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Electronic structure of pseudobinar3 semiconductor alloys Al, Ga, „As,GaP„As, „,
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A method for calculating detailed electronic properties of the pseudobinary III-V compound semiconductor alloys
is presented. The technique begins with realistic band structures obtained for the constituent compounds by fitting
the band-gap symmetry-point energies and effective masses to experimental data, where they are available, and to
more sophisticated theoretical results. Then the coherent-potential approximation is used to calculate the alloy band
structures and scattering rates. Detailed comparisons between the theoretical predictions and experimental data for
three alloys Al„oa, „As,GaP„As, „,and Ga„In, „Pdemonstrate the quantitative nature of the method. Bowing
parameters for the I,X, and L gaps and the direct-to-indirect band-gap crossover concentrations are all predicted
to within the present degree of experimental certainty.

I. INTRODUCTION

Studies of the electronic structure of substitu-
tional semiconductor alloys, along with their
closely related device applications, have become
an active part of semiconductor physics. Although
a theory capable of interpolating alloy band struc-
tures between those of the pure constituent com-
pounds is desirable, no sufficiently detailed method
to accomplish this end currently exists. Many
prior theories' ' have been designed to predict
only trends of soecific band quantities, such as
the band gaps' and the effective masses' at
band edges.

The virtual-crystal approximation (VCA) is es-
sentially the only method that has been used for
detailed alloy band-structure calculations. VCA
treats an alloy as a perfectly periodic crystal
with an average potential at each sublattice site
and does not include in lowest order the effects
of aperiodic fluctuations in the crystal potentials.
When the aperiodic part of the potential is suf-
ficiently small, perturbation theory can be ap-
plied to the VCA results to account for some
disorder-induced effects."Even in the few cases
in which attempts were made to treat realistic
systems, the results were not completely satis-
factory. ' For stronger scattering cases, Monte
Carlo methods' have been used to treat transport
properties. There is no satisfactory theory that
is based on a weil defined set of potentials and
predicts a wide range of phenomena, such as the
alloy concentration variation of band energies,
effective masses, and mobilities. However, the
coherent-potential approximation (CPA), ' " in
which both stronger and weak scattering potentials
in concentrated a.lloys can be treated, offers the

prospect of predicting the outcomes of a wide
range of experiments. We report the results of
such a CPA calculation in this paper.

In a previous paper" (referred to henceforth as
I), we reviewed the application" of CPA to semi-
conductor alloys and applied it to the valence
bands of III-V compound alloys. The bond-orbital
model (ROM), "'"which is only suitable for the
valence bands, was employed in that study. Here
the more accurate band-calculation method in-
troduced by Kane" and Chadi, "which takes better
account of the long-range interactions and conse-
quently applies well to both the conduction and
valence bands, is cast into the form of a CPA
calculation.

In seeking a practical alloy interpolation meth-
od, we have set two requirements. First, the un-
derlying band-structure method must be capable
of producing quantitatively accurate results for
the pure compounds. Second, the method must
be simple enough so efficient numerical alloy
calculations can be implemented and many cases
tried. With these requirements in mind, in a
separate paper" (denoted II) we made a systematic
study of the Hamiltonian matrix elements and
band structures of the IG-V compounds using
simple Gaussian orbitals and pseudopotentials.
Accurate results for both the valence and conduc-
tion bands were obtained using a universal basis
set, which is identical in crystal units (cu) for
all the III-V compounds. Furthermore, we in-
troduced a technique that was designed to add
small corrections to the Hamiltonian. These
corrections were selected so the important sym-
metry-point band energies and effective masses
were fitted to experimental or more sophisticated
theoretical results.
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To facilitate the CPA calculation, the basis
states used in II are here recast into orthonormal
bonding and antibonding basis functions. If the
alloy calculation is attempted in a highly non-
orthogonal basis set, the correlations in the
higher-order terms of the multiple seatterind ex-
pansion are so strong that CPA fails. However,
this problem is not present when the orthogonal
basis set associated with the bonds is used. The
Hamiltonian matrix studied in I and II, where we
demonstxated that the main differences from one
compound to another x eside in the diagonal ele-
ments, justifies the assumption that the most
important alloy disorder stems fxom variations
in the local bonding arid antibonding energies.
Given this result, the alloy calculation can be
cax'ried out easily in a manner similax' to that
used in I

Once the CPA self-energies are obtained, de-
tailed band energies, effective masses, and alloy
scattering lifetimes can be calculated. Since
relativistic effects are not included in the present
formalism, we have chosen for initial application
of the method the three well studied alloys
Al„Ga,„„As,GaP„As,„,and Ga In, ,P for which
the relativistic effects are not too important.
Compaxison of our results with experiments shows
that the calculations agree with relevant data.
Moreover, the detailed results also predict the
behavior of some quantities for which the present
experimental situation i.s uncertain, e.g., the con-
centration variation of the I.„energies.

The remainder of this papex' is arranged in the
following order. Section II describes the calcula-
tional procedure. Section III presents an analysis
of the input quantities and the resulting band struc-
tures of the pure constituent compounds. The
alloy band structux'es and their compax'ison with
experimental results are presented in Sec. IV.
The final section is devoted to the principal con-
clusions and a summary.

II. CALCULATIONAL PROCEDURE

A px'oeedure using simple Gaussian orbitals and

pseudopotentials to calculate the band energies
of III-V compound, zinc-blende structured semi-
conductors has been presented in II." This meth-
od will now be extended to a CPA calculation for
alloys. Because the details have already been
published, our presentation of the underlying
method will be brief.

A Gaussian orbital of type n (& is either an

s, p„p„,or p, orbital) for the jth sublattice (j is
the anion or the cation sublattice) in the Tth cell
(T is a fcc lattice vector) is denoted by ~

1ja&. The
Bloch basis constucted from

~
1j n& is denoted as

H(f) =H,(f)+H, (f}+~~S(f) . (i)

The band energies c„(k)are obtained from the
equation

det [H(f) —~„(f)S(f)]= 0.
In D it is demonstrated that it is possible to

cast the problem in a basis set of Gaussian orbi-
tals in which, in crystal units, the same expo-
nential factors apply for all ID-V compounds
In this universal basis, the overlap matrix S(f)
and the kinetic-energy matrix in eu are the same
for every compound. The band structures result-
ing from this method reproduce the results of
elaborate band calculations to within a few percent
throughout the BriOouin zone.

The Gaussian orbitals centered on different
atoms axe not orthogonal. However, it is essen-
tial to formulate the CPA theory in terms of an
orthonormal basis. One way to accomplish this
is to start with the %'annier basis,

~.(1)&= ~ Ze-'"' y:,&, (3)

where N is the number of anions or cations in the
crystal, and ~Pg& is an orthonormal energy eigen-
state

8 (y„-„)=e„(f)(y„-„).
Here H is the operator corresponding, to H(f) in
Eq. (1) expressed in an orthonormal basis set.
We note that

~ P„T& can be constructed from the
set (~fjo&}after the generalized eigenvalue pro-
blem Eg. (2) is solved. The Wannier basis set
is also orthonormal,

&w„(T)iw„(T')&= v„„c;.

(4)

A natural local basis for the tetrahedrally bond-
ed materials is the set of bonding orbitals ~b, (T)&

and antibonding orbitals
~ a, (1 )), i = 1, . . . , 4." If

we choose 1 to be the displacements of the atoms
on one sublattice, the four orbitals ~b,.(1)&,
i= 1, . . . , 4, are oriented along the four tetrahedral
bonds adjacent to the atom at 1. The sets of

~ fj n& .In the basis set f( kjo&), the overlap ma-
trix S(k) and the Hamiltonian matrix Po(f) de-
rived from empirical pseudopotentials ean then
be calculated. '4 '6 To establish accurately cer-
tain important band-structure features adjacent
to the gap, an extra 8& 8 Hamiltonian matrix
H, (k) is added to H, (k)."This extra Hamiltonian ma-
trix simulates the effects of nonlocal pseudopotentials
and an expanded orbital set. Finally, an energy shift
A~ is included that aligns the absolute energies
with respect to the vacuum to the measured
values. Thus, the Hamiltonian matrix in the basis
fl k j&&) contains three terms,



5862 A. -B. CHEN AND A. SHER

orthonormal functions (lb,-)f and (I a;)] can be
constructed from the Wannier basis functions by
unitary transformations:

and

I b;(I)& = g c„&lw(1))
n=I

(6a)

lag(I)& = Q d.)l~.(I)&,

4

e, =&b, (1)IHlb, (1)& = Q Q e„(k)

cpv 6 dc (7a)

and

e.=&a,.(I)IHla, (I)) = g Pe„(k)
5 k

wheren =1 to 4 are the valence bands, ands = 5

to 8 are the conduction bands.
As pointed out by Kane and Kane, "a direct

computation of the Wannier basis from Eq. (3)
would be difficult because of the uncontrolled
randomly varying phase factors of

I gg& as a
function of k. However, there are certain physi-
cal quantities that can be computed without actual-
ly calculating the Wannier basis functions. For
example, the bonding and the antibonding energies
are given by the expressions

neither are the Hamiltonian matrix elements ex-
pressed in the basis set (Ib, (T))] and the anti-
bonding basis set (I a, (T}&}. The simplest alloy
model assumes that the only important disorder
resides in the bond-diagonal matrix elements e,
and ~,. This assumption is justified in the studies
reported in I and II. In I, using the BOM, the
bond energy differences among compounds were
found to be considerably larger than the interbond
interactions. In II, a systematic study of the
Hamiltonian matrix elements in the local basis
showed that the interatomic interactions in the
III-V compounds scale"' as 1/a' (i.e., are nearly
constant in cu) while the "atomic" term values
exhibited simable deviations from the 1/a' scaling
for the different compounds. Hence, SVCA proper-,
ly accounts for the long-range alloy interactions,
while the local fluctuations in e, and ~~ will be
treated with CPA.

To cast this model into mathematical form,
lattice vectors 1 in Eq. (6) are assigned to the
displacements of the sublattice sites containing
the substitutional alloy atoms. For GaP„As,„,
for example, 1 will be the lattice vectors for the
fcc sublattice on which the P and As atoms are
located. Then the Hamiltonian for this simplified
alloy model has the form

H,„,=(H) + Q V-,
1

where the periodic part &H& is given in Eq. (8), and
the random part has the form

pc 6 dE (7b)
V; = g lb&(I)& [~&(I) - ~&]&b&(I}l

(H) = xH„+(I x)HB, - (8)

where H„andHs are taken from Eq. (1}and ex-
pressed in cu for A and B, respectively. Follow-
ing the procedure leading from Eq. (3) to Eq. (6),
we can define the bonding basis set (I b, (1)&) and
the antibonding basis set (I a, (1))]. associated with

&H).
Since the alloy Hamiltonian is not periodic,

where p„and p, are the densities of states per
unit cell for the valence bands and the first four
conduction bands, respectively.

The alloy calculation starts from the scaled
virtual crystal approximation (SVCA) introduced
in II. SVCA only treats the periodic part of the
Hamiltonian, which, in crystal units, "is taken
to be the concentration-weighted average of the
pure-crystal Hamiltonians. If we denote a pseudo-
binary (or tenary) semiconductor alloy as AB, , .

(e.g. , A stands for GaP andB for GaAs in
GaP„As, ,}, then the Hamiltonian matrix in SVCA
is given by

+ E.Ia~(»& [~.(»-~.]&a (1)I. (10)

The values of e, (1) and e~(1) depend on which
of the substitutional atoms is located at 1, and e,
and 7, are their concentrated weighted average
values. We take the values of e, (1 ) and e,(1) in eV
for the atomic pairs that make up the bonds at 1

to be the same as those for the corresponding
pure compounds. Thus the present model does
not include "off-diagonal" disorder or effects
on disorder arising from local strains and charge
shifts. We consider these effects to be of higher
order than the fluctuations in e, and ~~ treated in
the present work.

In CPA theory, "the configurationally averaged
one-electron Green's function is replaced by an
effective Green's function G,«adjusted such that
on average the atomic scattering matrix vanishes.

Following I, we let G„,= (x -H„,) ', with H,«
given by
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H„,(z) =(H)+ Q 8g,
1

where the self-energy operator is

0-, = Q lb, (I))&g,(b;(I)l

+ 2 I s;(I))o. (s~(I)l.

(12}

and p„(z)is the valence-band density of states in
SVCA. o,(z) satisfies a similar equation.

Thus, the input to the CPA calculation includes
the SVCA densities of states p„and p„the bond-
ing and antibonding energies e, and e, for the
pure compounds given by Eqs. (Va) and (7b) and
the concentration x. The calculation of these
quantities requires numerical i.ntegrations over
the first Brillouin zone, which are carried out
using an efficient technique reported previously. "
The solution for the CPA self-energies o, and 0,
can then be found easily using an iteration meth-
od."

Once the self-energies are determined, a variety
of quantities can be calculated. The alloy conduc-
tion and valence-band density of states are just"

1
p, (e}= ——1mF, (e + io} (15a)

1
p„(e}= ——Im F,(e + i0}. (15b)

If the self-energies are not too large, the spectral
density functions"

p„(E,k) = -Im([E -e„(k)-c(E)] ']/w

will have sharp peaks at E values such that

E —Z„(k)-u(E) = 0, (16)

where o(E) = q(E) -iy(E). The energy solution E
from Eq. (16}can then be regarded as the band
energies in CPA, while the imaginary parts of
the self-energy y(E) is the broadening at E due
to alloy scattering. Thus, the CPA results con-
tain the ingredients for a detailed study of alloy
bal'd structures and transport properties.

Then v~ satisfies a scalar equation

en(z) = -I~a(A&-~~-o~]fa(z}[~~(H&-~s-e~]

where f, = ,' F, w—ith F,(z) [see Eq. (20) in I] shown
to be

k', (s)= f d~p. (e)/(z —v, —e),

III. PARAMETRIZATION OF THE PURE-CRYSTAL
BAND STRUCTURES

Since the results of our alloy calculation are sen-
sitively dependent on the input band structures of
the constituent compounds, their selection re-
quires special care. In II, a parametrization
method was designed to fix the effective masses
and symmetry-point energies of states adjacent
to the band gaps precisely to well established
values. Numerical results for the parametrized
bands of GaAs, GaP, InP, and AlAs were reported
in II. However, since that time some parameters
have been slightly refined to improve the agree-
ment with experiment. The modified selection
procedure and the new parameter set are des-
cribed next.

The procedure begins with the calculation of
the overlap matrix S(k) and the Hamiltonian
matrix H, (k) of Eq. (1) using the universal Gaus-
sian basis set and empirical pseudopotentials. "
Then the experimental photoelectric thresholds"
are used to fix the 1

„„

level with respect to the
vacuum level. Finally, the nine adjustable inter-
actions in H, (k) of Eq. (1) are determined by fit-
ting the I'„„,I'„,I"»„X,„,X„,X„,L,„,and L„
band energies, and the effective mass m,* at 2„.
These input band energies andm, * are selected
from a combination of experimental data: the cal-
culated bands for GaP, GaAs, and InP by Chelikow-
sky and Cohen (CC)"; and calculated bands for
AIAs by Caruthers and Lin-Chung (CL)." The
experimental data are used only to improve the
accuracy of m,* and the low-lying conduction-band
energies F„,X„,X„,and L„.Table I lists the
values adopted for these band quantities and the
parameters for H, (k ).

For GBAs, the parameters listed in Table I are
identical to those in II. The I"„,X„,and X~ en-
ergies of GaAs in Table I are different from the
CC values but are those used successfully by As-
pens. " For GaP, the 2.88 eV listed for the I"

„

level is the same as that in CC and also agrees
with experiment. ""The values 2.34 eV and 2.64
eV for the X„andX„levels, respectively, in
Table I are slightly different from the values
2.16 eV and 2.71 eV in CC but are in better agree-
ment with low-temperature optical data. " The
experimenta1 situation for L„in GaP is less cer-
tain. Aspens estimated a ~alue of 2.73 eV at
77 K.2 This corresponds to 2.74 eV at 0 K,
which is 0.05 eV lower than the value given by
CC. For InP, the I"

„

level is taken to be 1.42 eV
based on the experimental result of Turner et gl.29

With an estimated 0.9+ 0.02 eV for the X„-r„
separation by Dumbe et al. ' added, the X, level
is at 2.32 eV. The 2.07-eV and 2.84-eV values
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TABLE I. The lower conduction-band energies (in eV)
and effective masses at I ~~ (in units of the free-electron
mass) used as input parameters of the band structures
for AlAs, GaAs, GaP, and InP; and the parameters (in
Cu) obtained for +g(k). Also listed are the lattice coIl-
stants & (in units of the Bohr radius) and the calculated
bonding energies ~r, and antibonding energies e, (in eV).

I

AlAs GaAs GaP

?RQ

g@A

SE~

GAEA

gEc

2.48

0,15

-0.1210

0.0583

-0.0658

0.0161

-0.0465

0.0442

0.0344

-0.0453

0.0287

10.643

2.38

0.067

-0.0803

0.0122

-0.0385

0.0157

-0.0461

0.0579

-0.0122

-0.0416

-0.0007

10.687

2.74

0.17

0.0201

0.0348

-0.0219

0.0110

0.0256

-0.0168

0.0320

-0.0343

0.0060

10.299

2.84

2.07

-0.0966

0.0579

-0.0424

0.0161

-0.0310

0.0581

0.0263

-0.0429

0.0200

11.095

1.32 1.40 1.55

assigned, respectively, tothe I„andX~ levels of
InP make the separations X„-L,„andX3,-X„
roughly the same as those in CC. For AlAs, the
only level clearly established by experiment is
the mini. mum gap X„=2.238 eV by Lorenz et al."

The quoted experimental values" "for I „at
room temperature range from 2.90 to 3.23 eV,
which are at least 0.1 eV higher than the calcu-
lated value by CL. The experimental uncertainty
seems to arise from the difficulty in preparing
high-quality AlAs crystals, and because the. I'»„
to I'„direct-transition edge in the optical spectra
tends to be obscured by excitons and indirect
transitions. On the other hand, the direct gaps
in Al„Ga, „Asalloys for x& 0.45 have been well
resolved experimentally by Dingle et al.35 %e
found that a value of 3.0 eV or higher for the I"„
level of A1As leads to poor agreement with this
set of clear experimental data. The lower-bound
value 2.90 eV is a more reasonable choice. The
L„andX„levels in AlAs are even more uncer-
tain experimentally; we adopted the values of
2.48 and 2.89 eV calculated by CL. The effective
masses m~ of the direct-gap compounds. GaAs

TABLE II. The parametrized band energies (in 6V) at
I', X, and I- with respect to the vacuum level and the
effective masses at I' {in units of the free-electron mass}
for the four constituent compounds.

AlAs GaAs

I.ic
m~ (I'g~)

mr t100]

my, [100]

mr f111]

m~f ill]

-5.76

-2.86

-8.08

-3.52

-2,87

-6.73

-3.28

0.154

-0.146

-0.440

-0,108

-1.062

-5.50

-3.98

—8.39

-3.52

3 % 12

-6.38

-3.68

0.067

-0.068

-0.449

-0.060

-1.132

-5.70

-2.82

-8.40

-3.36

-3.06

-6.61

-2.96

0.169

-0.113

-0.460

-0.114

-1.177

-5.70

-4.28

-'7.76

-3.38

-2.86

-6.48

-3.63

0.078

-0.081

-0.494

-0.071

-1.188

and InP in Table I are the experimentally well
established values, "while for GaP and AlAs
the values adopted are theoretical numbers. "

To illustrate the features of the parametrized
bands, the band structures for AlAs, GaP, GaAs,
and InP along symmetry directions are plotted
in Figs. 1(a)-1(d). Finally, some band energies
at I', X, and I., and the effective masses at I"

y,
associated with these parametrized band struc-
tures are listed in TaMe II.

IV. CALCULATED ALLOY BAND STRUCTURES

Starting from band structures for the constituent
compounds obtained in Sec. III and using the inter-
polation procedure presented in Sec. II, the CPA
calculations have been done for Al„Ga, „As,
GaP, As& „andGain, „P.Before presenting the
specific results for each system, it is useful to
discuss certain general aspects of the calculation.

There are two mechanisms in the present model
that can produce a nonlinear concentration depen-
dence of the band energies. The first is the scal-
ing of the constituent Hamiltonian matrices in-
herent in the SVCA. Generally, this nonlinear
effect becomes progressively more important the
larger the differences between the constituent
compounds' lattice constants and energies. How-
ever, detailed variations are governed by the
structure of the Hamiltonian matrices of the con-
stituent compounds for the specific k involved.

The second mechanism causing a nonlinear con-
centration dependence of the band energies arises
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-14
K, UX I'I' X W L X W L I KUX

t; (2~/a) k ("m/a)

FIG. 1. The parametrized band structures of the compounds (a) A1As, (b) GaAs, (c) GaP, and (d) Inp. The zero of
energy in each case is the top of the valence band l'f 5y.

from the alloy disorder. In the present model,
the alloy scattering is governed by the fluctuations
in a, and &, measured by the differences 5, -=a~(A)
—~,(B) and 5, -=«,(A) —a,(B). The quantities 5,
and 5, are referred to as scattering strengths in
CPA theory. The values in Table I indicate that
the important disorder in Ga„A11„Asand
GaP„Asq „occursin the conduction bands where
(5, (=0.51 and 0.59 eV while (5 ~=0.06 and 0.2l
eV, respectively. However, in Gain~ „P,the
disorder in the valence bands, where ~5, ~=0.58

eV, is larger than that in the conduction bands.
Thus, the aQoy scattering strengths in the pres-

ent ibodel are the differences between the centers
of gravity of the conduction- (antibonding) band
energies and the valence- (bonding) band energies.
These results differ from previously proposed
alloy scattering strengths: band-gap differences,
differences between band edges for each band,
and electronegativity differences. 8

Since the scattering strengths for all three al-
loys are moderate, a lower-order approximation'o



A. -B. CHEN AND A. SHKR

0.04 1 I 1 I 1 I ' I I I I I 1 I I I

0

-0.04
0.08

x =0.1

I I I I I I I I I I I

1 1 I '1 I I I I I 1

0 '» oe

x =0.1

I. I I I I I I I

1 1 ) 1 1 1

I I I I I

1 I I I I-

0

-0.08
0.08

I

x = 0,3
I I l I I I I I I I I I I -6

6

x = 0.3
I I I . I I
1 I I I I

I I I I I

I I 11

-0.08
0.08

x = 0.5
I I I I I I I I

I I I I 1 I I 1

I 1 I I I

I I I I

-6
6

«v»» ~I

I I I

I I

x=0.5
I I I I I

I I I

I I I I I

I I I, 1 1

0

x =0.7
I I I I I I l I I I I I I

0.04

S

V

0
1

x =0.9
QQ4 I I I I 1 I I I

1 r»»w+

(II&

I I I I I

x =0.9

%5I »»
«'h I

V

-6 I I I I I I I I I I I I

-18 -16 -14 —12 -10 -8 -6 -16 -14 -12 -10 -8 -6

E(eV} E(eV}

FIG, 2. The real (dashed curves) and imaginary (solid curves) parts of the valence band (a) self-energies and (b)
Gxeen's functions as a function of energy relative to the vacuum level for five different concentrations x of the
Ga„In»P alloy.
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FIG. 3. The real (dashed curves) and imaginary (solid curves) parts of the conduction band (a) self-energies and (b)
Green s functions as a function of energy relative to the vacuum level for five different concentrations x of the
Ga„AI,„Asalloy.
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to the CPA self-energies in Egs. (13) and (14),

~ = —,'x(1 —x)o'Z, (1V)

should yield qualitative trends. However, the
full self-consistent solution to the CPA equation
is needed for quantitative results. Using the
iteration technique ' a convergence for 0 to within
0.0001 eV is achieved in no more than 5 iterations
at all energies and concentrations for every alloy
considered here. The most time-consuming
numerical computations are the SVCA densities
of states (DOS) p„(E)and p,(E) needed in Eq. (14).
This has to be done accurately for every concen-
tration and on fine energy grids over the entire
energy range of the SVCA bands. Representative
prospectives of the calculated spectra can be
gained by examining plots of the CPA-generated
functions o~ and E„for the Gain, „Palloy dis-
played in Figs. 2(a) and 2(b), and similar results
for 0, and E, for the Ga„A1&„Asalloy depicted in
Figs. 3(a) and 3(b). The88 figures show that EQ.
(17) predicts qualitative trends correctly but it
does not yield quantitatively accurate self-ener-
gies. This means that the usual perturbation cal-
culations cannot accurately account for lifetimes
and bowing parameters. However, the scattering
strengths 5, and 5~ for these alloys are still small
compared to their respective bandwidths, so alloy
disorder has very little effect on the DOS. To
demonstrate this point, the DOS derived from
CPA (solid curves) and SVCA (dashed curves) for
the 50 50 GctPp gAsp 5 alloy are plotted in Fig. 4.
The SVCA and CPA DOS are essentially the same
for the valence bands. The difference in p, be-

tween SVCA and CPA is discernible in the plot
but it is still too small to be detected by present
DOS spectroscopy methods, e.g. , the photoelec-
tric spectra. This result is consistent with our
conclusion in I and with previous work on SiGe
alloys. However, the same conclusion may not
be drawn for II-VI compound alloys where the
alloy disorder is much larger. 4

A. Ga„Alp.„As

Figure 5 illustrates the variation of seven sym-
metry-point energies as a function of the Ga con-
centration x. All these curves show some non-
linear concentration dependence. Since the ex-
perimental band gaps are usually fit to a function
of the form'

E=E-br(l -x),
where E is the average energy E=E„+(1-g)Es,
and 5 is the bowing parameter, we will use Eq,
(18) to define b for each state and 1st 5 vary with
x. Table III lists the values found for 5 from
SVCA and CPA for these seven states and for five
Ga concentrations from, +=0.1 to 0.9. The actual
band energies are obtained at these concentrations
from Eq. (16),

'
and 5 is obtained from Eq. (18)

using the end-point values in Tab1e III to find E
in each case.

First, we see that there is no disorder contri-
bution to the bowing, i.e. , no difference between
the CPA and SVCA 5 values, for the valence-
band energies. This is because there is essen-
tially no difference in the bonding- energies e~ be-
tween GaAs and AlAs. However, SVCA alone

I i I l i i

CPA--——svcA

I l 1 I i i l i i l

-18 -10

FIG. 4. The CPA (solid curve) and SVCA (dashed curve) predicted density of states as a function of energy relative
to the vacuum level for the alloy GaPp esp. ~.
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2.1

2,0

1.8
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0.0 0,2 0.4 0.6 0.8 . 1.0

-8.0

-8.6
0,0 0.2 0,4 0.6 0.8 1.0

l-x

FIG. 6. The theoretical band gaps between the I'&~,

X,~, and L,„statesand &&» (solid curves labeled I;,
X&, and I&, respectively) as functions of the Al concen-
trations 1-x for the alloy Ga„Al&~As. The circles
(Ref. 35) and triangles (Ref. 42) are experimental exci-
ton peak positions.

FIG. 5. The indicated symmetry-point energies rela-
tive to the vacuum level as functions of concentration x
for the al, loy Ga„AI&„As.

contributes a value 5 =-0.07 eV for the 13„point
and -0.35 eV for Xs„. By contrast, SVCA con-
tributes little to the bowing of the conduction-
band states, whereas the disorder produces a

TABLE gl po~ing parameters g gn eV) defined in Eq, (18) calculated in SVCA and CPA for the seven states at I',

X, and I. for five concentrations x of the Ga„A1& „Asalloy. Also listed are the effective masses at I' (in units of free-
electron mass) calculated using CPA.

0.5
SVCA CPA

0.9 Average
SVCA CPA SVCA CPA

-0.01 -0.02 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01

0.02 0.24 0.03 0.16 0.02 0.11 0.03

-0.28 -0.28 -0.31 -0.31 -0.34 -0.34 -0.38 ™-0.38 -0.43 -0.43 -0.35

Xfy 0.00 0.15

0.01

0.00 0.00

0.01

0.12

0.01 0.14

0.00 0.11 0.00

0.01 0.16

-0.06 -0.07 -0.06 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07

0

mg[100j

teg[lllj

ncI,t111]

-0.137

-0.435

-0.103

-0.053

0.126

-0.121

-0.444

-0.094

-1.101

0.01

-0.104

-0.444

-0.084

-l.ill

0.01

0.093

-0.089

-0.455

-0.075

-1.143

0.0 0.11

0.075

-0.075

-0.449

-0.065

-1.154

0.01
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sizable contribution. We also see that the bowing
functions b are not constant but vary significantly
with x. The bowing of the conduction-band states
decreases by roughly a factor of 2 from the Al-
rich to the Ga-rich alloys, while for the valence-
band state X~„,

~

b
~

increases as the Ga concen-
tration increases.

Although it is difficult to identify the physical
origin of the asymmetric contributions to b at
X,

„

that arise in SVCA, a qualitative understand-
ing of the skewed x dependence of the conduction-
band states' b values arising from disorder can
be gleaned from Eg. (1V), Figs. 3(a) and 3(b).
Notice that the conduction-band states being con-
sidered lie close to the bottom of the conduction
bands where the magnitude of the RelE,) over the
range from -3 to -4 eV decreases by about a
factor of 2. From Eg. (1V), this introduces an

energy dependence into the CPA energy shifts g
with respect to the SVCA levels.

There is another and perhaps more important
mechanism contributing to the x dependence of b

arising from higher-order scattering effects to
the self-energy that is not included in Eg. (1V).
Consider the case with x=0.1. Since the alloy
medium is close to pure AlAs, GaAs cells act as
impurity scattering centers. Because a, in GaAs
is 0.51 eV below that in AlAs, the "impurity"
scattering for x=0. 1 will more strongly affect
the lower-energy part of the conduction band than

the higher-energy part. On the other hand, in
the x=0.9 case the Al cell serves as the dominant
impurity scatterer in the GaAs host lattice. Thus,
the lower-energy part of the conduction band will
not be affected as much. This explanation is
supported by the numerical results displayed in
Fig. 3(a), in which the magnitude of g at the bot-
tom of the band for x=0. 1 is considerably larger
than that for x= 0.9. A similar effect can also
be seen from a comparison of the x=0.3 and x
=0.7 cases. This general effect is well illus-
trated by the numerical results obtained using a
simple semiellipse-model density of states. '

To compare with experiment, the gaps I'& ——I &,

I f5 Xf X$ Ffg X3 X3 Ff, and L) ——Lg
—I'&&„areplotted in Fig. 6 against the Al concen-
tration 1 —x. Also plotted are the peak positions
for excitons determined from photoluminescence
(PL) spectra at 2 K by Dingle et al. ~ (circles)
and by Stingfellow and Kunzel (triangles). After
the exciton binding energies are added to these
experimental numbers, they should agree well
with the theoretical minimum band gaps. In
Table III, the I

& gap has a bowing parameter of
0.12 eV at x=0. 1 and 0.25 eV at x=0.9, with an

average b value of 0. 17 eV. Earlier experiments,
most of them done at room temperature, resulted

in b values ranging from 0. 18 to 0.47 eV.
More recent experiments and analyses '

suggest that the I'q gap varies linearly with x in
the direct-gap, Ga-rich concentration range and
it has a large bowing parameter beyond the cross-
over at 1-x, =0.45 in the indirect-gap region.
All previous theories, mostly because the lattice
constants of GaAs and AlAs are nearly the same,
predict very small b values for the 1

& gap, i.e. ,
-0.04 eV, 0.03 eV, ' and 0.05 eV. These theo-
retical results, combined with the uncertainties
involved in extracting the I ~ gaps from optical
data in the indirect-gap region, may be the origin
of the suggestion that the bowing of the I'& gap
changes abruptly at x, . Although it is evident
from the CPA model why the bowing should be
larger on the Al-rich side than on the Ga-rich
side, we know of no mechanism that could produce
the large abrupt change at x, referred to above.
The calculated X&-gap curve is seen to be in ex-
cellent agreement with the data. The asymmetry
in b for X& is not as large as that for I'q. Our
average b for X& is 0.14 eV, which is in excellent
agreement with the 0.143 eV (Ref. 46) and 0.15
eV (Ref. 4V) used in recent analysis, but smaller
than the value of Lee et al. of 0.245 eV.

Our predicted I'& and X& band gaps cross at the
critical Al concentration 1-x, =0.42, with a
minimum gap E,= 2.06 eV at this concentration.
As the temperatures increase, 1-x, should move
to higher Al concentrations and E, to lower ener-
gies. Therefore, our x, and E, are consistent
with the 1-x,=0.44 and E,=2.04 eV obtained by
Dingle et al. at 2 K, and the room-temperature
values of 1-x,=0.45, E,=1.985 eV and 1-x,
=0.45, E,=1.97 eV used in recent analysis.
However, our values are slightly higher than the
1 —x,=0.405 and E,=1.953 eV used by Lee et
al. , but distinctly larger than the previous ex-
perimental value 1-x, =0.37 and the previous
calculated value of 1-x,=0.3. Recently Temkin
and Keramidas showed that a value of 1-x,
=0.37 led to inconsistent results with experiments
on the concentration dependence of the conductiv-
ity. The L~ gap is comparatively less well de-
termined experimentally.

The spectral widths y(E) for E at the CPA band
energies provide a measure of the alloy scattering
lifetime. Figures 2 and 3 show that y is a sen-
sitive function of energy and concentration.
These strong x dependences of y will inevitably be
reflected in transport and optical properties,
particularly at the crossover concentration.
However, it is worth emphasizing once more'
that at the band edges, y becomes very small, so
there will be little alloy broadening of the modu-
lation spectra Eo lines in the direct-gap alloys
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even though the borning is significant.
Another quantity closely related to the transport

properties is the effective mass. Table III lists
the effective mass m~ at I'„and the heavy m„
and light m, hole masses along both the [100] and

[111]directions for the 1"»„states T. he CPA
results are bomed only slightly down from the
average values. The variations arising in SVCA
are the major determining factors on effective
masses. In I, me shorn that the alloy disorder
influences the effective mass through the energy
derivative of the real part of the self-energy g,
PBcpp,= PBgvcp, (1 Sf'/tE) The disorder contribu-
tion can be estimated by examination of Figs. 2

and 3, and at most changes the SVCA value by
about 2%. Therefore, the usual linear interpola-
tion for m~ used in transport analysis is nearly
correct for this system.

S. GaP As~
„

Figure 7 contains plots of seven band energies
as a function of P concentration, and Table IV
lists the corresponding borning functions 5 for
five alloy concentrations. Since the scattering

30 -X3

X)-3.5

-4.0
1c

4P -56
LU

parameters for GaP„As& „aresimilar to those in
Ga„A1,„As,namely

~
5, (

& (5,
~

with GaAs having
the lower &„the asymxnetric contributions to 5
due to alloy disorder follow a similar pattern.
However, the borning for the conduction-band en-
ergies resulting from SVCA are considerably
larger in GaP„As&

„

than in Ga„Al& „As.
In Fig. 8 the three low-lying conduction-. band

gaps I'„X„andL, axe plotted as a function of
concentration. The exciton peak positions in the
PI spectra measured at 6 K by Onton and Foster '
(crosses) and at 77 K by Nelsen et al (ci.rcles)
and the peak positions in the cathodoluminescence
(cl) spectra at 30 K by Marciniak and Wittrys~

(triangles) are also plotted for comparison. Once
the exciton binding energies are added, our X&

curve mill be in excellent agreement with the data
of Onton and Foster.

The I'& and X& curves are also consistent mith

the cl spectra. However, a fem meV rigid shift
is needed to bring the I'~ curve into register mith

the measurements by Nelsen et a/. From Table
IV, the average 5 value for the I

& gap over all x
is 0.26 eV, mhile the average value in the direct-
gap region only is 0.23 eV. Thus, our calculated
homing parameter for I", is slightly larger than
the range of values from 0. 1V to 0.21 eV quoted
from- previous analyses. '5 The dielectric
model' predicted 0.30 eV mith contributions of
0.21 eV from the "intrinsic" term and 0.09 eV
from disorder. For comparison, me find average
contributions of 0.11 eV from SVCA. and 0. 15 eV
fx'om disorder. For the X& gap, our calculated
average b value is 0.22 eV, which lies between
the 0.143 (Ref. 54) to 0.16 (Ref. 26) eV used in
prior analysis and the 0.267 eV deduced by Onton

and Foster. ' %'ith Xq and I'& as described, me

find the indirect- to direct-gap crossover P con-
centration is at x, =0.48 with E,=2. 10 eV. Our

x, lies between the values x,=0.45 at V7 K mea-
sured by Nelsen et gl. and the x, =0.51 at 30 K
measured by Marciniak and %ittry. The L~ gap
has a much largex bowing parameter 5 =0.45 eV
than the other tmo gaps. This value is also larger
than previously quoted values which range from
0.16 (Ref. 26) to 0.25 eV.' However, the experi-
mental situation for the L, gap in alloys is still
very uncertain. The behavior of m~ in Table IV
is similar to that for Ga„A1,„„As.

-8.0

0.0 0.2
I

0.4
l

0.6
I

0.8 1.0

Fjo. 7. The indicated symmetry-point energies rela-
tive to the vacuum level as functions of concentration x
for the alloy GaP+s, x.

C. Ga In& „I'
As mentioned previously, in this alloy the dis-

order in the valence band is larger than in the
conduction band (5„=0. 53 eV &5, = 0. 15 eV),

pp
.t t t g t th th

two alloy systems. Thus the nonlinear depen-
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TABLE IV. Borving parameters b (in eV) defined in Eq. (18) calculated in SVCA and CPA for the seven states at 1,
X, and L for five concentrations x of the GaP„Asf „alloy. Also listed are the effective masses at F (in units of free-
electron mass) calculated using CPA.

0.1
SVCA CPA

0.3
SVCA CPA

0.5
SVCA, CPA

0.7
SVCA CPA

0.9
SVCA CPA

Average
SVCA CPA

0.09 0.20 0.09 -0.22

-0.01 -0.03 -0.01 -0.03 -0.01

0.10

-0.03

0.25

-0.01

0.1.0

-0.03

0.28 0.12 0.23 0.10 0.23

-0.01 -0.03 -0.01 -0.03

-0.11 -0.11 -0.11 -0.10 -0.11 -0.10 -0.10 -0.10 -0;11 -0.10 -0.11 -0.10

0.02

0.37

0.17

0.53

0.02

0.39

0.17

0.55

0.02

0.40

0.17

0.57

0.03

0.41

0.19

0.59

0.03

0.39

0.22

0.67

0.03

0.39

0.19

0.58

-0.01 —0.03 -0.01 -0.03 -0.01 -0.03 -0.01 -0.03 -0.01 -0.04 -0.01 -0.03

m [100]

mI, [100]

m, [111]

m ~[ill]

0.24 0.37

0.077

-0.076

-0.460

-0.065

-1.154

0.24 0.38

0.095

-0.092

-0.455

-0.076

-1.165

0.24 0.40

0.115

-0.110

-0.465

-0.088

-1.177

0.25

0.135

-0.129

-0.465

-0.099

-1.188

0.42 0.26 0.52

0.159

-0.148

-0.465

-0.109

-1.188

0.24 0.42

dences caused by disorder become more impor-
tant in the valence than in the conduction bands.
However, as Table V shows, the SVCA contribu-
tions to the bowing of the conduction bands a,re
considerably larger than those of the valence

GaAs

2.9

2.8

,GaP

2.7

2,6

2.5

2.4

2.3

+ 22
LU

2.1

2.0

1.g

1.8

1.6

1,5
0.0 0.2 0.4 0.6 0.8 1.0

FIG. 8. The theoretical band gape between the I'„,
Xf and Lf states and &jSy (solid curves labeled &f,
Xf, and L&, respectively) as functions of the P concen-
tration x for the alloy GaP„Asf„.The circles (Ref. 52),
triangles (Ref. 53), and crosses (Ref. 51) are experi-
mental exciton peak positions.

bands.
In Fig. 9 the usual seven band energies as a

function of Ga concentration x are plotted. Again,
for comparison with experiment, the three gaps
I f Xf and L f are plotted as a function of x in
Fig. 10. The experimental data presented in Fig.
10 are the exciton peak positions in the PL spec-
tra taken at 2 K by Onton and Chicotka ' (crosses),
at 4. 2 K by Joullie and Alibert' (circles), and
at 77 K by Macksey et pl. ' (triangles). Although
the data are more scattered than those in Figs.
6 and 8, our calculated minimum gaps correlate
reasonably well with this somewhat scattered
data set. Our calculated average b values for the
l f, Xf, and If gaps are 0.40, 0.17, and 0.41 eV,
respectively. The value of b =0.40 eV for the l"f

gap coincides with the lower end of the experi-
mental range from 0.40 to 0.88 eV. ' '" The
value of b for the Xf gap is considerably smaller
than those for 1 f or I-f but is in excellent agree-
ment with the 0.16 eV quoted by Onton. The
experimental b value for the Lf gap is less cer-
tain, but our calculated value of 0.41 eV is in
accord with the 0.34 eV bowing parameter mea-
sured for the Ef optical gap. f'

The critical Ga concentration x, for the band
crossing is predicted to lie at 0.66 with E,=2.29
eV. Onton and Chicotka used a linear x depen-
dence for the Xf gap and their highly bowed 1"f

gap to estimate a value of x,=0.74 and E,= 2.33
eV at 2 K. If a value of b =0. 16 for the Xf gap
is used, x, will decrease by 0.03. A smaller
bowing of their I f gap will further lower x, to
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TABJ E V. Bowing parameters 5 (in eV) defined in Eq. (18), calculated in SVCA and CPA for the seven states at I',
X, and L for five concentrations x of the Ga In~ „Palloy. Also listed are the effective masses at I" (in units of free-
electron mass) calculated using CPA.

0.1
SVCA CPA

0.3
SVCA CPA

0.5
SVCA CPA

0.7
SVCA CPA

0.9
SVCA CPA

Average
SV CA CPA

-0.03 -0.10 -0.03 -0.11

0.28

-0.03 -0.11 -0.03 -0.12 -0.03 -0.14

0.32

-0.03 -0.11

-0.07 -0.09

0.20

0.00 -0.17

-0.08

0.20

0.00

-0.06

0.06

-0.08 -0.05

0.05 0.06

0.21 0.22

0.00 -0.15

-0.08 -0.02

0.06 0.06

0.22 0.23

0.00 -0.15

-0.10 -0.03

0.20

0.00 -0.13

-0.08 -0.05

0.05 0.06

0.21 0.22

0.00 -0.15

0.30 0.30 0.31 0.30

mg t100]

m~I 100j

mgI ill)
m~I'111]

0;086

-0.089

-0.506

-0.077

-1.224

0.102

-0.106

-0.506

-0.087

-1.250

0.120

-0.122

-0.488

-0.097

-1.224

0.138

-0.141

-0.494

-0.107

-1.250

0.159

-0.150

-0.471

-0.112

-1.188

InP below 0.70. Our values are close to the x,=0.69
+0.02 and E,=2.32+ 0.01 eV for T &10 K found
by Joullie and Alibert. Finally, the effective
masses listed in Table V again behave in a vray

1c
4,5

7c

2.9

2.8

2.7

GaP

2.5

-6.0
2,2

QJ 2 1
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04 0.6 0.8 1.0

FIG. 9, The indicated symmetry-point energies rela-
tive to the vacuum level as a function of concentration x
for the alloy Ga„In)„P.

FIG. 10. The theoretical band gaps between the &&~,

X&~, and L«states and &,5„{solidcurves labeled &„
X&, and I&, respectively) as functions of the Ga concen-
tration x for the alloy Ga„In&„P.The circles {Ref.56),
triangles (Ref. 57), and crosses {Ref. 55) are experi-
mental exciton peak positions.
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similar to those of Ga„A1~„Asand GaP, As~ „'the
CPA m* is just slightly bowed below the SVCA
values.

Thus, the concentration variations of the bands
for the three alloy systems considered, where
one constitutent is a direct- and the other is an
indirect-gap semiconductor, are quite similar.
There is in each case a single minimum band-gap
crossing, although in GaAlAs the three states al-
most merge at the crossover concentration.
These results are consistent with the analysis of
donor levels in GaPAs (Ref. 26) and GaAlAs '
but differ from the two-crossover model conjec-
tured by Pitt et al.

V. SUMMARY AND DISCUSSION

We have presented a CPA method designed to
interpolate detailed alloy band structures between
those of the pure constituents. Comparison be-
tween experiments and our calculated results for
Al„Ga&,As, GaP„As&„,and Gain, „Pdemon-
strates the accurate quantitative nature of the
predictions. The band structures and alloy-
scattering information that can be obtained have
far broader applications than we have discussed
here, e.g. , detailed calculations of the optical
and transport properties. Furthermore, since
the concentration variation of the conduction- and
valence-band edges are separately calculated,
the energy steps at heterojunctions" can be deter-
mined.

The present calculation represents perhaps the
simplest realistic model. It uses only four sim-
ple basis orbitals per atom. The long-range in-
teractions are treated in a scaled virtual crystal
approximation, while the alloy disorder appears
only in the diagonal. matrix elements a, and a, .
In the absence of reliable information about the
effects of potential renormalization on E, and E,
in alloys, we take the values to be the same as
those in the pure compounds. This seems to be
justified in view of the accuracy of our results
and the recent self-consistent vacancy calcula-
tions " for Si, where it is shown that the im-

purity potential is quite localized.
One feature not treated in our model is the ef-

fect of the "off-diagonal" disorder in the local
bonding to antibonding interactions and in the
nearest bond-to-bond matrix elements. We have
demonstrated in II that the disorder in these
terms is significantly smaller than the ones we
have treated. Although this formalism can be
extended easily to include off-diagonal disorder,
its implementation would drastically increase the
computational complexity. Until more reliable
transition-matrix elements are available to make
the small. differences meaningful, the inclusion
of this disorder may be counterproductive. These
matrix elements may be improved by applying
Kane's" real-space Wannier-basis construction
to disordered alloys.

Although the four-orbitals-per- atom basis
produces good band energies, it yields poor
charge densities. " Improvements will result
from increasing the number of basis functjons.
This can be accomplished without spoiling the
simple picture of the bonding and antibonding basis
by using Louie's phase-dependent chemical or-
bitals.

However, there is an immediate modification
needed to extend the application of this method to
alloys with heavier elements. This is the treat-
ment of relativistic effects, particularly the spin-
orbit interactions. Techniques for dealing with
relativistic effects in the tight-bonding model are
already available ' ' for pure semiconductors
and alloys, and they should be easily absorbed
into our alloy mode1. Once this is done, calcula-
tions of the properties of all the pseudobinary
alloys —the III-V and the D-VI compounds includ-
ing the important HgCdTe (Ref. 68) system —will
be accessible to this method.
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