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Dynamics of translations and rotations in molecular crystals:
Macroscopic and microscopic approaches
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Starting from a Hamiltonian for an orientationally disordered crystal with bilinear coupling between translational
and orientational coordinates, a nonequilibrium macroscopic free energy is calculated. It is used to obtain coupled
dynamic equations for translations and rotations by methods of irreversible thermodynamics. The corresponding
dynamic response functions are in full agreement with those derived using a microscopic Mori-type projection-
operator method. The coefficients of the macroscopic free energy are related to the static susceptibilities obtained
from the Hamiltonian in the framework of molecular-field theory. Dynamic sum rules foi' translational-rotational
motion are given.

I. INTRODUCTION

Hydrodynamic equations can be derived by
means of Onsager's method of irreversible pro-
cesses. ' As a starting point, one writes down a
nonequilibrium free energy or equivalently a mini-
mum work function R in terms of the relevant
dynamic variables. Then, one obtains dynamic
equations for these variables by using generalized
Langevin equations. 2 This type of approach has
also been applied in solid-state physics for the
study of pseudospin-phonon coupled systems, for
instance, cooperative Jahn- Teller crystals3 and
molecular crystals such as NH4Br. In molecular
crystals, the pseudospin variables are most ap-
propriate whenever the molecules (or molecular
ions) are weil localized in a small number of
orientational positions. On the other hand, in
shallow or dynamically changing potentials,
pseudospin variables are not adequate. In fact,
in molecular liquids one often uses the anisotropic
molecular polar izability density. '

Starting from a phenomenological nonequilibrium
free energy with a, bilinear static coupling be-
tween orientational coordinates (molecular
polarizability) and translations (lattice strains),
one of the present authors has derived a coupled
set of dynamic equations for translations and ro-
tations in molecular crystals. As.a consequence
of the bilinear coupling, the acoustic-phonon
modes enter, as additional resonances, the po-
larizability-polarizability or equivalently the
orientation-orientation correlation function. This
was first observed by Rayleigh-Brillouin mea-
surements in succinonitrile, ' and was explained by
the theory of Ref. 6.

Besides the Onsager. method, a more micro-
scopic approach for. the derivation of dynamic

equations is provided by the projection-operator
technique of Mori and Zwanzig. This method has
the advantage that, in principle, all static and
dynamic coefficients can be calculated from a
Hamiltonian. In practice, however, the explicit
calculation of transport coefficients is often an
extremely difficult task, and one has to make use
of severe approximations. The case of molecular
liquids is described in Ref. 5 in terms of po-
larizability orientational variables. In crystals,
the preferred orientational dynamic variables
will, in general, be based on symmetry-adapted
functions. It is then possible to describe orienta-
tionally disordered phases, as well as partially
ordered phases in a unified way. '

Using as a starting point a Hamiltonian with bi-
linear coupling between translations (acoustic
phonons) and orientations (symmetry-adapted func-
tions), a coupled set of dynamic equations was de-
rived by means of the projection-operator method
in Ref. 12. Since the molecular polarizability, as
used in Ref. 6, admits a linear expansion in terms
of symmetry-adapted functions, and since the dy-
namic equations derived in Refs. 6 and 12 describe
the sa.me physical phenomena, they shouM corre-
spond term by term. Recently, %ang, '~ following
essentially the approach of Ref. 12, and including
explicitly anharmonic lattice-displacement terms
in his Hamiltonian, came to the conclusion that
the equations of Ref. 6 were inconsistent with his
microscopic orientational correlation functions.
It is the aim of the present paper to investigate
this problem in detail and to clarify the corre-
spondence between macroscopic and microscopic
approaches. In fact, we demonstrate that there is
no inconsistency. In addition, we relate the
phenomenological coefficients occurring in the
free energy to static susceptibilities obtained
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from the microscopic Hamiltonian. The subdivi-
sion of the paper is as follows.

In Sec. II, we derive a nonequilibrium free en-
ergy from a microscopic Hamiltonian with bilinear
coupling of translations and orientations. Static
susceptibilities are calculated by means of mo-
lecular-field theory. All coefficients entering the
free energy are identified. Next (Sec. III), we
follow the macroscopic approach to derive the set
of hydrodynamic equations, using a molecular-
polarizability density orthogonalized to the transla-
tional coordinates as orientational dynamic vari-
able. This allows a direct comparison with the
dynamic equations obtained with the projection-
operator technique in Refs. 12 and 13. In Sec. IV,
we discuss correlation functions and sum rules.
In particular, it is shown that if one correctly
takes into account mixed dynamic correlations be-
tween translations and orientations, there is full
agreement between the hydrodynamic and the
microscopic approaches.

~.T +~R +~ TR

Here 8 ~ describes the pure translational part

(2.1)

Ifr P (q)p*(q) + M, t(-),
2m (2.2a)

where s, (q) denotes the Fourier-transformed

II. NONEQUII. IBRIUM FREE ENERGY

The main idea of the present approach is to ob-
tain a macroscopic nonequilibrium free energy
depending only on the fluctuating variables of in-
terest, this starting from a microscopic Hamil-
tonian that, in principle, might contain a greater
number of operators. The fluctuating variables of
interest are assumed to be thermodynamic in the
sense of Landau and Lifshitz, i.e. , their evolution
towards equilibrium is slow compared to the other
variables of the system which are thus called
fast. '4 The nonequilibrium free energy is calcu-
lated by assuming that the fast variabl'es have come
into equilibrium with nonequilibrium expectation
values of the slow variables of interest. This free
energy, for which the new variables are those non-
equilibrium expectation values, can be taken as a
minimum work function' in terms of which the
correlations of those expectation values will later
be calculated.

Specifically, we will show that the nonequilibrium
free energy postulated in Ref. 6 can be derived
from the Hamiltonian of Ref. 11. The calculation
follows closely the method used by Feder and
Pytte for the statistical description of collective
Jahn- Te1.1er transitions. 3

%e start from the Hamiltonian

center of mass displacements of the unit cell,
P;(q) is the conjugate momentum, m stands for
the total mass per unit cell, and i,j=x, y, z are
Cartesian indices. The summation convention for
repeated indices applies. The coupling factor
M,.&(q) accounts for the harmonic part of the trans-
lational interaction. Since we restrict ourselves
to long-wavelength phenomena (e.g. , elastic
properties), we need only to consider the transla-
tional center-of-mass motion, and q then denotes
a small wave vector near the zone center in
reciprocal space.

The pure, orientational part of the Hamiltonian
is taken to be

~R ~+ yB (2.2b)

Here, E stands for the kinetic energy of rotations

&'.(q)1.(q)
2I

The angular momentum components L and the
momenta of inertia components I are taken along
the principal axes of the molecules. The second
term on the right-hand side (rhs) of Eq. (2.2b)
stands for the single-particle orientational poten-
tial

(2,2c)

V =VQn (2.2d)

The coupling of translations and orientations
a~" is taken to be

&rs=g f~.(q)s (q)I't(q)
q

Here, I"„(q) is the Fourier-transformed orienta-
tional coordinate

(2.2e)

I'„(q)'= ~g I'„(n)e "' "' . (2.3)
n

The orientational coordinates I'„(n) are the co-
efficients of an expansion into symmetry-adapted
functions at each lattice site X(n). The particular
observable that is expanded is characteristic of
molecular orientation. The symmetry- adapted
functions are combinations of the signer repre-
sentations of the full rotation group D~'[ A(n)],
where the Euler angles 0=-jn, P, y) refer to the
orientation. The index v in I'„(n) stands for
(l, X, X'), where l denotes the angular-momentum
quantum number, 2l +1 being the dimensionality
of the representation. " In Eq. (2.2e), v,„(q) is the
matrix of the bilinear coupling between transla-
tions and orientations. In the long-wavelength
limit, where the molecular orientations couple to
the lattice strains, all the elements of v are linear
in q, . A Hamiltonian of the form (2.1)-(2.2e) has
been derived explicitly in the particularly simple
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The lattice strains are related to the displace-
ments by

~ff (q) = i [~;sf (q) +efs;(q)] . (2.6)

case of a crystal consisting of dumbbell molecules
in a deformable octahedral surrounding. ~2 Then,
for l = 2, the basis set for F„reduces to the five
linear combinations of spherical harmonics with
F~ and Tz~ symmetry. The single-particle poten-
tial V then corresponds to the Devonshire poten-
tial. '8 Here we shall not restrict ourselves to a
particular symmetry. We shall only take

vf. (q) =- vf.(- q), (2.4)

which is the condition for Hr" as given in (2.2e) to
be Hermitian.

Since we are using center-of-mass coordinates
per unit cell, M;f(q) is related to the bare elastic
constants by

0
M, , (q) =q,q,C„,, (2.5)

of the above expectation values

E=F(s,p', Y„j. (2.10)

Using the method of Lagrange multipliers to mini-
mize (2.7) under the constraints (2.8) and (2.9),
one obtains

p = (1/ s ) exp(- pX),

where

ff= Tr.exp(- p3C)

and

(2.11)

(2.12)

&-=H- g [&';(q)s;(q) + $';(q)P;(q)

Ee= —T lns . (2.14)

+ r'. (q) Y, (q)] (2.»)
Here X, P„and y are the Lagrange multipliers to
be determined by conditions (2.9). It is convenient
to define a new thermodynamic potential

The Helmholtz free energy is given in terms of
a trace (Tr) over the density matrix by the usual
expression

Note that E in (2.7) is related to F' by

E =F'+ Tr[p(H —X)] . (2.15)

F = Tr[ pH + (1/P) p lnp] . (2.7)

Taking units such that k~=1, P is also the inverse
temperature T '. The density matrix satisfies the
condition

To obtain the explicit expression for F, the La-
grange multipliers must be calculated. To this
effect, it is practical to separate the phonon and
the orientational variables by a canonical trans-
formation:

Trp =1. (2.8)

(2.9a)

(2.9b)

(2.9c)

The equilibrium density matrix, pa=exp(- PH),
is obtained by minimizing (2.7) with respect to p
under condition (2.8). At present, we need the
nonequilibrium free energy corresponding to the
instantaneous, expectation values of the slow vari-
ables, denoted by the superscript e:

s',.(q, f) =Trps, .(q),

P;(q, f) =»pP;(q),
Y:(q, f) =»pY.(q).

sf (q) = sf (q) + M f ~ [iv,„(-q) Y„(q) —X~(q)],

P (q)= ~ —t' (q)~m.

In terms of these new variables, one has

&=H,h+Hs(b) - —Q f';(q)5;(q)

——Q X; (q)M;ff Xf(q).

(2.16a)

(2.16b)

(2.17)
In what follows, the time dependence of those ex-
pectation values will be understood without always
being shown explicitly. The choice of (2.9) as
slow variables is essentially motivated by the ex-
perimental situation (frequency regime) one wants
to describe. If we should describe optical reso-
nances, we should include the corresponding lat-
tice displacements and momenta in the set of
"hydrodynamic" variables. If librations were im-
portant, we should also include the angular mo-
mentum L'. The conditions for a coupling of L'
and Y' have been discussed in Ref. 10. Without
coupling, the trace over the variables L does not
have to be considered explicitly in the following.

The nonequilibrium free energy is a functional .

Here the phonon Hamiltonian is

H,.=g [ -'P'(q) P(q) + '-M;f(q)s';(q)sf(q)],

(2.18)

whereas the effective orientational interaction
Hamiltonian is

/

H. (b) = —E [ -'Y'. (q)~.'.Y. (q) +b'. Y.(q)1 + I's.
(2.19)

In the last expression, the effective orientational
interaction is given by
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C;.(q) =v';. (q)M; (q)vy. (q),

and the "external" field 5„ is defin. ed by

f.(q) = r.(q) —i~;(q)M;y (q)vy. (q) .

(2.20)

(2.21)

Equation (2.20) expresses the fact that a bilinear
interaction of type (2.2e) between translations and
orientations leads to an effective interaction be-
tween reorienting moleeules. " The last bvo terms
on the rhs of Eq. (2.17) are c numbers. Note that
by writing down Eqs. (2.18) and (2.19), we have
achieved a separation in phonon and in orienta-
tional coordinates.

We now rewrite the thermodynamic potential
(2.14) as

F' =Fph + F R (b) + F', (2.22)

&„=Y„—Y„,. (2.28)

On. e obtains the molecular-field approximation of
(2.19),

+MF 1 ~ Ye+gR Ye ~ g+ YeR 2~ v vp g 4 u

Calculation of the Lagrange parameter y is more
delica. te in view of the linear term in Y„ in (2.19).
To obtain an explicit expression for Y'„, we use a
molecular-field approximation in (2.23b). Note
that the trace over the phonon variables in that
equation is trivial, and that only the trace over
the orientational variables remains. Assume that
Y„undergoes only small fluctuations about its
mean Y'„and write (2.19) in terms of the difference

with + ~R- (2.29)

and

F~h ———Tln Tr exp(- PH~'„),

Fs(b) =- Tln Tr exp[ —PH„(b)],

; q;q

X; q M.&' q X& q .
o

(2.23a)

(2.23b)

(2.23c)

where only terms linear in the operator ~„have
been retained, and where

~, (q) =-C.'. (q) Y:(q) +f.(q), (2.30)

with b„edfi nedin (2.21). Now, the exponential in
(2.23b) is expanded and the trace is taken. To
this effect, it is useful to define the following
operation on any function A of the orientational
variables:

In (2.23a), the trace over the orientational degrees
of freedom is trivial, and only the trace over the
phonon coordinates remains. Since H~h, Eq.
(2.18), represents a, harmonic phonon Hamiltonian,
the resulting thermodynamic potential reads

F~h = —g [ 2hu&, (q) + T ln pg (q)], (2.24)
QgQ

where the phonon frequencies &u (q) are the eigen-
values of the dynamical matrix M, and where
n, (q) is the Bose-Einstein distribution for phonons
of energy S&u (q)."

The Lagrange parameters X and g are immedi-
ately obtained by noting that the instantaneous ex-
pectation values s',. and P'; must vanish in view of
the separation of variables and of the form of
(2.18). Using (2.16), it follows that

X, (q) = M,~sf(q) —iv;„(q) Y'„(q) (2.25)

and

(2.32a)

(2.32b)(Y Y„) =5 „(Y Y„)

Note that the last trace is independent of q by

(2.2d). It represents the single-particle orienta-
tional susceptibility multiplied by the tempera-
ture T." Using (2.32) one also finds

«.),=- Y:,
«„6„) = Y' Y„+6„„(YY)

Combining this with (2.29), one obtains
I

~BCMFTre ~"R = expP —,
' g Y'„CR„Y'„+b Y',

x (Tr[exp(-Py„)] j

(2.33R)

(2.33b)

(A) 0
———Tr[A exp(-pY„)]/Tr[exp( 8Y„)] (2.31)

The symmetry of VR leads to

h;(q) = —&;(q) .
Using these relations, E' is rewritten as

(2.26) x 1. —p a Y'+ —,'p2 a a„6 A~
0

(2.34)

+ is;(q)v;. (q) Y: (q)

+ -', r„"(q)c„'„(q)v„(q)). (2.27)

F'=- Z i 2 P; (q)Ã(q)+ -'s; (q)~;/san(q)

(2.35)

Finally, one calculates the logarithm of this ex-
pression, expanding the last factor. The self-
consistency equation can simply be written

Bln Tre ~g MF

+
QQ~
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from which in the molecular-field approximation follows:

Y', = pa (Y„Y„)0+p+, Y'„Y'„ (2.36a)
F~{s',p', Y')=Ffh+F'„+v'+~,

where we have used the definitions

(2.41)

As Y„ itself is a small nonequilibrium fluctuation,
this equation is linearized to P,'q P, q, (2.42a)

Y'„=Pa, (Y"„Y„)0 (p fixed),

from which

(2.36b)
'U= —,'s'. q PLY.

& q s& q +iv q s'. Y'

Y'„=P Q G„„bc(Y~Y„)0, (2.37a)
+ ~T(Y~ Y )o Y'„Y'„]. (2.42b)

where

G„„=—6,„—PCR„(Y~ Y,) 0 (p fixed) . (2.37b)

Only 7' and 'U in (2.41) depend on the nonequilib-
rium expectation values. The nonequilibrium
thermodynamic Lagrangian can thus be written

Yec Pac( Yt Y )

where a~ is the cavity field, defined by

with

(2.38a)

(2.38b)

f..= —g C.".(q) .

The last term on the rhs in Eq. (2.38b) represents
the Onsager reaction field. Then, the static sus-
ceptibility is given by

BF'
X..(q) = 85" = &&..'( Y'. Y.) o (u fixed),

where E„„is defined by

(2.38d)

E,„=5„„—P(C,„—l„„)(Y~Y' )0 (p, fixed).

(2.38e)

Combining (2.25) and (2.37) with (2.21), one finds

y = P (Y„Y„)0 Y +ivy„s~. (2.39)

It remains to calculate the molecular-field value
FR" of (2.23b). From (2.34), using (2.36), one
immediately finds

(2.40a)

Equation (2.36b) represents the change in Y' in-
duced by the complete Weiss molecular field. To
find the response to the orienting field, we have to
subtract the Onsager reaction field. ' Therefore
we write, instead of Eq. (2.36b),

~~isj 6 j,
lC fk gl

7' o. ,
(Y~ Y)0/T B

"(q)

(2.44a)

(2.44b)

(2.44c)
(2.44d)

(2.44e)

On the rhs of these identifications, we have shown
the symbols used in Eq. (2) of Ref. 6. Recalling
Eq. (2.5), we recover the result that C of Ref. 6
corresponds to the bare elastic constants (high-
frequency elastic tensor). From Eq. (2.44d), we
see that F is the inverse of the single-particle
orientational susceptibility.

Once given a Hamiltonian of the form (2.1), we
are able to write down the nonequilibrium free
energy. The explicit form of the functions Y„and
of the matrices v and M depends on the symmetry
of the system and on the details of the potential.
For complicated systems, we do not have a com-
plete knowledge of the force laws. Nevertheless,
we can use the relevant symmetries of the prob-
lem to write down a free energy I', where the
nonzero elements of the matrices M, v, and
(Yt Y)0 are taken as parameters.

For the sake of completeness, we mention an
extension of the previous theory if a direct orienta-
tional interaction is taken into account. This
amounts to addition of a term

(2.43)

This expression corresponds to the phenomenologi-
cal Lagrangian density, Eq. (2) of Ref. 6. By com-
paring both expressions term by term, we arrive
at the following identification:

where

Fos= —Tin Tr exp(- P V—s). (2.40b)
H~~= —,

' J„„qY'„q Y„q (2.45)

Combining (2.15), (2.22), (2.27), and (2.40),
using the values of the Lagrange parameters
(2.25), (2.26), and (2.39) in (2.15), and after can-
cellation of terms, the nonequilibrium free energy

to the Hamiltonian (2.1). Then Eq. (2.19) becomes

Hs(b) =- g[ Yt(q)Ks„Y„(q) +O'„Y„(q)] + VR,

(2.46a)
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BMF 1 ~ yg+gg ~8 ~ yy yg
R ~~ V Vg P, j V

+Vg — a b„, (2.47)

and the definition of a„, Eq. (2.30), has to be re-
placed by

~.(q) -=I~,'. (q)Y:(q)+f.(q), (2.48)

where 5„ is again defined by Eq. (2.21). Equations
(2.36b)- (2.38e) remain valid with C„"„replaced by
K„». The quantity y„Eq. (2.39), now reads

y = (p" &Y„Y„)0 5„„—Z»»)Y'„+iv~»s~. (2.49)

The molecular-field expression for the free en-
ergy, Eq. (2.40a), is then given by

(2.50)

The final result is given by Eq. (2.41), where now
the definition (2.42b) for v is found to be

'U= PSi q Mo q Sg q +Sg)V q S ~ P„

+ ~ (7'&Y„Y»)p'5»„—J»„)Y' Y'„. (2.51)

We should mention that Eq. (2.41), with a given
by Eq. (2.51), is a generalization of the expres-
sion of the minimum work function R~g which has
been written down by ramada et al. for the case
of a pseudospin-phonon coupLed system. Our
deviation of Eqs. (2.41) and (2.51) remains valid
for the ease of a coupling of orientational motion
to optical phonons. The coupling matrix iv(q) has
to be replaced by an appropriate coupling matrix
g(q) with the property

g(q) =s'(- q). (2.52)

where we have defined

K„"„(q)= C„"„(q)+J„„(q). (2.46b)

Expression (2.46a) for H„(b) has to be taken into
account for the calculation of the free energy,
Eq. (2.23b). In molecular-field approximation,
instead of Eq. (2.29), we now have

+=&+ —,'@AC 8

@san

+-,'Be q aq

+ 'ie»(~) o-'(~) 1 . (3 1)

Here n(q) corresponds to Y„'(q), and s(q) to s'(q).
We note that these nonequilibrium variables are
also time dependent. An index 0 has been added
to C to designate the bare elastic constants, i.e. ,
C in Hef. 6 means C' here. For reasons of nota-
tional simplicity, the explicit tensorial nature of
C, B, and D will not be indicated. Furthermore,
explicit mention of the wave-vector dependence
will be omitted, except where confusion could
arise.

In Bef. 6, the quantity o. stands for the polar-
izability-tensor field. In order to make the con.-
nection with the orientational dynamic variables
used in Bef. 12, we define a polarizability field
that is orthogonalized to the displacement field:

D
e(q) -=o(q)+iq ~ 8(q). (3.2)

Then, Eq. (3.1) becomes

@=V'+ q Cs s+ B8 6), (3.3)

where C now denotes the dressed elastic constants
(denoted by Cuff in Ref. 6),

proach of Bef. 12 is formally quite general, ap-
proximations had to be made to obtain useful and
tractable results. The two main approximations
made are, firstly, the approximation of the
memory kernels by frequency-independent con-
stants, and secondly, the use of molecular-field
theory for the calculation of static susceptibilities.
We shall now show that, within this framework, the
transport equations of Hefs. 6 are in full agree-
ment with those of Hefs. 12 and 13.

To this effect, the equations of Hef. 6 are re-
written in a form that allows direct comparison
with Refs. 12 and 13. One starts from the free-
energy + -=V'+'U, where ~ and U are given by
(2.42). We use the identifications (2.44) and from
now on drop the superscripts e that speeifieally
designated nonequilibrium expectations in Sec. II.
One obtains

HI. DYNAMIC EQUATIONS c-=c'- D2/a. (3.4)
Starting from a nonequilibrium free energy as

given by Eq. (2.40b), and adding dissipative terms
to account, for frictional forces, one of the present
authors6 has derived kinetic equations along the
lines of irreversible hydrodynamics. On the
other hand, the approach used in Hef. 12 starts
from a microscopic Hamiltonian, Eqs. (2.1)-
(2.2e), and uses a projection-operator formalism
to derive transport equations. Although the ap-

The static correlation functions are calculated
with the probability distribution function
exp(- P6t). '4 It immediately follows from (3.3)
that

(3.5a)

(3.5b)

(3.5c)
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Furthermore, using (3.2) and & s 8) =0, one finds

&
n" o.) = C /PBC,

& s(q) o'(q)) =- &o(q)s'(q)) =fD/pqBC ~

(3.5d)

We now rewrite the equations of motion (4) of
Ref. 6, using (3.2) and transforming to reciprocal
space:

ms=P, (3.6a,)

$6)+I' 8 + —I ' ——I" p=0.
m B (3.6c)

Here the dots denote first derivative with respect
to time, e.g. , s—= (d/dt)s, etc. We now eliminate
8 on the left-hand side of (3.6b) using (3.6c). De-
fining a column vector a,

a -=(s, P, 8), (3.7)

2

p+ q I ——I' '~p+q~Cs —iqD8 —iqI"'8=0,
m B

(3.6b)

i(g)= —(f exp(izt)a. (t)dt,
0

(3.11)

where Imz & 0. After this transformation, (3.10)
reads

(1z —Q+ Z)a(z) =a(t= 0) .
Using the relation '

(3,12)

s.(z) =@.8(z)X~'(0)a„(t=0), (3.13)

where C is Kubo's relaxation function and y(0) is
the sta. tic susceptibility, Eq. (3.12) gives

(lz —Q+ Z)C(z) = X(0),

which is Mori's equation for the relaxation func-
tion. In the classical limit, y ~(0)= P&a a~~), so
that, using (3.5),

static averages (3.5). This well known procedure'9
was also used in Ref. 6. An alternate route is to
use results of linear response theory. ~ To make
connection with those references, the Laplace-
transform operation is defined

tat

a restoring-force matrix 0
1 Cq~ 0 0

)((0 q)= 0 m 0

0 0 1 B

(3.15)

and a dissipation matrix Z,

(0 0 0

Z—= i( 0 q~I'/m iqB I "/I '
0 iqI' ' mI' B

with

Zl —F6 (flR$)2/FcI

system (3.7) is rewritten as

1 —+tQ- tZ a(t) =0.~

~dt

(3 8)

(3.9a)

(3.9b)

(3.10).

B

(Y, Y) =—X —B.

(3.16c)

(3.16d)

Equation (3.14) has to be compared with Eq.
(3.28) of Ref. 12. Since the latter has been
written down under the assumption that anharmonic
translational displacements are negligible, we
must take I"=0 and I '=0 in (3.9). Under that
condition, there is complete agreement between
Eq. (3.14), with Q, Z, and X(0) specified as before,
and Eq. (3.28) of Ref. 12. This leads to the fol-
lowing identification (with m = 1):

D= (s, s) ' —q~C, (3.16a)
Ei

P-=(Y, ZP) —q —, (3.16b)

To allow a direct comparison with Refs. 12 and

13, it is simplest to build from (3.10) the equation
of motion for the Laplace transform of the cor-
relation matrix [Eq. (33) of Ref. 13)] or, what is
equivalent, the equation for the Kubo relaxation
function 4(z) [Eq. (3.28) of Ref. 12]. One can pro-
ceed in two equivalent ways. A first route is to
Laplace-transform (3.10), to take the outer pro-
duct with the initial-value vector a(t=0), and to
calculate the average over those initial values
using their distribution function exp(- P(R). In this
manner, the Laplace-transformed dynamic cor-
relation functions are expressed in terms of the

On the left-hand side (Ihs) are the quantities of
Ref. 12, and on the rhs, the corresponding quanti-
ties of Ref. 6. This identification is also fully
compatible with (2.43) if we observe that c( —Y
of Ref. 12 and that the present variable 8 corre-
sponds to Yof Ref. 12.

Having shown the full equivalence of the hydro-
dynamic theory of Ref. 6 with the microscopic
approach of Ref. 12, we now turn to a comparison
with Ref. 13. It was pointed out in Ref. 12 that the
anharmonicities in the translational lattice dis-
placements lead to additional transport coeffi-
cients J.", I '. These occur in the hydrodynamic
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QW Qy

Q)(«s,
~p
~ 0 9

(3.17a)

(3.17b)

(3.1Vc)

(3.17d)

where the symbols on the lhs are those of Ref.
13 (plus a subscript W). Comparing (3.15) with
Eqs. (18) and (19) of Hef. 13, one gets

approach which makes no restriction to a harmonic
lattice; these anharmonicities have also been intro-
duced in Ref, 13. Comparing (3.14) with Eq. (33)
of Ref. 13, with m =1, one finds the correspon-
dences

IV. CORRELATION FUNCTIONS AND SUM RULES

Given the identification made in Sec. III between
the hydrodynamic and the Mori approaches, it is
not possible for these theories to give incompatible
results for the correlation function C (z) or
equivalently 4"(z). Such an incorrect conclusion
was drawn using Eq. (64) of Ref. 13. In fact, that
equation is incomplete since interference terms
between translations and orientations have been
omitted. ~' Using Eq. (32), one obtains

c"(«, «) = («(«, «)+«'« —«(«, «))

8 q, 0 —iq —8~ q, 0
T i(AA')~ —X(0),

Mw —C

T '(Xs)w= T'&~&'-)w-B '

(3.18a)

(3.18b)

(3.18c)

=C (q, z) + iq —C*~(q, z)

—iq —C '(q, z)+ —[C"(q,z). (4.1)B jComparing (3.8) with Eq. (23) of Ref. 13, one has

QW —0, (3.19a)

which confirms (3.18b), (3.18c), and in addition
gives

(v)(() )I qD,

T vt(«
~ qD/B .

(3.19b)

(3.19c)

~ q~P

y')(, —iqB T"/I~™,

~v —iqr "/I
A, M,

—B/ I'

(3.20a)

(3.20b)

(3.20c)

(3.20d)

(3.20e)

We recall that all elements of Kw have to be taken
in the low-frequency limit. Considering (3.20c),
(3.20d), and (3.18c), one finds (y'X()))(= —T(7"))z
which is also a result of time-reversal symmetry
in Eqs. (29) and (30) of Ref. 13. Finally, to com-
plete the identification, we note that

[-iT 'C(-iz, -q)] —4(z, q). (3.21)

Consequently, the correlation- function matrix C w

of Ref. 13 is equivalent to Kubo's relaxation func-
tion. ~o'~~ Note that in Ref. 13 the spatial Fourier
transformation is defined with a sign of q opposite
to that used in Refs. 6 and 12, as well as here.

Since v'= v' (r, transposed), and since the explicit
tensorial character of D, B, and v was neglected,
we have here v+= v. Note that (3.19b) and (3.19c)
are in agreement with (3.18c). Finally, comparing
(3.9a) with Eq. (27) of Ref. 13, one finds

Space and time- reversal symmetries imply

C' (q, z) =—C '(q, z), (4.2) .

similar to Eq. (60) of Ref. 13. Equation (4.1) then
becomes

C' (q, z)=C"(q, z)+~
~

C"(q, z)

+ 2iq —C' (q, z) . (4.3)

&oQ'&
C

(qq+) («)8(q) z) (4.4)

which is immediately obtained from Eq. (9) of
Hef. 13. The correspondence of (4.4) and (4.3)
can be shown using the relations (3.5b), (3.5e),
and (3.17)—(3.19). 3 Using (4.4) instead of Eqs.
(64) or (V5) of Ref. 13, it is rather straightforward
to verify full equivalence with Eq. (80) of Ref. 13.
In view of the previous sections, this comes as no
surprise. In particular, this equivalence entails
no restrictive condition; note that Eq. (86) of Ref.
13 is indeed an exact relation between static cor-
relation functions that follows directly from (3.5e)
and (3.5b).

The last term on the rhs of this expression is due
to interference between translational and orienta-
tional motions. These interference terms have
already been introduced in Ref. 12, where they
correspond to the functions 4, r(q, z) and 4r, (q, z).
They are obtained from the equation of motion
(3.34) of Hef. 12. In the notation of Ref. 13, (4.3)
reads

C, (q, z)=CB~(q, z)+,
i Coo(q, z)

(oQ')& '
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Equations (3.5) contain all the sum rules needed.
It is of interest to note, however, that identical
relations can also be obtained using familiar con-
cepts of linear-response theory. ~ Given two
operators A and 8, the dynamic susceptibility is
defined as'4

X~s(z) =-- &&A;B'))

Gh) „C
(+» II) =

v Xna(»q) =GB»

(8, 8) = —, xle(~, e) =IAMB,
d(d

4QP
(s 8) = —X,

" (~, e) = o.

(4.12c)

(4.12d)

(4.12e)

dte t e"' a t,a' 0 (4.5)

x(z) = dId X"(~)
(4.6)

Here, X"(u&) is the discontinuity of X(z) across the
real axis

with Imz ) 0. Note that «A; B I)) is the well known
retarded Green's function. The function X»(z),
which is holomorphic for Imz 0, is written as a
spectral integral

Using (4.10), these are just the same as the static
correlation functions (3.5) calculated with the
probability distribution exp(—p(R). It is also easy
to check that, with these expressions, the sum
rule applied to (4.3) just reproduces (3.4). Fina]ly,
in the absence of translation-orientation coupling,
D=o and C =C, where Co is the isothermal elas-
tic tensor of the phonon system; (4.12a) then re-
duces to a well known isothermal sum rule for
phonons. "

V. CONCLUDING REMARKS
x(~+ Io) = x'(~)+ 'x" (~) . (4.7)

The static susceptibility x»(z =0) -=(A, B), is then
given by

In the classical limit, Eqs. (4.8) and (4.9) combine
to

(A, B)=
T (4.10)

Kubo's relaxation function 4 (z), introduced in

Sec. III, Eq. (3.13), is related to the dynamic sus-
ceptibility by

@( )
x(o) —x(z) (4.11)

This last equation implies X"(~) = —&dc "(&u). We
now apply the general equation (4.8) to the vari-
ables s, ~, and 8. We first calculate the relaxa-
tloll fllIlc'tlolls»I»~»»(z)» C»»»e(z)» alld 4»I»»»(z) by 111-

verting the matrix equation (3,13). Then, we cal-
culate 4"(~) and carry out the integral over v in
Eq. (4.8). As a result we find

f 4(d „1(s, s) =
i

—x,",(Id, q) = (4.12a)

4(d „'LD
(s, ~)= —X.".(~, ~)= B ~, (4.12b)

(4 8)

The thermal average &AIB) is then related to X„"a

by the fluctuation- dissipation theorem

CkO
"

. &AB I) = —1 —exp X„" (&u) .
OO ha

Using a molecular-field-type approach, we have
derived the nonequilibrium free energy from a
Ham iltonian with bilinear translational-o rientational
coupling. This free energy is the starting point.
for deriving macroscopic hydrodynamic equations.
The approach formulated in Sec. II is very gen-
eral; it is not restricted to a particular molecular
crystal. In fact, the details of a given system are
taken into account by the structure of the matrix
of bilinear coupling, by the single-particle orienta-
tional potential, by the symmetry of the orienta-
tional dynamic variables, and by the bare elastic
constants. The transport coeff icients entering the
dynamic equations are assumed to be independent
of frequency. The hydrodynamic equations for
translations and rotations thus obtained are com-
pared with transport equations derived by means
of the Mori, -Zwanzig projection-operator tech-
nique.

The latter method has the a Priori advantage that
the matrix of restoring forces as well as the ma-
trix of memory functions are formulated in terms
of closed mathematical expressions. In principle,
these expressions can be evaluated from the
knowledge of a microscopic Hamiltonian. How-
ever, in practice, one has to use approximations
in carrying out such an evaluation. Essentially
two approximations are made: firstly, t;he use of
molecular-field theory in calculating the static
susceptbilities, and secondly, the omission of
memory effects by assuming constant transport
coefficients. Then, it is found that the dynamic
equations derived by means of the macroscopic
method are equivalent to those derived by means
of the projection-operator method.

If one wants to go beyond the framework of
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Markoffian response, the microscopic method
offers a well established procedure for doing so.
In particular, it is possible to give explicit ex-
pressions for the frequency-dependent memory
kernels by using a self-consistent reasoning.
Such a calculation was performed recently for a
Hamiltonian with bilinear translation- orientation
coupling. 2~

On the other hand, in many cases, molecular
crystals are of such complexity that a micro-
scopic Hamiltonian is not available. The hydro-
dynamic approach then still allows meaningful

dynamic equations to be written down and allows
the explanation of experiments. The relevant pa-
rameters are then the coefficients of the non-
equilibrium free energy and the kinetic coeffi-
cients of the dissipation function.
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