
PHYSICAL REVIEW B VOLUME 23, NUMBER 10 15 MAY 1981

Cyclotron resonance and cyclotron waves at far-infrared frequencies
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We develop a theory of quantum cyclotron resonance in semimetals at far-infrared frequen-

cies, assuming the ordinary polarization (E II Hp) and the ellipsoidal nonparabolic two-band

model, and compare it with the second harmonic, measured for the same polarization in

bismuth at 890.7 and 964.3 6Hz; For this purpose we derive the corresponding nonlocal con-

ductivity tensor in a way which takes the nonparabolicity fully into account ind which enables us

to relate lifetimes to quantities calculable microscopically, Although the theory derived is not

exact, it accounts in a quantitative way for the important features of the observed spectra. We

show that absorption on the high-field side of the resonances is related to high-frequency cyclo-

tron waves propagating in. the sample, which are damped and have reduced amplitudes due to
the finite lifetimes and due to the electrons which collide with the surface and ire thus non-

resonant. It was therefore necessary to find an adequate treatment of the surface effects. The
only adjustable parameters in the theory are the band parameters and lifetimes. To get a good

agreement with the experiment it was necessary to assume that the lifetimes were energy depen-

dent. We made only a very approximate estimate of this dependence, A more careful study of
the lifetimes is left for a subsequent paper.

I. INTRODUCTION

Cyclotron resonance is presently one of the main
methods of investigating the properties of the electric
carriers in solids. The resonance has its origin in

resonant absorption of the incident high-frequency
electromagnetic radiation by the carriers, circulating
about the applied static magnetic field Ho with the cy-
clotron frequency ao, . The observed spectra of the
resonance, however, depend rather drastically on
which system we are looking at and are sometimes
difficult to interpret. " For instance, cyclotron reso-
nance in lightly doped semiconductors may or may
not occur at the cyclotron frequency co„depending
on whether or not the frequency of the incident radi-
ation co is much greater than or less than the plasma
frequency co~. In metals or in semimetals, where

co~ && co, one usually observes a series of resonances
periodic in 1/Ho, where Ho is the applied magnetic
field. Each resonance occurs at co=neo„where n is
an integer. In the vicinity of the resonance the
dielectric constant of the carriers becomes real and
positive so that magnetoplasma waves" may pro-
pagate in the sample. Their behavior depends strong-
ly on the shape of Fermi surface, on the direction of
magnetic field, and on the density of the carriers and
their lifetimes. In addition, the presence of the sur-
face can affect excitation of these waves rather

strongly. To predict the line shapes and relative in-

tensities of the experimentally observed peaks is

therefore a difficult boundary-va)ue problem and un-
til now it has ohly been solved by some approximate
methods. The kind of assumptions one makes in

these approximations depends again on the properties
of the particular system we are looking at.

Classically speaking„electrons in a magnetic field
describe helical paths about the magnetic field vector.
The gyration of electrons is characterized by the cy-
clotron frequency co„-eHO/mc and by the cyclotron
radius R, —uF/co„where vF-10s cm s ' is the Fer-
mi velocity. An important parameter is electron life-
time v. The electromagnetic properties at low fre-
quencies, i.e., when co~ && 1, differ in most cases
from those at high frequencies, characterized by
eve » 1. %hen eo, r » 1 and co~co, an electron
makes at least one complete revolution during the
electromagnetic field period, and the action of mag-
netic field is manifested most distinctly. The cyclo-
tron wave spectrum arising in strong magnetic fields
therefore usually terminates at frequencies higher
than the cyclotron frequency co, . If the variation of
the high-frequency (so~ && 1}electromagnetic field
over the effective range I"= v/cu of the carrier (i.e. ,
the distance traversed by the carrier in one period of
the electric field} is small, then the nonlocal effects
do not play any role and the skin effect is normal.

23 5269 1981 The American Physical Society



A. MIKI.AVC AND H. D. DRE%

(This is true whatever the value of the mean free
path i = rvq ) . In the absence of a constant magnetic
field, the dielectric constant of metals and semimetals
is negative and the field actually attenuates exponen-
tially over a distance -g„=c/co~ from the surface, 80
being usually called the skin depth. The condition of
the normal skin effect at HO=0 is thus given by
I" && 50. In the regime of cyclotron resonance,
where co —co„ the effective range I' is of the order
of the cyclotron radius R, . It can therefore be as-
sumed that in the limit R, && 50 the spatial inhomo-

geneity of the high-frequency electric field over the
trajectory of a carrier is small, and consequently, local

theory is applicable.
In metals, we have R, & 50 and therefore nonlocal

theory is needed. There exists no exact solution' of
the electrodynamics in metal when magnetic field is

parallel to its surface, even for the simplest case of a

spherical Fermi surface. Approximate solutions have
been obtained, however, in a number of physically
interesting situations, 8 starting with the most
noteworthy original work of Azbel' and Kancr4 on cy-
clotron resonance in metals. These theories can ex-
plain reasonably well the cyclotron resonance in met-
als at microwave and also at far-infrared frequencies.

In bismuth, the plasma frequency is smaller by

more than one order of magnitude than in typical
metals. Accordingly, the characteristic distance over
which electromagnetic field changes appreciably is

much larger than in metals, and the cyc)otron radius
beco'mes smaller than the skin depth, R, & 50, at
least at the far-infrared frequencies. Cyclotron reso-
nance in bismuth under local conditions was investi-

gated by Smith, Hebel, and Buchsbaum. 9 They con-
cluded that in the local limit cyclotron resonance of
one definite group of carriers is impossible. The reso-
nance is screened by a longitudinal depolarizing
field' which couples strongly the longitudinal and
transverse degrees of freedom of the plasma and
shifts the resonant frequencies away from the cyclo-
tron frequencies of electrons and holes. The
resonant frequencies are hybrid9 and include the cy-
clotron masses of all the carrier groups. Cyclotron
resonance is possible only at such directions of the
magnetic field for which the cyclotron masses of two
nonequivalent electron groups are the same but their
orbits are inclined at different angles to the magnetic
field. Such a resonance is called "tilted orbit cyclo-
tron resonance. "

Actually, besides the hybrid resonances and reso-
nances on tilted orbits, the experimental curves in
Ref. 9 reveal the presence of maxima corresponding
to cyclotron resonance of an individual carrier group.
This fact offers evidence of the nonapplicability of
the local theory to the analysis of cyclotron resonance
in bismuth. Subsequently Hebel" has shown th
small but finite spatial lnhomogcneity of thc field
gives rise to a resonant term in the dielectric constant

and in the absorption coefficient. Hebel considered
cyclotron resonance of holes for the polarization of
the electric field F. along the constant magnetic field

Ho ("ordinary wave") and confined himself to the
case of R, && 50 when the resonant part of the
dielectric constant due to the nonlocal effect is a
small resonant addition to the main local term. In
this case the propagation of the cyclotron wave is still

impossible since the dielectric constant remains nega-
tive. Brovtsyna and Skobov" made a more complete
study of the nonlocal effects on the cyclotron reso-
nance of hoies in the regime R,/50 (( i and dis-

cussed the conditionsc under which one can expect
that a weakly damped cyclotron wave ~ould exist in

the sample. They demonstrated that an allowance for
cyclotron waves is essential in studies of the line

shape of cyclotron resonance in bismuth. This con-
clusion is supported by the results of the work, both
experimental and theoretical, on the spectra of these
waves, associated with the cyclotron resonance of
electrons in bismuth at frequencies around 10 GHz,
which were reported by Edel'man. '

The investigations mentioned so far are all classical
in nature, that is, quantum theory is not needed to
understand the experimental results. (The photon
energy A~ and thermal energy kT at temperatures -4
K are very much less than Fermi energy Eq. ) Fairly
recently the cyclotron resonance cxpcriments in

bismuth have been reportedi4, is at the far-infrared
laser frequencies around 1000 GHz. In these experi-
ments distinct quantum transitions were presumably
observed bctwceri a pair of Landau levels in the non-

parabolic conduction band of bismuth. Because of
the nonparabolicity, the subharmonics are split, the
n th subharmonic consisting of n peaks, each being
assigned to a distinct quantum transition. The far-

infrared frequencies of these experiments are also
significant in that they are comparable to zone-
boundary acoustic- and optical-phonon frequencies in

bismuth. One might expect that some effects of the
electron-phonon interaction cou1d be observed in the
form of an energy-dependent cyclotron mass, or an
energy-dependent cyclotron mass, or an energy-
dependent electronic lifetime, similar to those found
in metals. '6 Because of lack of a satisfactory theory
of the cyclotron resonance line shape neither the
resonance position nor the electronic lifetime have
been determined to the accuracy warranted by the ac-

curacy of the experiments. This is particularly true
for the lifetimes.

It is the purpose of the present work to investigate
the line shape of the cyclotron resonance in bismuth
in the regime in which the above-mentioned experi-
ments were carried through (mv && 1, R, & 50) so
that one could extract the information on bismuth
band parameters and lifetimes from the available
data. %C also hope to elucidate more general
features of the quantum cyclotron resonance in this
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regime when bands are nonparabolic and nonlocal ef-
fects are important and, in addition, the effects of the
surface scattering cannot be neglected. The acquired
knowledge could, hopefully, be used to understand
data from other materials (semimetals, degenerate
semiconductors) where the resonance can be ob-
served under the conditions similar to those in

bismuth at far-infrared frequencies.
%'e shall concentrate our efforts on the second har-

monics. The main reason for this is that the experi-
mental technique that was used in obtaining these
spectra did not give reliable results for the case of
large signals so that the observed line shape of the
first harmonics could not be trusted. '7 Experimental
data were obtained with E both perpendicular and
parallel to Ho, and for several orientations of the
crystal. In geometries with E j.Ho one must take into
account the Hall fields which makes the calculations
become exceedingly cumbersome. %e shall therefore
limit our study to the cases where E ll Ho ll binary
axis, with surface of the sample perpendicular to the
bisectrix axis. There is no Hall effect in this
geometry and, by making this choice„we do'not lose
any of the important features of the resonance,

II. BAND STRUCTURE

Before proceeding with our discussion of cyclotron
resonance, we need to describe briefly the nonpara-
bolic band structure, as it is found in bismuth. It is

presently quite firmly established, except for a few
details. (For a recent review see the work of
McClure. ' ) The three mutually perpendicular crystal
axis of bismuth, i.e., the binary, the bisectrix, and
the trigonal axis, will be labeled by x, z, and y
throughout this entire work.

A large part of experimental observations in

bismuth can be explained on the basis of the two-
band model, proposed by Lax and Mavroides. ' The
model is based upon the fact that at the L point in

the Brillouin zone, where the electron pockets in

bismuth are located, the conduction and the valence
band are separated only by a small energy gap of
-0.01 eV, and the other bands are at least an order
of magnitude further away. The dispersion relation
in the two-band model in which these other bands
are neglected can be obtained from k p perturbation
theory and is given by

band. It is of the form

0 0

&zz 0'zy

Azy 0!yy

(2.2)

The inverse mass tensor at the Fermi surface o. can
be expressed in terms of that at the band minimum
o.
'

by the relation

Eg~(EF) -=~=-
Eg + 2EF

(2.3)

E(n+1,s =—,) = E(n, s =+-, ) .1 I {2.4)

E, HO

The two-band model thus gives a nonparabolic
dispersion relation, however constant energy surfaces
are ellipsoidal. For this re tson it is often referred to
as an ellipsoidal nonparabolic model. The electron
Fermi surfaces are very elongated ellipsoids (ratio of
the longitudinal to transversal mass is -15) centered
at the L points of the Brillouin zone (ellipsoids a, b,
and c on Fig. 1), The ellipsoid a has its long axis al-
most parallel to the bisectrix direction. There is a
-6 tilt of its long axis toward the trigonal direction
which we will neglect in our considerations. The oth-
er two ellipsoids b and c can be obtained by rotating
the ellipsoid a through 120' about the trigonal itxis.
The hole Fermi surface h, containing three times ts
many carriers as one electron ellipsoid, is at the T
point. It is of very nearly ellipsoidal form and para-
bolic.

The energy levels in the presence of an external
magnetic field Ho are labeled by the orbital quantum
number» = 1, 2, 3. . . , , the spin quantum number

2
s = +—and the momentum kiq along the magnetic

field Ho. As shown by Cohen and Blount, '" the spin
mass is equal to the cyclotron mass in the two-band
model so that the levels have characteristic degeneracy

E' +-'( k ) = —
2 Eg +

2 Eg + 2Egh . {2.1)

(+) and (—) refer to the conduction and the valence
bands, respectively. Eg is the gap energy separating
the two bands and in is the electron rest mass. o.

'
is

a dimensionless inverse effective mass tensor which
refers to curvatures of the bottom of the conduction

f IG. l. Orientation of the f ermi surface of bismuth with

respect to the applied fields ind chosen coordinate system in

the experiments for which our cilcul ~tions were carried
through. The f ermi-surface ellipsoids are not drawn in re ~l-

istic proportions.
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If we introduce the magnetic level index, j
n+--s, n =0, 1, 2, ; . , s=+-l I (2.5)

(2.10) below]

( t[I I vo I tlr') = Eg [E'E ( 2 E + Eg ) (2E'+ Eg ) ] tr'

we can then write the magnetic energy levels in the
form

r
2 2' 1/2

(~, I I, , etHa g krr
EJ' I(kH-)- , E—g—+ —, Eg'+Er j „+

(2.6)

m,
' and mH are the cyclotron and longitudinal

effective-mass values at the bottom of the nonpara-
bolic -band. They are related to the effective-mass
tensor 8'= (8") ' as follows:

, &/2
detR'

mH=A ~ 8 ~ h, m,
mH

(2.7)

V,p= OkX (2.8)

which are of great importance since they determine
the conductivity. He found that the velocity matrix

element for the two-band model can be expressed in

terms of matrix elements with respect to eigenfunc-
tions of the effective-mass Hamiltonian X" [see Eq.

p+ 3- 1+ p- p+]-

E {1+ )= kH

ondut:tion
Bund

Vole nce

Bond

where h is the unit vector in the direction of the
magnetic field. Except for j -0 the levels are doubly

degenerate. Figure 2 represents the level structure
for Ho-5 kG parallel to the binary axis.

The wave functions in the two-band model, in the
case of an external magnetic field, were derived by
Wolff. " He also obtained the matrix elements of the
velocity operator

r

x()r I (E + E'+ E, )

+—'(yrxp, )(E —E') Ix') . (2.9)
e

Here E and E' are the energies [given by Eq. (2.6)]
of the states It]I) and IQ'), each of which may be in

either the conduction or valence bands; IX) and IX')
are the corresponding eigenstates of the effective-
mass Hamiltonian 3C"

%'A' ' S'
p '

p
2

(2.10)

p is the electron magnetic moment and m = p
—(e/e)A, where A is the vector potential of the
external magnetic field.

%olff also estimated" that the effective spin-
resonance matrix element (M p' ) for intraband tran-
sitions is smaller than that for the cyclotron reso-
nance (M y ] & ) by about the ratio

& IM,„;.I')
( IMcyctotron I

o)c

2(EF+E, )

'2

(2. 1 1)

E(n+ l, s = ——, ) —F (n, s =+—, )
1 1

S(n) =
E(n +1 s = ——') —F. (n s = ——)

2 2

(2, 12)

In applying the two-band model to bismuth, it

should be kept in mind that it is, at best, an approxi-
mation to the band structure. Cohen ' pointed out
that the experimentally observed values of o.

' require
the energy to be parabolic along the axis z. To elim-
inate this inconsistency he then proposed a new

model with nonparabolic dispersion relation and
noneilipsoidal constant-energy surfaces (NENP
model). At present, the experimental evidence
seems to be inconclusive with regard to validity of
the NENP model. Careful experiments' sensitive to
the shape of the Fermi surface in bismuth show a
nearly ellipsoidal constant-energy surface, and hence
there seems to be little necessity for choosing the
Cohen's NENP model over the simpler ellipsoidal
nonparabolic two-band model. In particular the low-

mass directions should be well described by the two-

band model.
The quantum oscillation experiments" " revealed

that the degeneracy of levels in bismuth is only ap-
proximate, with fractional deviation 5(n)

I=IG. 2. Energy levels E„ofbismuth in the nonparabolic

two-bind model for magnetic field Ho oriented along the

binary axis. The field strength is S kG.

ranging from about 10 to 30%, depending on the
direction of magnetic field. (It is about 10% in the
binary direction. ) The nonzero values for 5(n) arise
from the presence of bands other than the two con-
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sidered in the two-band model. Corrections to the
two-band model ~here studied by Baraff3 and later
also by a number of other authors (see Refs. 18 and
3l and the works cited therein).

%'e shall assume that the ellipsoidal nonparabolic
two-band model is adequate to study the main
features of the cyclotron resonance in our regime. A

more accurate study of lifetime may require that we
take spin splitting properly into account because non-
degenerate spin levels could give rise to a broadening
of cyclotron resonance lines. In this case one' would
then have to include also corrections to the two-band
model mentioned above. This can be done without
serious difficulty, however, at a price of a very com-
plicated algebra.

III. ELECTRODYNAMICS OF METALS AND
SEMIMETALS IN A HIGH-FREQUENCY

ELECTROMAGNETIC FIELD

where j ( x, t ) is the conduction current density and
E'0 is thc dielectric constant of thc lattice, Thc second
term on the right-hand side of Eq. (3.2b) comes from
the displacement current. This term is negligibly
small in metals at microwave frequencies. In
bismuth, ho~ever, ~0 = 100 and ~~ = 3 & 10'4 H z so
that the displacement current may not be negligible
when working with far-infrared frequencies.

For mathematical convenience, we will imagine
that the z & 0 half-space is filled with the image met-
al and that the fields and currents in both half-spaces
are induced by a current sheet 2I,5(z) at z =0 which
has the strength 2I, per unit width. By symmetry,
this sheet induces mirror-symmetric electron current
distribution in the real metal and thc }mage metal,
with J(z) =J(—z) and correspondingly b(z)

( —z ). Since the fields and currents fall to zero at
~, the total electron current must exactly

screen the source current in the sheet, so that

The behavior of 8 mct81 of 8 scmtmctal ln 8 hagh-

frequency electromagnetic field is described com-
pletely by its surface impedance Z (m)

4mI ~p,
e H, (0) e' Bb,/Bz +,

(3, 1)

(3.28)

rotH(x, r) = j (x,t)+ ——8(x,t), (3.2b)
. 4m-; ~0 9

c c 9t

The index i denotes components of the field parallel
to the surface of the sample. z is normal to the sur-
face and directed inward. Sample fills the z ) 0 half-
space and the wave is incident normal to its surface
with g and Ao both oriented along the x axis (Fig. 3).

The real part of the surface impedance Z (the sur-
face resistance R) determines the energy loss of an
electromagnetic wave upon reflection. It can be cal-
culated once the electric field inside the sample is
known. The fiekl is determined by the pair of
Maxwell equations

(3.3)

where 8 (+0) =d(z)/dz I, +0. We emphasize that
the plane z = 0 forms a genuine boundary between
the two half-spaces, so that electrons approaching it
from either side are reflected back instead of crossing
it.

In bismuth, at frequencies -900 0H z, we find
that, at the cyclotron resonance, the ratio of cyclotron
radius to skin depth is R, /50 ——, . Therefore, accord-

ing to what is said in thc Introductioh„ the relation
between field and current is nonlocal

,I';(x) =Jl d'x'rr;„(x, 7')it'„(x')

Because of surface effects the tenSor o-;k( x, x') does
not depend on the difference x —x' only, Bs it would
for an unbounded medium. It is clear, on physical,
grounds, that sufficiently far from the surface its ef-
fects on the conductivity vanish so that the conduc-
tivity becomes equal to that of the continuum.
Therefore it is convenient to write the total conduc-
tivity tensor as 8 sum

o-;k(x, x') =o-Ik( x, x')+o-;k( x, x'), (3,5)

where o-;k(x, x') is the bulk conductivity (and thus
depends on K —x' only) and o,"k(x, x') is due to the
surface effects, The expressions for both o.;k and o-;k

will be derived in Secs. IV—VI. The general form of
o-ik depends on the geometry of experiment. In our
case both, the incident g field and the constant Ho
field arc along the binary axis (x axis, see, Fig. 1)
l.C.,

FIG, 3. Specification of coordinate axes relative to the
sample surface and applied fields. g- ($, 0, 0), l30= (HO, 0, 0) (3.6)
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and the tensor o-;k is of the form" using Eqs. (3.4) and (3.5), and putting E =—E,

0 0

(3.7)

q(q'E) q E+koV'E=O

where kp=c»/e and

(3.8)

a rt(q, r», Hp) =apg p+ (r tr(qc», , Hp) (3.9)

Let us for a moment neglect all surface effects.
The Maxwell equations (3.2) then lead to the follow-
ing system of equations for the Fourier components
E, (q) of the electric field in the sample

2—'+—""+""--(.) ( )
C2 g 2

t/2

$'(+0) — '(q, —q') P (q') dq',
7f OO

(3.i4)

(3.1S)

where o- (q) and a'(q, q') are the Fourier
transforms of o. (z,z') and o' (z,z'), respectively.
The integral in Eq. (3.14) is the Fourier transform of
what we shall call the "surface current density" j'(z)

j (g) = g {zz ) g(z') dz

is the dielectric tensor of the bulk. Since in our case

q = (O, q, 0) the system (3.8) can also be written

(k,'. —q')E„=O,

Nzz Ez +
hazy Ey 0

kp »~E, + (kp a~ —q )Ey = 0

(3.1o)

The determinant of the system (3.10) must be equal
to zero for a nontrivial solution E(q) to exist. This
condition leads us to the equation

2
q

2

k2 kp2

0' & pyy
Egz

(3.11)

the roots of which are the possible wave vectors in

the unbounded solid. When the first factor in Eq.
(3.11) is zero, the electric field is of the form
E= (E„,0, 0) and a alone determines the dispersion
relation. This is the case in our geometry. The
second possible solution of Eq. (3.10) is of the form
E= (O, E„E~) and corresponds to the second factor in

Eq. (3.11) being equal to zero. This situation is real-
ized in experiments where ELHp. In this case the
longitudinal component of electric field is in general
not equal to zero, because of the Hall effect.

We shall assume that the tensor o-,q is of the same
form as og [see Eq. (3.7) [ and that the presence of
the surface does not change the character of the field
inside the sample so that the total current density has
x component only

~ =(I, o, o) . (3.12)

%'e express each term as a Fourier integral and find,

Equations (3.2)—(3.7) and (3.12) can be combined to
give

d ~( )+ co g( )
4m'o) . +2@( O)~( )

dz2 e2 C2

(3.13)

IV. CONDUCTIVITY TENSOR OF
THE UNBOUNDED MEDIUM

In this section we shall derive the conductivity due
to the resonant bulk electrons. The experimental
results which we want to interpret have been ob-
tained from bisectrix plane samples, with 5 and Hp

fields both parallel to the binary axis, i.e., axis x.
The cyclotron mass m,' of the electrons of the ellip-
soid a (see Fig. 1) is almost two orders of magnitude
larger than that of the electrons b and c. The same is
true of the cyclotron mass of holes. The frequencies
of the laser field and the values of magnetic field
were such that only resonant transitions of electrons
b and c could be observed. Electrons a together with
holes thus contribute to the nonresonant "back-
ground" conductivity which can be described well in
classical terms since, because of the large m„ the
separation between the Landau levels is very small
compared to Fermi energy. However, the conductivi-
ty due to the electrons b and c which are of most in-
terest to us here must be obtained by using quantum
theory. Our derivation will be along the lines which
are quite familiar. ' It will enable us to take the non-
parabolicity fully into account (within the two-band
model) and also to make contact with quantities like
mass shifts and lifetimes which can be, at least in

principle, calculated microscopically. The incident
electromagnetic field will not be quantized. We shall
assume that the states of interest can be constructed
of single-particle states and that the independent
quasiparticle approximation is adequate. Since we as-
sume that the two-band model is valid the one-
particle states are those given by Wolff. " According
to this model, the squared matrix elements for the
spin-flipping transitions are at least two orders of
magnitude smaller than those for the spin-conserving
transitions [see Eq. (2.11)] and so only the later need
to be taken into account.

Consistent with our assumptions, we can expand
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the field operator p ( x ), using A. = ( k, n, s )

j (x) = Xy)( x )a~ (4, 1)

where p„( x) are the Wolff wave functions" and a„
are the creation operators for the corresponding
states. As mention-ed in Sec. II, these states have
characteristic degeneracy given by Eq. (2.4). The
resonant part of the current operator is therefore

J.p ———,
'e X J)tj'x Iy„.( x ) v.pt]t„(x)

+ y„( x) l v,py, ( x)]c I a„',a),

(4.2)

(p~ I v., lpga)
= F(E„„E„)(x„ IH' m., lx), ) (4.3)

The quantity (X rlH' rrlX„) is just the matrix ele-

Since the' spin-flipping transitions can be neglected in

our case, the velocity matrix elements can be written

[Eq. (2.9)]

ment in lowest-order effective=mass theory. o.
'

is the
inverse effective-mass tensor at the bottom of the
conduction band and IX&) are the eigenstates of the
effective-mass Hamiltonian given by Eq. (2.10) which
correspond to the set of eigenv ilues A. = ( k, », .s ).
P„~= p„~

—(e/c ) Ar( x, t ), where Ar( x, t ) = Att ( x )

+A(x, t) and AII and A are vector potentials which

belong to the applied magnetic field and incident ra-

diation, respectively. The function F(E „E„)is de-

fined to be

E (E„,+ E„+E )
F(E„„E7,) =—

2 [E,E„(2E,+ Eg ) (2E„+Eg ) ] ~i'

(4.4)

Making use of the substitution rr„, i jr 7 ——(e/c )
&& [Att(x) +A(x, t)] we rewrite the total current-
density operator J ( x, t ) into a more convenient form

r

2

J,„(x, t ) = —e j,,p( x ) ——n' A ( x, t ) Il ( x ), (4.5)
C

where the oPerators j,p( x ) and 7 ( x ) are given by

the following expressions:

j„(x)—= —H" X F(E „E„)[x',(x)'7X„(x)—x„(x)'Vx'( x )]a'a„
2(

A, , A,

2——H' X F(E „E„)Att(x)X,( x )x„( x )a,a„ (4.6)

I

ti(x) =—X F(E„,, E„)X,( x )X„( x )a„,a„ (4.7)

The electron current J {x ) is then defined by

J ( xt) = ( J,„(xt)) = J (, x)e '"'+c.c. (4.8)

J {x)= j d'x'R"(x, x') 8{x')

where

2

Kt (x, x') =i a&(n (x—))5(x —x')5;;

(4.9)

OO

d~ ei (cu+iq)t

ho)

&& ([j;(x,t), j, (x')]) (4.10)

Using the standard linear-response technique we find
that

I

and J(z) and b(z) are related by the one-
dimensional conductivity o-R (z, z )

f
o-R (z,z') =

j
dx'dy'K "(x, x') (4.12)

where K ( x, x') is given by Eq. (4.10). The index
R is used to denote the resonant p ~rt of the conduc-
tivity. The nonresonant part will be discussed 1 &ter.

To obtain an explicit expression for o-R (z, z') the
eigenstates of the effective-mass Ikamiltonian given
by Eq. (2.10) are needed. We shall simplify the alge-
bra by assuming that the Fermi-surface ellipsoids lie

in the binary-bisectrix plane (i.e., xz plane, see I ig.
1), that is, we shall neglect the 6' tilt out of this
plane. With this simplification the tensor 0.,' corre-
sponding to the ellipsoid a assumes diagonal form

(i,j =1, 2, 3)

is the conductivity kernel of the unbounded medium„
due to the resonant bulk electrons.

In our geometry the induced current density and

electric field are

h ( x ) = [ 8(z ), 0, 0], j ( x ) = [J{z),0, 0], (4.11)

1 0
771x

1 0
771g

0 0
771'

0 (4.13)
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(The asterisk denotes quantities at the bottom of the
band. ) The tensors eb, which belong to the ellip-
soids b and e, respectively, are then obtained by rotat-
ing n~ by +120 about the trigonal axis

where p, = ih—8/r}z; p = a„",/a~; and zo = ep~—/eHO.
The equation obtained evidently corresponds to a
harmonic oscillator which is displaced both in coordi-
nate and rnomcAturA space. Thc mass of thc oscilla-
tor is I/n, ', and its frequency co,

"

~w 4' 4t'

&bc = +xz

0 0 o.yy

eHp

C

eHp
'

N't C
(4.18)

= —+K3- „1 1

4 m„' Mz

+&3 1

fI1x Mz

ffiz

0

0

(4.14)

Using Eq. (4.14) we find for the cyclotron mass m,
'

and the longitudinal mass IH

Pl» 01@ P11z
I/1~ = 2

3~hz + ~&1x

4t'2

1 4 o'~ 4
N1~ Azz 3 ff1 + ff1x

fn the Landau gauge, the magnetic field along the x
axis can be described by the vector potential

Ax =A, =0, Ay= —Hpz

Making use of the Eqs. (2.10), (4.14), and (4.IS) we
can write the effective-mass Hamiltonian Xb, for the
electrons on the ellipsoids b and c in the form
(neglecting the spin part)

+ 2 4 + + 4 A2 4t + ~H0
A~px + 0! p p +A p +&yy py+

C

in accord with the expressions (2.7). From Eq.
(4.17) wc infer that

2

E = (n + —, )has, +--px

2 ffIII
(4.20)

(4.21)

The wave functions corresponding to the Hamiltoni-
ans BCb', can easily be found to be ( kq kj = k„x
+ key)

a" (p, + pp )'+a,', — (z —za)' y(z)
C

r

l
F. ——0.XX

0', zz

p„z y(z), (4.17)

(4.16)
%'e need to find the eigenstates of these Hamiltoni-
ans. Since 3Cb", commute with p„and p~ there exists
a complete set of eigenstates IEp„,p„). The
Schrodinger equation then leads to the following dif-
ferential equation for the z-dependent part of the
wave function:

@-„„,(z) is the normalized wave function of an ordi-
nary harmonic oscillator with its center at
zo = ep&/eHO

-fu /2)fz-z )
d-„„,(z) =N„e ' H„la(z —zo)]S(s),

(4.22)

where a'= eHO/et and S(s) is the spin-wave func-
tion. The functions H„(z) are Hermite polynomials
and N„are the normalization constants.

From Eqs. (4.6), (4.14), and (4.21) we readily find
that

,j„(x)=— X exp[i(kg —kg) . x +ip(4 —ie, )z)
)t, , A,;s s

x ","
$),(z)d„,(z)+a„", Q„,(z)—P„(z) —@„(z)—$„,(z) F(E,E„)a,a), . (4.23)

egg gz

To calculate the current-current commutator in Eq. (4.12) we shall make the following Hartree-Fock-type approxi-
rnation

( a(r)a-„„,(r} „', ,a(0)a-„, , (0))= (a-„,(i)a „. . .(0)) (a-„„(i)a-„,(0))

(a „.. . (0)a „. . .{0)a-'„,(r) a-„„(r)) = (a-„. . . (0)a-„„,(r})(a „. . .(O}a-„,(i))
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and further assume

(a-„„,(i)a-„(0))=—G+„,{&)5-„-„5 5, , (at-„(0)a-„„,(i)) =—Gk»„, {r)h„„,g,h, ,

where as usual 6~& has the temporal Fourier transform

G-„„,(r) = Jl A-„„,(a)) j( ) e '"'

in which f'(~) is the Fermi distribution function. A-k„, (eu) is the spectral distribution function. %e assume that A

takes the Lorentzian form with characteristic width I'), [)). stands for (k,ns),].

ff we add the contributions of electrons of ellipsoids b and ~ (see Fig. 1) we get

ft) A~k 2

J dx'J dy'([j„{x, i),,j„(x')]) = X 2,") X„,„(-")X „(=')+ "*
DII„, „{=)DII„,„(=') F){E„,.E, )

]I, ]t.;k -k ) )

0II (z)=—q5 (z)—@,(z) —dg(z) —4 (z) . Ot ~ (z)=—P (z)dg(z) .
)

The functions )f)„(z) are given by Eq. (4.22).
%e deal with the gauge current [the first term in the Eq. (4. IO)] by noting that at zero frequency there is no

current" (in the absence of Landau diamagnetism). Integration over i, together with this assumption, gives us [sec
Eq. (4.12)]

2 pr

an (z, z') =i t x J
—' '

A„(au')A, .(a)")[f(o)') —f ((o") ]
GtP r r ~ 2'fj 277]t, A,;k k

I
$ ~$

Qj —QJ + Ed + I'g OP QP + l'g

Here X= {k, n, s). The functions X (z) and DR „(z) are given by Eq. (4.29). The evaluation of the integrals

over ~' and ao" can be carried through by contour integrations. The resulting function 5)„„(co)can be expressed ~s

where 5 g (a)) Is given by (6))) = +g/t, a) i = a) i —.0))), and I i = I & + I ),)

l

X
Fk l

/3t „~ [(oo(n ) —ru„]'+ I")/4 { 0))o+na) —o)„+)I /2

) ) da) rl0) ~ ( i)~ ( ii) J. ())) ) j (fU )
?~ 2~ . M —M +co +I'g

,j'(a), + i I'„/2) f (cu„, i I",/2)— —

M Ca) i +/I i /2
A A.

con(+n) are the complex poles of the Fermi function f (0)) and P = I/kT

a)0(+n ) = +-(2n +1)im +—,n =0, 1„2,3, . . .
pt t
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It turns out that our regime (eve = 100 and T —4.2 K) the contribution of the poles coo(n) of the Fermi function
[i.e., the second and third term in Eq. (4.32)] can be neglected.

Most important to us will be the Fourier transform of o.R (z,z') which can be written in the form o.R (q, q')
=5(q +q')o-R (q), where

r 'I

e'eo dk
an (q) =l XJ,Sk „,(Ol)F (Ek „„Ek,) „zX„(q)OI„(—q)+ OII„(q)On„( —q) (4.34)

The functions OR„(q ) and 'X„(q) are Fourier
transforms of the functions OI„(z) and OII„(z),
respectively [see Eqs. (4.29)]. Using a well-known
formula one can readily find'"

' n —rn

Oi„(q) =N N„a '2"7r' tn!i"
2a

I

X g ~-m q -[q/2~ &

2 2

m
2a

(4.35)

where n ~ m, az = eHrl/cir, and 2" (x) are Laguerre
polynomials. N„and N are the normalization con-
stants [Eq. (4.22)]. Furthermore one finds

I

We pointed out already in Sec. III that in Bi at far-
infrared frequencies of interest to us R,/5= —,

'. [In

the case of large quantum numbers n it is still
possible to define cyclotron radius R, similarly as in

classical physics since the probability of finding an
electron is strongly concentrated at the distance
R, = 42n + I/a from the center of the "orbit"
(a'=eHO/c/r) ]Ther. efore, within the distance
2R, = 25/3 from the surface only a fraction of elec-
trons can resonate. The rest of them strike the sur-
face and are thus nonresonant. In the case, e.g. , of
spherical Fermi surfaces and classical orbits one finds
that the fraction N, /N of the resonant electrons
varies with the distance from the surface as'

SI„(q)= —iqOI„(q) 4amO—I„m, (q)

+2a' 9t„(q) .
Iraq

(4.36)
N„—,[(z/2R, ) —

—, (z/2R, )'], z «2R,
1, z~2R, . (S.1)

V. SURFACE EFFECTS ON THE CONDUCTIVITY

Effects of the surface on the excitation of cyclotron
waves have been already studied by a number of au-
thors. (See, e.g. , Ref. 1, p. 14, and work cited
therein. ) In particular, the experimental and theoret-
ical work of Allen and collaborators' on cyclotron
waves in sodium and potassium in the far-infrared
shows convincingly that surface effects can be quite
strong. The main results of the work already done in

this area can be summarized in the conclusions that
surface effects may lead to change in the amplitude
of the excited wave and that they cannot much affect
the character of wave propagation inside the metal. '

This holds true particularly well when the surface re-
flects electrons specularly.

Since the field inside the sample depends strongly on
the fraction of the resonating electrons6 we cannot
expect the correction term o-'(z, z') due to the surface
effects to be negligible in our circumstances.

The expression (4.30) for the bulk conductivity
o-R (z,z') itself suggests a possible way of determining
the surface correction term. We note that ky

eHaza/ct, whe—re zo is the center of a harmonic
oscillator-type wave function and corresponds to the z
coordinate of the center of a classical electron orbit.
This means that when we integrate over ky we in fact
sum up the contributions of all oscillators (i.e., or-
bits) in the interval [—~, ~]. Because of the colli-
sions of electrons with the surface, there are in reali-
ty no such oscillators with centers zo in the region
—R, & zo (R, . We must therefore subtract from
o.R (z,z') the contribution Ao-(z, z') of these spurious
oscillators equal to [see Eqs. (4.30)—(4.32)]

El'(z, z') =i
n dzo JI. XQk (Ol)F (Ek nn Ek )mnnzOtnm(z)Otnm(z') + OIInm(z)ORnm(z')

2

This is particularly important because they are in the
region closest to the surface where electric field has
the largest values and because their contribution con-
tains resonant terms.

The conductivity due to the electrons which collide
with the surface depends rather strongly on the na-

(5.2)
]

ture of surface scattering and is difficult to evaluate
exactly. However, we may assume that a rough ap-
proximation to it would be good enough for our pur-
pose since this part of the conductivity is non-
resonant. If certain conditions were satisfied some of
these electrons could absorb energy resonantly, due
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to surface quantum states. ' However, the relative
fraction of such electrons, at a particular value of
magnetic field Ho, is very small and we need not
worry about their contribution. An electron close to
the surface is moving periodically (assume smooth
surface) in the z direction, as if acted upon by an ef-
fective potential similar to a segment of a harmonic
well closed at the surface by a vertical wall. The ex-
pression for the conductivity of these electrons is
similar to Eq. (5.2) although their energies and wave
functions are somewhat different from those of the

electrons in the. bulk so that, at the frequencies of in-
terest, most of them cannot absorb energy resonant-
ly. We may therefore assume that the conductivity
of electrons which collide with the surface may be
well approximated by the nonresonant part of Eq.
(5.2), i.e, , by the nonresonant contribution of those
"orbits" which we found to be spurious because of
the surface effects. It follows then that only the
resonant part of Eq, (5.2) has to be subtracted from
o R (z,z ) so that the surface correction term is of the
form

e'Ho t'R. p dk„o'(z, z') = i —
l „dza j ", X $„„,(o))F'(E„„„E„,)

2/-„' 0'xz,", M„(z)X„(z')+ OR„(z)OR„(z')
ll'tII 2

(5.3)

VI. SURFACE IMPEDANCE- THEORY AND
COMPARISON WITH EXPERIMENT

We shall not attempt to obtain the exact expression
for the surface impedance, that is we shall not try to
find the exact solution of the Eq. (3.14). Instead, we
will make assumptions which appear to be physically
sound and which greatly simplify the calculations.
The resulting expressions for the surface impedance
will then be confronted with the experimental results.
In his paper Allen' discussed in detail the excitation
of high-frequency ordinary cyclotron waves in a
semi-infinite metal in the far-infrared. His investiga-
tions are in spirit very similar to ours, however the
physical regimes are vastly different in both cases.
The assumptions which we both have to make so that
the problem becomes tractable therefore differ very
much and the same is true for the calculations them-
selves. We shall see, though, that regardless of these
differences some of our observations, in particular
those concerning effects of the surface on the line

shapes, are similar indeed.
First, we shall study the surface impedance assum-

ing that the electric field at the resonance does not
differ much from the field away from the resonance.
In such circumstances we can take the variational ap-
proach, formulated by Marcus35 and subsequently
used by a number of authors dealing with the surface
impedance of a metal. "' We shall then go to the
other extreme and calculate the impedance ignoring
the surface scattering entirely. It will become clear
that neither of these two approaches leads to a satis-
factory theory of the resonance lines. They are
nevertheless worth mentioning because of the insight
they provide. Finally we shall calculate the surface
impedance by attempting to solve the integral equa-
tion (3.14) with the effects of the surface included.

A. Variational approach

d 8(z) +~0—8(z) = —I j(z). 4&cd

dz' 2 C2
(6.1)

If we multiply Eq. (6.1) by 5(z) and integrate it by
parts and then use the expression (3.1) for the sur-
face impedance we get (b'= db'/dz)

C2Z-I c $-2(0)
I 4vPQJ

2 f+ oo

$ ( )+ QJ

0 , 2

+ Jt dz j(z) g(z) (6.2)

As it was already mentioned above, variational ap-
proach is useful if it can be correctly assumed that
the electric field varies very little, even at the reso-
nance, with the applied magnetic field H() and can be
therefore well approximated by its value away from
the resonance, or at H() =0. Such an approach gives
good results, for example, when for some re ison
only a small fraction of electrons can undergo
resonant transitions, '" In bismuth, however, this
condition is not satisfied. Nevertheless one sees that
the experimentally observed signal at the second har-
monic is more than ten times smaller than th it at the
first harmonic„ leading to a change in the transmitted
power of only a few percent. The resonance at the
second harmonic is weakened because of the retarda-
tion effects" and because the surface scattering
reduces the number of the resonating electrons. It is
therefore not unreasonable to expect that the varia-
tional approach should give adequate results in the
cases presently considered.

The relation between electric field and current in

the semi-infinite sample is given by [see Eq. (3.13)]
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Z ' is stationary, for given 5(0), at the correct elec-
tric field distribution $(z)."

Let o- (z,z') be the conductivity at some value of
magnetic field Ho away from the resonance (HO=0
can be chosen) and let $0(z) be the corresponding
electric field distribution in the sample. The surface
impedance Zo is then determined by Eq. (6.2). If
ho. (z,z') —= 0.(z,z') —o. (z,z') is small for all relevant
values of magnetic field we may then expect the elec-
tric field 8(z) does not differ much from 8 (z),
even at resonance. Equation (6.2) gives then, to first
order in the change in the nonlocal conductivity
So.(z,z')

Z '=Zo' +h(Z ')
where

s(z ')=p (0) J d J d'E'( )

(6.3)

x srJ(z, z')8 (z'), (6.4)

Differentiating Eq. (6.3) we find, with the same accu-
racy

(6.S)

Only O-g(z, z') varies appreciably with Ho and thus
we have to calculate the right-hand side of Eq. (6.4)
with 5o.(z,z') replaced by &re(z, z'). We assume that
the field 8 (z) has an exponential form

8'(z) =8'(0)e ' ' {6.6)

dz „(z) (z) = dzp(z) (z) . (6 7)

With this approximation we can then calculate 5(Z ')
to obtain

where 5 is a complex constant. Although this ap-
proximation is not appropriate in the anomalous
skin-effect regime, " i.e., at microwave frequencies
and low temperatures, at far-infrared frequencies we

are returning to the classical skin-effect limit and the
exponential approximation is more satisfactory,

To calculate 8(Z ') given by Eq. (6.4) we first note
that zo (the equivalent of the position of classical orbit
center) can only have values zo~ R, and that the
functions @„(z) [see Eq. (4.22)] fall to zero very

rapidly when ~z —zp~ & R, . It is therefore a good
approximation if we put

(6.8)

The functions X), F, X, and 9Rare defined by Eqs.
(4.31), (4.4), (4.35), and (4.36); R, = J2n + I/a and
az=eHp/ct At our fre.quencies rpz » I so that the
skin effect is almost classical. If the field were the
same as at HO=0 we would expect 5 to be real and
equal to Sp= c/pup = 10 ~ cm (c»p is plasma frequen-
cy). (II/BHp)Z was computed for a number of com-
plex values of 5. The variationally calculated line
shapes which are closest to those observed experi-
mentally are depicted on Figs. 7(a) and 8(a). The
lifetimes and the band parameters were chosen the
same as for the other, more accurate calculations
which will be described in the next section. They are
given in Tables I and II. It should be emphasized

TABLE I. The band parameters in bismuth assumed in

our c ilculations of line shapes. in, is the cyclotron mass at
the bottom of the nonparabolic band, i.e., m, =fn, (EF-)/
(1+2EF/Eg). in, is the electron mass.

TABLE II. The assumed Lorentzian widths fI „(k&,HO)

of the Landau levels at the values of k0 and Ho ~t which

the transition between the levels n and in occurs. All tI „'s
are given in meV,

/ =890.7 GHz f =964 3 GHz

I

that the results could not be improved in any essen-
tial way by changing the band parameters and the
lifetimes only.

We see from the Figs. 7(a) and 8(a) that the varia-
tional approach properly accounts for some of the
features of the observed spectra. Our findings are
largely in agreement with the interpretation of the
spectra given originally in Refs. 14 and 15 on the
basis of simple considerations concerning the condi-
tions under which the resonant transitions can occur.
The second harmonic consists of two individual

890.7
964.3

0.009 44
0.009 32

0.001 58
0.001 58

29.9
29.4

12.0
12.0

,f (GHz) inc(EF)/inc "'c /n'e EF (meV) Eg (meV) ~r„„=0.048
AI „9=0.063
A I ggg9 0.107 if i)t ~ 9

er„g9 00 if «» 9
tI „=0.0 otherwise

t I „9= 0.063

~r„,= 0.004
hl „&8=0.173 if in ~ 8

h I „=0.033 otherwise
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40—

I I I I I I I I I I I I I I I I

Eg=13.0 meV

00170 (n) 17 161S14 13 12 11 10
8

e 30-F
E

I I I t I I I I I I I I

0.2 0.6 1.0 1.4 1.8 2.2 2.6 3.0 3.4
MAGNETIC FIELD {kG)

F'IG. 4. Energy levels E„(k&=0) of bismuth in the nonpar;ibolic two-band model is i function of » ind m ignetic field IIo.
The k& =0 transitions contributing the major part of the spectra ire indicited by irrows. The band parameters ire slightly dif-
ferent from those used in our calculations.

peaks, each due to distinct quantum transitions
between a pair of Landau levels in the nonparabolic
conduction band of bismuth. Because of the nonpar-
abolicity, these transitions occur at different values of
magnetic field. In Fig. 4 the energy levels in the Lax
two-band model are depicted for k& =0 and the ar-

rows there indicate the quantum transitions which oc-
cur at that particular value of kI~. Although the calcu-
lated maxima in BR/BHO are located roughly at the
magnetic field values where the kIq =0 transitions in-
dicated in Fig. 4 take place, " the relative strength of
the calculated peaks and the overall line shape (par-

f = 890.7 GHz f = 9643 GHz

qRc 1: Re(q R)

1a: -Im(q R)

2: Re(q R)

-Im q R

qR,

1.5

1: Re(q R, )

1a: -Im (q R&)

2: Re(q R)

2a: -Im (q R~)

10 1.0

0.5

l
, ~ ~ ~

\'

1a ~ ~ ~ . . ~
'

5

~ ~ ~~ ~ ~

0.5 1Q
~ ~ ~ ~ ~ ~ ~

. .. . ~

1 +V '~l I

1.4 1.6 H (k0e)

I.IG. 5. Real and imaginary part of qR, of the two cyclo-
tron waves with the smallest wave vector q 'it the frequency
890.7 GHz. The positions of experimentally observed peaks
at 1.427 and 1.576 kOe are m;irked by arrows.

1.6 1.8 Ho(k 0 e)

I IG. 6. Re il ind imaginary p;irt of qR, of the two cyclo-
tron w;ives with the smallest w;ive vector q at the frequency
964.3 GHz. The positions of experiment illy observed peaks
;it 1.485 and 1.667 kOe are m;irked by arrows.
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ticularly on the high-field side of each peak) are sub-
stantially affected by the transitions from other
values of kz and other sets of Landau levels. These
transitions can therefore generally not be neglected,
contrary to the conjecture put forward in Refs. 14
and 1S. This observation was confirmed by the more
accurate calculations of the following section.

It is important to note [see Figs. 7(a), 7(c), 8(a),
and 8(c)] that a reasonable agreement with the experi-
mental line shapes could not be obtained with one
single value of 5. Whereas the first peak in each of
the two spectra could well be reproduced by a real 5,
a complex value of 5 must be assumed in order to
reproduce the second peak. The value of 5 which

gives good line shape at one peak gives thus only un-

satisfactory line shape at the other peak of the same
spectrum. Later on we shall see that the experimen-
tally observed spectra must indeed be attributed to
two electric field modes, with their complex wave

vectors q l and q2 differing considerably in magnitude
and in the dependence on Ho (Figs. 5 and 6). The
variational formulation of the problem is valid gen-
erally. To make practical use of it, however, we must
be able to correctly assume the behavior of the elec-
tric field inside the sample. As we have seen, this
behavior is rather intricate and therefore difficult to
guess. The variational approach thus cannot be reli-

ably used to study cyclotron resonance in our regime.

B. Approximate solutions to the field equation

Results of the variational calculatiog. s described in

Sec. VI A show clearly that the wave effects cannot
be neglected. One therefore feels inclined to go to

the other extreme and ignore the effects of the sur-

face, manifested in the conductivity n- (z,z'). If we

neglect o' we get for the surface impedance [see Eqs.
(3.1) and (3.14)] the expression

we may conclude that the most important contribu-
tions to the surface impedance Z come from the
poles p of the integrand in Eq. (6.9) which satisfy

Ip I « 1. Furthermore, we may assume that in the
domain Iy I « 1 a. (q ) can be well approximated by

the power-series expansion in y

1 0 (q) —Sp + S ly + S2 y
I

(6.12)

2Q c co
y s2+y sl+ + sp —— op=0

4m cv 4m
(6.14)

The coefficients Sp, Sl, and s2 are defined by the Eq.
(6, 12). For each pole p; there is a mode of electric
field with the complex wave number q;= J2ap;. As
mentioned already, the largest part of the surface im-

pedance Z comes from the excitations with qR, « 1.
It turns out, as we shall see later, that Z can be ap-

proximated to a sufficient degree of accuracy by the
contribution of the smallest two poles. From Eqs.
(6.9), (6.13), and (6.14) we then obtain, making use
of the approximations introduced so far, the follow-

ing expression for the surface impedance

The expansion for the background conductivity

op (q) of the nonresonant electrons and holes can be
obtained with the help of the formulas given by

Rodriguez. 3
crp (q) is a function of the variable

qf uF/( I —i cur) = ~qvF'/co (since cur && I ) Iquf/~I is

much less than 1 for the excitations Iq I-1/5. So for
both, era (q ) and o.o (q ), the expansion around zero
is needed.

The lowest two poles pl and p2 of the integrand in

Eq. (6.9) are then, within our approximations, equal
to

(6.13)

where y l and y2 are the two roots of the equation

Z(Hp) =
i dq —q +—&p+ 0 (q)4~~ r . 2 N 4' le)

OO C2 2

J2a 1 1z(hp) =
S2(Pl —P2 ) Pl P2

(6, 1S)

rr" (q ) = o.s (q )+ ao (q) (6.10)

where op (q) is the nonresonant "background" con-
ductivity of holes and electrons of the ellipsoid a (see
Fig. 1), The integral in Eq, (6.9) can be, at least in

principle, evaluated by contour integration. It is im-

portant to note that the wave vectors of the most
relevant excitations are of the order Iq I

—1/5, where
5 is the skin depth. In our regime R,/5 « 1 and

since erg (q) is actually a function of y, defined by

q2 (qR, ) 2 eHp
y, = = ' -, a'=---

2a2 2(2n + 1) ' ct (6.»)

(6.9)

(q) is the Fourier transform of the total conduc-

tivity of the unbounded medium, i.e.,

In Figs. S and 6 the dependence of qR, on magnet-
ic field Hp is depicted for the two relevant electric
field modes (i.e., for the lowest two modes) with the
complex wave vectors ql and q2, respectively. R,
was chosen to correspond to the Landau level 9. The
curves were obtained by solving the dispersion equa-
tion numerically for complex zeros, at each relevant
frequency and magnetic field value. The conductivity
was not approximated by the power series (6.12) for
this purpose. We see that one can indeed talk of a
"small-q" and a "large-q" mode, with their respec-
tive wave vectors q~ and q2 satisfying Iq~R, I && 1

and Iq2R, I & 1. The surface impedance Z was calcu-
lated by the approximate formula (6.15) and the
values of 5R /5HO obtained herewith are given in

Figs. 7(b) and S(b). The dotted curves represent the
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contribution of the "small-q, " and the broken curves
the contribution of the "large-q" mode. Both modes
together give the spectrum represented by the solid
line. The calculated line shapes could be understood
even better if one keeps in mind the behavior of the
two modes with Hp, as illustrated by Figs. 5 and 6
(arrows there indicate the positions of the experimen-
tal peaks). ~e see that at the first peak the contribu-
tion of the "large-q" mode is small since the mode is

strongly damped there, due to large imaginary part of
q2. The dominant electric field at the first peak is
thus almost exponential in character, the real com-
ponent of q~ being very small. At higher values of
Hp the imaginary part of q2 decreases rapidly and be-
comes smaller than Im(qt) at the second peak where
the contribution of the q2 mode to the spectrum pre-
vails. The variational calculations thus correctly
indicated the behavior of the electric field in the
sample.

Comparing Figs. 7(b), 7(c), 8(b), and 8(c) we con-
clude that the present approach again does not lead to
satisfactory agreement with the experimental line
shapes. The calculated spectra show too much ab-
sorption on the high-field side of each peak, thus in-
dicating that damping of the waves due to surface
scattering of electrons cannot be neglected. We shalll

have this conjecture confirmed by the more accurate
calculations to be described next. It should also be
pointed out that proper relative intensities of the two
peaks in each spectrum could not be obtained without
surface scattering being taken into account; this is

particularly true in the case of the resonance at 890.7
6Hz. The band parameters and lifetimes were here
again chosen as given in Tables I and II, since they
lead to the best agreement with the experiments in

more accurate calculations. The present results, how-

ever, could not be significantly improved by solely
changing the band parameters and lifetimes.

We shall now attempt to obtain in approximate
solution of the field equation (3.14), with the surface
scattering term included. According to the works re-
ferred to already at the beginning of Sec. V we may
expect that surface scattering does not essentially
change the character of the electric field inside the
sample. We may therefore assume that the field is,
similarly as in the preceding case (where surface ef-
fects were ignored) equal to a superposition of waves
with complex wave vectors q; and that only the two
modes with the smallest magnitude of wave vector
need be taken into account. Each of the modes is

exponentially damped with a damping constant
1/8; = lm(q;) which depends on Ho in a way that may
differ considerably from mode to.mode (see Figs. 5
and 6). So the corresponding field could be regarded
as being essentially zero outside a layer of width
-28; around the surface. The Fourier transform
F. (q) of the electric field is thus peaked at the values

q = Re(q/) and the width b, , of any such peak is ap-

proximately giveri by

', —2n/28;
~/

(6.16)

Suppose now that q is at the center of one of the
peaks in E(q), i.e., q = Re(q;), and that h~ is the

I

corresponding width of this peak. We can then write
the surface term in Eq, (3.14) approximately as

o'(q, q') E—(q') dq'= o'(q, —q) E(q) hq

+Jt o'(q, q')E(q—')dq',

o-,ff(q) —= a- (q) + a-'(q, —q )b,, (6.18)

Then the wave equation (3.14) can be approximately
written as

—q'+ —,op+, ,ff(q) E(q)

r t f/2

E'(+0) — '
cr'(q, q')E(q') dq' . —

g2 oo

(6.19)

We shall, in what follows, neglect the integral in Eq.
(6.19) which contains the "mode coupling" due to
the surface effects. The expression for the surface
impedance assumes then a form similar as in the case
with no surface effects [see Eq. (6.9)], with o. (q)
replaced by n.,ff(q)

Z ( H p) = ~q —q'+ —~p+ — ~off(q)
4/ co 2 oJ 477 / QJ

2 ~ 2 ~2

(6.20)

We can then calculate the surface impedance Z(IIp)
assuming again that the main contribution to it
comes from the two smallest poles of the integrand
in Eq. {6.20) and that these poles can be calculated
with sufficient accuracy by expanding o.,ff(q) up to

q=Re(q;) . (6.17)

Aq in the second integral indicates that in the in-
I

tegration over q' we must exclude the region A~ cen-
I

tered at Re(q;). The expression (6.17) should be a
good approximation if q is near the center Re(q;) of
one of the peaks in E(q), and may in general be )ess
good for other values of q. This, however, may not
substantially affect the results since the peak values
of the Fourier transform E(q) can be expected to be
most important.

We now introduce an effective conductivity
cFcff(q ), denoting by A~ the width of the peak of
which the center is closest to q:
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the term quadratic in y = q'/2a', as in Eq. (6.12).
These assumptions are based on the same arguments
as in the calculations of Z (Ho) without the surface
scattering effects, earlier in this section. To carry
through the calculations in the present case, we need
to know h~ which is a function of the magnetic field
Ho and differs considerably from mode to mode
(Figs. 4 and 5). For the lowest mode we may as-
sume that, at magnetic fields well below the region
where the first peak occurs, 8~ is essentially the same
as when no surface scattering is included. This
should be a good approximation, since there are al-
most no effects of the resonance at those values of
magnetic field (R,/5~ is close to —, there, as one

would expect from the usual skin effect). Further-
more, we see that, in the case of the lowest mode, S~

does not change much over the intervals of magnetic
field of, say, 10 G, which was the separation of the
points at which the derivative BR/BH„was comput-
ed. At each value of magnetic field Ho we can then
compute, together with r)R/BHO also the value of 5~

and then use this 5~ to compute the derivative
BR/BHO at the next value of magnetic field. In order
to calculate the contribution of the upper mode, we
first note that in this case R, /Sq & I over a large in-

terval of magnetic field, even if surface scattering is

neglected. It is clear, on physical grounds, that sur-
face scattering should depress severely the excitation
of this mode at the magnetic fields where R,/gt & 1.
In fact, we found it correct to assume that, for the
above reasons, the excitation of the upper mode can
be neglected in the region of the first peak. Some-
where between the two peaks the contribution of the
upper mode is beginning to be important„ it should,
however, be very difficult to calculate precisely how
this happens and thus to obtain correct line shape in

this region. We note that at the second peak Im{q~)
is comparable to Im(q

~
) and so are, of course, the

corresponding 5's. On the grounds of these observa-
tions we further simplified our calculations of
Z(HO), by neglecting the contribution of the upper
mode over the region of the first peak, and calculat-
ing it over the remaining interval of magnetic field

Ho using the same hq as for the lower mode. The
results of these calculations are depicted in Figs, 7(c)
and 8(c). We see that, by taking into account the ef-
fects of surface scattering, we get a much better
agreement with the experiment. As expected from
the discussion above, the agreement is rather poor in

the region between the two peaks of the spectrum,
especially at the frequency 964.3 GHz. The band
parameters used in these calculations are consistent
with those deduced in Ref. 15. They are given in

Table I. Although the k~ =0 transitions indicated in

Fig. 4 were found to contribute the main part to the
spectrum, transitions from other levels and other kII
values could not be neglected, contrary to the conjec-
ture put forward in Ref. 15. To calculate the line

shapes, we would thus need to know the dependence
of lifetimes v on kjq, Ho, ind level number I~, i,e.,
T = 7'( ll, Ho, kg ) . This information is not available tt
present. It seems to be reasonable to assume that
most important really ~re the lifetimes of the two
states at the value of H() and kI~ where the resonant
transitions between these states occur. In this case it
would then be sufficient to know the lifetime of each
Landau level only at one particular value of H() ~nd

kI&. We made this rather crude approximation in our
calculations of line shapes. In Table II the Lorentzi-
~n widths I „which have been used here are given
for each Landau level; as is well known, they are re-
lated to the lifetimes'v by I = I/r. ' We can say, on
c &reful examination, that even relatively small devia-
tions of a few percent from the I „'s given in Table II
produce rather substantial changes in the calculated
line shapes. We hope to report about a more careful
study of the lifetimes in t subsequent paper.

VII. SUMMARY

Although our theory of qu centum cyclotron reso-
nance at far-infrared frequencies is not entirely
rigorous, the underlying physical assumptions appear
to be well justified and lead to the' line shapes which
~gree well with the observed ones. The nonparabolic
two-band model'9 seems to be adequate to study the
problem. It enables us to derive the nonlocal con-
ductivity tensor with the nonparabolicity fully taken
into account. Corrections to the two-band model
{Refs. 18, 30, and 31) can be included at the expense
of a very complicated algebra, but otherwise without
difficulties. We found that the variational ap-
proach, " together with the assumption th ~t electric
field in the sample has an exponential form given by

Eq. (6.6), with a real 5, leads to reasonably good line
shapes at the first peak of the spectra, but does not
give correct line shapes at the high-field side of the
second peak, Assuming then that 5 is a complex
(i.e„assuming that electric field in the sample is a
wave) we found that the variationally calculated line
shapes are improved at the second peak, but become
worse at the first peak. The prevailing character of
electric field in the sample thus changes from one
peak to the other in a way which is difficult to
predict. The variational approach, ;although properly
accounting for some of the features of the observed
spectra, is therefore not suitable for calculation of
line shapes in our case [see Figs. 7(a) and 8(a)]. We
continued by calculating the surface impedance of the
bulk, ignoring the surface scattering altogether. As
expected, the results emphasized the wave aspects
rather than the resonances in quasiparticle currents
IFigs. 7(b) and 8(b)] so that the calculated line
shapes were again not satisfactory, showing too mu'ch

absorption on the high-field side of the peaks. It
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then became clear that the collisions of electrons with

the surface must be taken into account. We derived
corrections to the conductivity due to the effects of
the surface scattering and found an approximate solu-
tion to the resulting integral equation for the Fourier
transform E(q) of the electric field in the sample.
The properties of the electric field which can be as-
sumed on the basis of its behavior in bulk enabled us
to define an effective conductivity o-,t&(q) so that the
surface impedance Z, when surface scattering is

present, could be approximately written in the same
form as in the bulk case. The spectra thus calculated
agree well with the experimental ones [Figs. 7(c) and
8(c)]. We found that the observed line shapes could
be attributed to the two electric field modes with the
smallest magnitude of the (complex) wave vector.
The first peak in the spectrum is largely due to the
lowest mode with the wave vector qi satisfying
Im(qi ) && Re(q~) = 0. At the second peak the oth-
er mode, with the wave vector q2, prevails. This
mode is more "wavelike, " since Re(q2) & Im(q2).
The variational calculations thus correctly indicated
the behavior of the electric field.

The band parameters used in our calculations are
consistent with those deduced earlier directly from
the experimental results (Ref. l5). We supposed that
the most important really is the relaxation rate of a
Landau level at the value of kII and the magnetic
field Ho at which the level is involved in a resonant
transition. The values of these relaxation rates had
to be assumed. The kH =0 transitions considered in
Ref. 15 (see Fig. 4) were found to contribute the
main part of the spectra. However, to obtain a satis-

factory line shape (particularly on the high-field side
of the resonances) transitions from other Landau lev-
els and other kH values had to be included in the cal-
culations.

We mentioned already the work by Allen, pub-
lished on the cyclotron resonance at far-infrared fre-
quencies in metals. Although in his case the reso-
nance occurs in a much different regime (and, conse-
quently, different methods must be used in calculat-
ing the line shapes) we both find that the cyclotron
resonance spectra reflect considerably the excitation
of cyclotron waves and that the effects of the surface
scattering of electrons on these waves must be taken
into account.
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