7. Corresponding energy-band results for a 10-double-layer ESF. Defect states are % localized in 8 layers

surrounding ESF.

boat-shaped ring shown in Fig. 2(b).

The dashed lines in Figs. 6~8 represent the
(111) projection of the bulk silicon band structure.
As expected, the stacking-fault states often occur
within energy gaps of the projected band structure.
However, these defect states frequently continue
within the energy range of the bulk band structure
as defect resonances.

Qualitatively, the fault states for the ISF, ESF,
and TSF are rather similar. In each case, the
energy difference (dispersion) between the defect
states in the 'MK and ALH planes is a measure
of the stacking-fault interaction produced by the
imposition of periodic boundary conditions along
the supercell ¢ axis. Because of symmetry con-
siderations, each defect state does not necessar-
ily occur in both the I'MK and ALH planes.

Nevertheless, it is clear that the dispersion of the
defect states along the ¢ axis is quite negligible.

The upper portions of Figs. 6~8 contain highly
localized defect states with energies well above
the top of the bulk silicon conduction bands. These
defect states are probably an artifact of the pres-
ent NTB band model since it includes only the sil-
icon 3s and 3p orbitals and omits all the remaining
bands at higher energies.

In every case, double-degenerate defect states
occur at I' with an energy that is about 0.1 eV
above the valence-band maximum. In the case of
the TSF results of Fig. 8, this degeneracy is due
to the presence of two faults in the TSF supercell.
However, it is found that those TSF states with
energies in the gap are in fact not localized in the
vicinity of the fault. Instead, the localized states
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FIG. 8. Energy-band results for a pair of 5-double-layer TSF’s. Defect states are 2 Jocalized in 4 layers surround-

ing each TSF.

have slightly lower energies that fall within the
range of the projected band structure.

It is also found that stacking-fault states are
pulled out of the conduction band at and near the
zone center. This is a single band in the case of
the ISF and a pair of bands for the both ESF and
TSF, respectively. Although these states lie in
the energy gap of the projected band structure,
their energies are above that of the conduction-
band minimum which occurs at 1.1 eV.

Consequently, the results of the present NTB
model fail to confirm the existence of an ESF
state with an energy ~0.1 eV below the conduction-
band minimum that has been observed by Kimer-
ling et al.* This suggests that the observed de-
fect state may not be characteristic of an ideal
ESF, but instead is affected by either the central

precipitate or the boundary partial dislocations.
Another possibility is that relaxation or recon-
struction occurs in the vicinity of the stacking
fault and this produces the observed ESF state.
The effects of relaxation are considered in the
following section.

Despite this disagreement with experiment, the
calculations do predict that an analogous charge
collection scanning-electron-microscopy study on
ISF’s, ESF’s, or TSF’s in p-type silicon should
yield a change in signal intensity with tempera-
ture that is comparable to that observed at an
ESF in n-type material.

D. Relaxation effects

In the presence of a stacking fault, AE, , of Eq.
(6) is no longer a minimum when the (111) inter-
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FIG. 9. Dependence of AE,,, for ISF (a) and ESF (b) on individual nearest-neighbor bond-length ratios b;/b, where
b=v3ay/4 is the perfect-crystal value. The position of bonds relative to the fault is indicated schematically in the in-

set.

layer spacings are fixed at the values for the per-
fect silicon lattice. This leads to relaxation or
deviations from these ideal separations. Because
the ISF, ESF, and TSF represent a relatively weak
perturbation, it is expected that these deviations
will be quite small, probably about 1% of the PC
nearest-neighbor bond distance. For example,
Harrison®® has shown that for aluminum, relaxa-
tion effects change the (111) layer spacings by
about 1% and reduce the various fault energies by
about 10%,

Ideally, one should allow each of the interlayer
spacings to relax independently until a minimum
value of AE, , is obtained. Unfortunately, such a
comprehensive study of relaxation effects would
be awkward to carry out with the present NTB
programs. As a result, we have limited the pres-
ent treatment of relaxation to the first step in
this procedure. Namely, we have determined the
dependence AE, , on individual bond-length var-
iations in the vicinity of the fault planes for the
ISF, ESF, and TSF supercells.

The results of this study for the ISF and ESF
supercells are summarized in Figs. 9(a) and 9(b),
respectively. The various curves represent
AE, , as a function of individual nearest-neighbor
bond-length ratios b;/b, where b=V3a,/4 is the
unrelaxed nearest-neighbor bond length. In de-
termining each curve, only the specified b,/ b ra-

tio is varied and the remaining ratios are set
equal to 1. The location of the individual bonds
relative to the fault plane is indicated schematical-
ly in the upper portion of the figure. It is noted
that symmetry-related bonds have been varied
simultaneously.

The curves are parabolas drawn through calcu-
lated values of AE,,, for bond-length ratios b,/b
=0.995, 1.0, and 1.005. In every case, it is ener-
getically favorable for the bond lengths to increase
in the vicinity of the stacking fault. For the ISF,
the lowest energy is obtained when b, =1.0125b.
On the other hand, both b, and b,=1.0085b yield
nearly identical minima in AE, , for the ESF. For
both the ISF and ESF, this relaxation of individual
bond lengths reduces AE, , and ¥ by about 40%.

The systematics of these relaxation effects are
more apparent when one considers the positions
of the boat-shaped rings with respect to the ISF
and ESF planes. These are shown in the upper
portion of Fig. 9. Interlayer relaxations (such as
b,) which do not increase the separation between
the end members of the boat-shaped rings have
rather shallow energy minima and relaxed bond
lengths which are close to the ideal value. It is
found that curves similar to that shown in Fig.
9(b) for b, also occur for bonds involving atomic
planes beyond the boat-shaped rings in both the
ISF and ESF geometries.
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FIG. 10. Defect states for relaxed ISF (a) and ESF (b) geometries plotted as a function of wave vector in the TMK

plane.

It is noted that the ISF and ESF curves labeled
b, and b, are very similar in shape. In each case,
the difference between the b, and b, curves is due
to the proximity of the neighboring boat-shaped
ring. This difference is small for the ESF where
the rings are adjacent but significantly larger
for the ISF where they overlap. It is expected
that this difference between the b, and b, curves
would diminish as the boat-shaped rings were
moved farther apart. The two curves would coin-
cide for the TSF geometry, where they are related
by reflection symmetry.

Because of the restricted form of the allowed
relaxations, the minima in Fig. 9 represent upper
limits to AE, , and the fault energies 7,5y and
Ygsr- It is expected that a more general treatment
of relaxation would further reduce AE, , and y by
an additional 10% or so.

A calculation of ygp for b,=1.0125b yields the
result y,5p = 64 erg/cm? that is listed in Table III.
The corresponding valence-electron distribution is
included in the second column of Table IV. In the
case of the ESF, the similarity in the b, and b,
curves suggests choosing a more symmetric re-
laxation with b, =b,=1.0085b/2. This yields ¥ggp
=44 erg/cm?, which is in fact about 10% lower
than the minimum in Fig. 9(b). The valence-elec-
tron distribution for this relaxed ESF geometry is
contained in the fourth column of Table IV. As-
suming an identical relaxationfor the TSF geome~
try yields ¥qgp =19 erg/cm? and the valence-elec-
tron distribution in column six of Table IV.

A survey of the results in Table IV indicates
that relaxation effects tend to increase rather
than decrease the deviations from neutrality of
individual layers near the fault planes. In addi-
tion, they suggest that the atom layers near the
fault planes tend to accumulate an excess of elec~
trons. The ISF prediction of about 0.03 excess
electrons would probably be reduced in a more
general treatment of relaxation.

Finally, we consider the effect of relaxation on
the ISF and ESF defect states. This is illustrated
in Fig. 10 where we plot the defect states in the
T'MK plane for the relaxed ISF and ESF geome-~
tries. A comparison with the unrelaxed results
shown in Figs. 6 and 7 reveals that relaxation pro-
duces few visible changes in the defect states and
their dispersion. In particular, there is no indica-
tion that relaxation effects will produce defect
states in the gap below the conduction-band mini~
mum for an ESF.

Note added in proof. We have learned of a re-
cent calculation of the electronic structure of
stacking faults in silicon by Sanchez-Dehasa et al.
using generalized Wannier functions [J. Sanchez-
Dehasa, J. A. Vergés, and C. Tejedor, Phys. Rev.
B 23 (in press)]. Their results are in qualita-
tiv—é—agreement with those obtained in the present
NTB study.
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