
PHYSICAL REVIK% 8 VOLUME 23, NUMBER lo 15 MA Y I98I

First-principles calculation of diamagnetic band structure. I.Reduction to a one-dimensional
Schrodinger equation

Gustav M. Obermair and Hans-Joachim Schcllnhubcr
Eakulti'tfu'r Physik, Unioersitat Regensburg, D-8400 Regensburg, 8'est Germuny

(Received 16 December 1980)

%e present a new first-principles attack on the problem of Bloch electrons in a magnetic field which, being
rigorous, preserves all symmetries and in particular-all predictions of the magnetic translation group. In this first
paper we show that the problem can be reduced for a wide class of crystal symmetries and for magnetic fields that
are rational in the sense of group theory to a one-dimensional Hamiltonian. This is done in two steps: First we
introduce a canonical transformation that diagonalizes the free-electron part of the "magnetic Hamiltonian. " An
analysis of the transformed crystal potential for simple rational fields allows a separation ansatz in terms of k-q
functions in one of the variables. The result is a set of Schrodinger equations in the remaining variables which have
the structure of difFerential difFerence equations with periodic coefficients; they are solved in the accompanying
paper.

I. INTRODUCTION

This and t e following paper, quoted as papers
I and II, give an extensive account of our exact
quantum-mechanical calculation of the spectrum
and wave functions of crystalline electrons in a
homogeneous magnetic field.

The 1930's and 40's saw the, quantum-mechanical
explanation of diamagnetism and of the magneto-
oseil1atory effects on the basis of the free-electron
Fermi gas. The results were only in qualitative
agreement with experiments on most real metals;
obviously band effects had to be accounted for;
something like the effective-mass approximation
which had been so successful in the electric-field
case had to be found. This was achieved by On-
sager' with the famous Peierls-(Luttinger)-On-
sager hypothesis which assumes a (near) stability
of the Bloch bands under the action of a magnetic
field; the proposed procedure is as follows: In
the dispersion c„(p/II) of the nth unperturbed
Bloch band the crystal momentum Ik=p is re-
placed by the kinetic momentum p —(e/c) X and
the resulting effective Hamiltonian

e~
H =e —p--X(r)"n t.-

is treated semiclassically, i.e., as the classical
Hamilton function of a pseudosystem that yields
the classical equations of motion

0

Nk=-v„(k}x B.

Requantization via Bohr-Sommerfeld produces a
discrete spectrum of magnetic orbits within each
given Bloch band, often called Landau orbits.

The assumption (I) of H,«appears at first ra-
ther ad hoe; yet it was justified by its fabulous
practical success: Most of -our extensive know-
ledge on the topology and size of Fermi surfaces
in metals and semiconductors is based on the ap-
plication of (I) (and confirmed by a few indepen-
dent methods); some practical problems with de-
generate bands and with "magnetic breakthrough"
have been explained by additional reasonable as-
sumptions; cf. Befs. 2 and 3, respectively.

In spite of this convincing explanatory power all
the considerable efforts toward a quantum-mech-
anical first-principles derivation of the Peierls-
Onsager method (for a review see, e.g. , Refs. 4
and 5) were only partially successful. for reasons
that have begun to be understood lately. In fact
the analytic, numerical, and group-theoretical
evidence will be presented in paper II and in a
planned forthcoming paper that, in spite of the ex-
cellent agreement of many experiments with the
energies calculated from (I), the eigenspace of
the operator H,« is not at all equivalent with a
well defined subset of the eigenfunetions of the
exact single-particle Hamiltonian

H = (p —eA/c)'/2m+ V„,(r) . (2)

Indeed (2} represents one of the few unsolved
problems of one-particle quantum mechanics for
two characteristic reasons: (a) The kinetic-energy
part 8, enforces square-integrable —in fact Gau-
ssian —behavior of the wave function in at least
one direction, whereas the periodic potential V„,
would require Bloch waves in all directions.
(b) The Landau orbits belonging to H, prescribe
one characteristic length, e.g. , the free-electron
ground-state cyclotron radius, and the lattice
prescribes another one; in general these lengths
are incommensurate. All difficulties with (2) can
be traced back to one of these properties.
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Here we introduce a new, direct attack on (3),
part of which was sketched in a recent letter'
(see also Ref. 7): Based on the high-field ap-
proach developed recently, ' "we have been able
to reduce the essential part of the problem posed
by (2) to a one-variable eigenvalue problem; this
will be worked out in paper I. Exact solutions
of the resulting differential difference equation
for the simplest nontrivial model crystal will be
presented in paper II and compared extensively
with the semiclassical Peierls-Onsager spectrum
for the same case; agreements and disagreements
serve to illustrate the usefulness and limits of the
semiclassical method. What appears more im-
portant is that the new method opens the way to
exact ab initio magnetic band-structure calcula-
tions for arbitrary fields and crystal potentials.

II. A CANONICAL TRANSFORMATION

'The Hamiltonian we wish to treat is that of a
single electron in a periodic potential and in the
vector potential belonging to a homogeneous field
B=Bz.

1 ~ e~H= p ——A + V„,(x,y, z) .
2m c

A will be chosen in the symmetric gauge

A= aB(~,x, 0) .

(3)

(4)

The free-electron or kinetic-energy part of (3) is
then

Ho= p+ —y + p ——x +p2

This Hamiltonian couples, in a well-known way,
the x and the y degrees of freedom.

With the usual definitions

eB
o. = eB/ffcmc' (6)

we rewrite H, as follows:

1/2-~&+ (pl/2 yA(d
0=

2

~ -1/2 P~ ~ 1/2 x'
h 2 .'2m (7)

As a first step toward the desired separation of
H we will, in this paragraph, reduce this kinetic-
energy part H, to the sum of two one-dimensional
operators: the ~ motion and a degenerate harmon-
ic oscillator. This is achieved by means of the
following canonical transformation:

P = ~-1/2 P~+ (Zl/2 y * ~-1/2 P~ ~1/2 $
2 P e 2

(8a)
1/2 ~ + (y —

(y 1/2 ~+ (yl/2&y 1/2X P x
2

Hence

~=~ "'(Q+q) y=~ '"(P -u). (8b)

H, = ,'h&u, (P—'+Q')+ P,'/2m . (9)

Equation (9) produces, as it must, the free-elec-
tron Landau spectrum: Apart from the z motion
it represents a one-dimensional harmonic oscilla-
tor which is infinitely degenerate with respect to
a second degree of freedom —in this case the

(p, q) motion.
Turning again to the full Hamiltonian we insert

(8b) in the potential and obtain, in the new can-
onical variables,

V„,=V„,(o' ' '(Q+q), & ' '(P -P),z). (10)

Thus, so far, we have apparently only shifted
the problem of the coupled degrees of freedom
from H, in the old x-y representation to V„, in
the new q-Q representation. As we shall see,
however, this representation offers, under the
"rational" circumstances to be described present-
ly, the ansatz for a complete separation of var-
iables.

III. SEPARATION OF VARIABLES

At this point it proves necessary to specify the
geometry with respect to the lattice: One has to
invoke the concept of rational magnetic fields,
first introduced by Brown. " A rational field lies
along some integer lattice vector R and fulfills
the condition

e 2m I.= —B=——RSc QN
where N, L are integers without a common di-
visor and 0 is the volume of the unit cell. Almost
all fields, of course, are irrational, but the
rational fields form a denumerable infinite set
which is dense everywhere. Moreover, the con-
tinuity arguments first proposed by Brown" have
been substantiated in" at least in the high-field
limit (i.e. , only one free Landau level split up
and broadened by the periodic potential): The
spectrum, consisting of L subbands, depends in-
deed most drastically on the rational number
L/N; the integrated density of states and similar
macroscopically observable quantities, however,
are nearly identical for close-by values of L/N

Equation (8) preserves the canonical commutation
rules

[Q,P]=', [q,~]=f,
[Q,P] = [q, P] = [Q,q] = [P,P]= 0 .

Inserting (8a) in (7) yields the desired result:
The (P,q) degree of freedom is no longer expli-
citly exhibited in H„where
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like 3 and ~34.

If in the following only rational fields will be in-
vestigated, this should therefore —at least for all
practical purposes —not mean any serious restric-
tion. (The intriguing problem of finite versus in-
finite degeneracy for rational and irrational fields,
respectively, has been considered, among others,
by Rauh, Wannier, and Obermair' and shall only
be taken up in paper II.) If one is willing to accept,

If one is willing to accept moreover, that
the variation of the periodic potential along
the field or z direction affects only the coarse
or large scale structure of the spectrum—
large gaps and some nonlinear rearrange-
ment of the magnetic fine structure —and may
therefore be neglected altogether for the study of
this fine structure, then, as found independently

by Wannier, '4 the separation in the remaining two

variables can be achieved for all crystal struc-
tures, provided only B obeys (11). In fact it may
very well be that the z dependence of the potential
is of little relevance for the fine structure; for a
rigorous treatment, however, we shall here fur-
ther restrict the geometry of the field and the la-
ttice: We want the z dependence of the potential
to be additive and thus exactly separable at least
in the lowest approximation.

For this purpose a lattice of at least monoclinic
symmetry will be chosen, the magnetic field along
its primative a, vector and thus perpendicular to
the a,a2 plane. Only in this case is it a plausible
lowest approximation to set

Vy„(x,y, ~) = V, ,(x,y)+ V, (z) (12)

1 2+ p,'+ V, (z)=H, ,+H, . (13)

H3 produces a one -dimensional band structure
c,(k, ) which has to be added to the magnetic spec-
trum 6» now contained entirely in H, 2. 'This
two-dimensional Hamiltonian will now' be treated
exactly. For this purpose we expand the potential
V, 2 in a Fourier series:

V, ,(x,y) = g v„, exp[i(hG, ~ r+ kG, I')] ~ (14)
h, k

Since 8 II a II z, both G, and 6, are in the xy plane
and, without loss of generality, 'we may set

-- 2'
Q =Gjx=

a, sin3 '
(15)

2w cosh „2w „
Q =-G cos3x+G sin3y=- . x+—y,a sine a2 2

where

8= &(ah, a~) .
'The two-variable Schrodinger equation that re-

mains to be solved reads in the q-Q representa-
tion, where P and p are to be identified with

ib/sQ -and -is/sq, respectively,

and hence, in the q-g representation of paragraph
2

H= ,'ff(d,—(P'+Q')+V, ,(n ' '(Q+q), n ' '(P -p))

~h
I

@~.( '+Q')+ 2vt)hexp ' /' (Q+q)+ /' ~-(Q+q)co»+ (P -p)»ne] ~+(Q, q))=~„,~+(Q, q)). (18)

For the sake of clarity let us first take up the
simplest case, that of an orthorhombic lattice,
where 8 = 7//2, coss= 0, and the potential reads

G, G,
V, , ,= I,u„ahh ( h, ). (()+h)+h, '„(P-h)) .

krak

Q n' '
(17)

So far we have only made use of the directional
rationality of the field (i.e. , along a shortest la-
ttice vector a, ) to split off the motion along the
field. In order to produce an ansatz that separates
also the remaining two degrees of freedom q and

Q, we notice that the exponentials in (17) con-
sist —with respect to the coordinate q —of transla-
tion operators exp(-ikG2n '/2p) and phase factors
exp(ihG, n '/'q) which, owing to the rationality of
the field contained in o. , combine to a phase angle
&» that is a. rational fraction of 2~: Consider the
product ~» of the factor of p and of q in these ex-
pressions and observe (15):

hkG, G, 4w2hk 4m2a

a,a2Q Qn

Using the rationality condition (11), one obtains

.N
iX = hk2mi —.

kk (18)

(Remember that H, L, and, of course, the Miller
indices h, k are integers. ) Equation (18) shows
that the combined action of the translation opera-
tors and the phase factors in (17) closes onto it-
self after L steps as follows:

exp(Li&»)=1 V h, k.
Following this observation, the separation ansatz
is made in such a way that the q part of the wave
function is Bloch type both under exp(iG, n '/2q)
and exp(-iG, n '/'p). In doing so we have to dis-
tinguish two cl.asses of rational fields which, fol-
lowing the terminology of Hofstadter, "we shall
call (a) pure cases: L= 1, and (b) general cases:
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L41. The pure cases, of course, are no longer
dense everywhere, but even for the largest tech-
nically available fields of several ten kG the pure
cases still form a "relatively dense" set; in fact
for a cubic lattice with a= 2 A and 8 along a cubic
axis, we have B in (G) = 10'L/N; thus the pure
case L/N = 1/10' corresponds to B= 100 kG and
the pure case L/N=1/(10' —1) to B=100.01 kG.

We construct the desired complete orthonormal
set of Bloch-type functions; they are localized at
one point within each lattice cell of a yet undeter-
mined length p along the q axis (cf. Ref. 16):

p j./2 +~
)= Z (19)

where

«(= [0,2v/p], X (: [0,p] (19a)

(«', x' l«, x), =5(« —«')5(x —z') . (2o)

and where
l

x&, is an appropriately normalized 5

function with

(19b)

This normalization can in fact be chosen as
(A.

'
l

X&, = 5(A —A') such that

and therefore

e '"l«, x& =e ""l«,x& .
)

On the other hand, due to (19b),

e'"l«)~&, =e&"
I

«+ e, ». .

(21)

(22)

The Brillouin zone with respect to g extends from
0 to 2w/p; therefore, if po =2', N integer, we
have

I«+o, », =
l «+(2 v/p)N, », = I«, », -

Only in this case the l«, X), are simultaneous
eigenfunctions of e xp(-i pP) and exp(ioq).

(22)

A. Separation for pure cases

E(luation (23) is the starting point for the pure
cases: Returning to the potential V, , of (17) we

now xdentxfy

-i/'a -X/'2p—= a G2, 0=cy G, ,

pg =G|G2/a( =2&N

by definition of a pure case (cf. Ref. 17); thus we
have produced the conditions where E(I. (23)
holds.

For the complete wave function l4'(Q, q)) we try

One easily verifies the constituting properties
of this set: We have

exp( happ) -Ipm+~&, = Ip(m+1)+~&,

le& = le&, l., ~&, .

The SchrMinger equation becomes

(24)

l ~~(~'+()')+ Z ~, e*v(([av(() +q)+&p(& -p))) -c„.j Ic) =D.
h ~ h

Now, due to E(ls. (21)-(24) and the fact that [Q+q, P -P] =0, the terms of the potential app]ied to l+&

yield

exp(f [ho(Q+q)])exp(f [kp(P -p))] l@& =exp(i[ho(Q +q)]] exp(- fkp«) l«, g& exp[f(kpP)] l 4&o

= exp(i [ho (Q x)]+] exp(i[k p(P -«)]] l4»ol«, &&, .

(25)

(26)

H(P, Q) =2 @(o,(P'+Q')

+ g v»exp(i[her(Q+X)]]
hth

&exp(f[kp(P -«)]j. (27)

E(luation (26) shows that the q-dependent part
of the wave function is reproduced unaltered by
each term of the potential. But the kinetic-energy
term does not act on l«, X& at all; since the

l«, A. & are linearly independent, we may there-
fore factorize (25) as

l«, », [H(P Q) -&|,2] IC», =0.

The separation is achieved and, according to (25)
and (26), the one-dimensional Hamiltonian that
remains to be treated in paper II reads

The variables P and q have dropped out alto-
gether, leaving behind a parametric dependence
of H(P, Q) on the two wave numbers «and X that,
by the construction (19) of the l«, X&, span a
magnetic Brillouin zone (MBZ) of area (2v/p)p
=2v. It is not hard to see, however, that H(P, Q)
and its eigenvalues c, ,(«, X) are periodic in X not

only with the period p, but also with the smaller
period p/N, which subdivides the MBZ into N
smaller "proper MBZ's" of area 2w/N Since.
the l«, X&, from different such proper MBZ's are
linearly independent, this result confirms the
N-fold degeneracy of the spectrum as required
by group theory.

The result (27) holds for orthorhombic sym-
metry; for the more general monoclinic case
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formulated in Eq. (16) we have to generalize the
ansatz (19). Again we assume a "pure case"
rational fieM along a, :

(28)

and we identify the coefficients that occur in the
exponentials of (16) in the following way:

p=—a G2sinB, o =a G~,

po =2mN because of (16) and (28); the (h, k)
Fourier component of the potential then reads

'p»=v»exp[i [(ho -kpcot6)(Q+(I)+kp(P -p)]}.
(29)

Now the generalization of (19) that takes care of
the cot3 term is as follows:

I», x, »& =(p +exp['(e»m +em*)]]pm»»&,

(30)

)e(q, q)& = )c&,(., ],~&, .
Acting on (31) with (29) then yields

p
X/'2

[e&=(— e, exp[if()re-epee»»)(rpee)]]+exp[i(errm+em'}]~p(mep)ex&e "r [e&

v»Q exp(i((ho -kpcots)[p(m+0) +X] +p](m+~ m']}

x ~p(m+k)+X& exp[i(ho kpco—ts)Q]e"('~(4&

p
a/'2

v» g exp[i(- kp'm ctos+~pm+'7m2r+k -22rkm)]
2m

x ~pm+~&exp[i(ho -kpcot6)(q+])] e'""' '~e&.

If we now set r = —~ p' cot 6, then the first and the last term in the first exponential cancel and ~g p]].p
7'& is

reproduced up to phase factors

V» /e& = /g, ]]., r&v»exp(irk') exp [i (ho -kp tcso)(Q X+)] pex[ikp(P —sc)] )4 ) .

Again we have achieved the separation and obtained a one-dimensional Hamiltonian,

H(P, Q) =-,' h~, (P'+Q') + g t)»exp [-(i/2) p'k' cote] exp[i ( ho kp cot6)(Q +]])]exp [ikp(P —g)]. (32)

The properties of H(P, Q) mentioned following Eq. (27) hold also in this more general lattice symmetry.

8. Separation for general cases

To keep the length down these cases wiQ only be treated for lattices of at least orthorhombic symmetry.
Again we set p = a ' ' G„o= c[ ' ' G„ then po =G,G, /a = 2v N/I, where f w 1, by the definition of a general
rational case and we try an ansatz using the ~g, ][.&,.

According to (22) the terms exp(ioq) in the crystal potential will now reproduce ~](p ]]& only after 2
applications. %e therefor e define

~]i, f, ][&,= ~e+ la, X&, = ~v+2vNE/I p, ]].), , I=O, I, . . . , I, —1

~v, f+pL, X&, —= ~[i, f, ][.), for p integer

and generalize the previous ansatz (24) to read

Ie ) = P I», i, », [e, &„
where now v(=-[0, 2m/pI ). The Schrodinger equation is in complete analogy to the derivation in (26) and

with H, =
p hm, (P'+Q')

p dropping the subscripts q, Qp
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L-1

(&& —«) [«)=(&=+ I I«, i«,&(&&, -«...) l«, &«Z «««l, i ««, » «««Ii«((& «»)«««Ii««(& -«-&«&) I«, &)

(35)

Since the ~z, f, 1) are linearly independent, their coefficients must vanish individually; thus the terms
V~ of the potential with k e 0 modL connect ~(f&&) with ~C

& „) and we obtain L coupled equations for the state
vectors (4,):

[—,'k(d, (P'+Q') -e»] ~4, ) + g v&, exp[ik o(Q +X)] exp(ikp[P —g —(l -k)o]) ~4, „)=0.
h, k

(36)

In other words, we have an L x L matrix Hamiltonian H«. , the elements of which are of course operators
acting on the L components ( ~(i&,), . . . , ((f z, )). Notice that infinitely many Fourier components y~ with
k =(l -l')+(uL, p. integer, contribute to the matrix element H, ;.Thus we obtain

H«, = —,'k(d, (P'+Q')6», + g v„~„,. &exp[i(E-l'+i(L)o(Q+X)]exp[ikp(P -» -l'o)], l, l'=0, 1, . . . , L —1.
pt k

It can be shown in a straightforward manner
that the spectrum associated with (37) is again
N-fold degenerate irrespective of the value of
L. For L =1 Eq. (37) reduces to the Hamiltonian
(27) of the pure case, as it must. The high-field
approximation, valid if the distance S~, of the
free Landau levels is large compared to their
broadening and splitting by the potential, is
easily obtained from (37) by taking matrix ele-
ments with respect to one, e.g. , the lowest free
Landau state. For the simplest nontrivial ex-
ample, the square lattice with only 4 nonvanishing

Fourier components of the potential v, y p vp

=v, one thus recovers the L x L ordinary matrix
problem or, equivalently, the difference equa-
tion

o.~, +2cos()7m+X)o(, =io(

with q =po = 2m N/L, e = e " 'e/v, and Bloch wave
number g, which have been treated extensively in
previous work from our group. '"'"" The exact
treatment for low and high fields of the one-di-
mensional equivalent Hamiltonians derived here
will be presented in the subsequent paper II.
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