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The structure of Landauer’s residual-resistivity dipole is investigated using expressions which have been recently
derived from linear-response theory. We calculate the local field and charge density near an impurity in a current-
carrying metal. The impurity is assumed to be an isotropic scatterer and is described by an s-wave phase shift. We
find that the long-range average field of the residual-resistivity dipole is exactly as obtained by Landauer in a
semiclassical picture; i.e., the dipoles give the macroscopic field which drives the current past the scatterers. The
charge distribution is not strongly localized, but has important Friedel oscillations extending far from the impurity.
Our results are applied to the calculation of the electromigration driving force on a weak scatterer due to the
presence of an s-wave scatterer in its vicinity. When the s-wave scatterer is strong, the residual-resistivity dipole
contributes substantially to the force on the weak scatterer. Such contributions have not been previously considered
in explicit calculations of scattering interference effects in electromigration.

I. INTRODUCTION

The residual-resistivity dipole (RRD) is a fund-
amental object in the theory of electronic conduc-
tion. Introduced into the theory by Landauer® in
1957, the RRD is the microscopic source of the
electric field which must be set up in a conducting
solid in order to drive current past a region con-
taining impurities. Despite its central importance,
the RRD has been generally ignored in theoretical
descriptions of electron transport. One usually
assumes that the macroscopic electric field arises
from sources external to the system. In reality,
the field has internal sources in the form of di-
polar charge distributions localized around each
impurity. These are the RRD’s,

Analyses of electrical resistivity based on the
RRD picture have not given any new answers for
the resistivity®®; RRD’s have thus far been of
conceptual value rather than practical value. As
Landauer® has pointed out, however, a correct
picture of the local dipole field would be helpful
in formulating a theory for scattering by inhomo-
geneities which are neither macroscopic nor point-
defect-like. This alone would provide motivation
for studying the RRD. Further, if one is inter-
ested in the detailed nature of the local field in
electrical conductivity, the field of the RRD must
be considered. Since the local field acts as the
driving force on an ion in a solid, * one finds the
RRD mentioned in recent theoretical papers on
electromigration, 4 which is the phenomenon of
ion transport in the presence of an electron cur-
rent,®

A review of the RRD with special emphasis on
electromigration has been given by Landauer and
Wo00.% In summary, Landauer found that around
each impurity in a conducting solid there forms
a localized dipolar charge distribution which he
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called the RRD.! I one denotes the dipole mo-
ment of an RRD by B,, then the average field gen-
erated by these RRD’s in a rectangular sample

is given by — 47ND,, where N is the number of
impurities per unit volume., When the value of

P, calculated by Landauer is used in this expres-
sion, there results precisely the average addition-
al field needed to drive a current past these im-
purities in the first place.! Thus, there is no

true external charge which sets up the additional
field; the field arises instead from the RRD charge
distributions. It was further argued by Landauer
and Woo® that the RRD is localized to within a
screening length from the impurity. This strong
localization led them to predict a large RRD force
on the impurity.

Up to now there have not been any explicit cal-
culations of the RRD charge or the RRD field.'!
Local-field calculations have been made within
quantum-mechanical formalism*!? and semiclas-
sical formalism.'3"'® These calculations went
only to terms linear in the impurity potential V.
Since the RRD is proportional to the cross sec-
tion, !+2 it will not show up unless the calculations
are pushed to second order in V.

One reason for the lack of activity in calculating
RRD fields is obviously the extra work required
to go to the next order in perturbation theory.
Moreover, if one is interested only in the force
on an ion in electromigration one need not explic-
itly examine the RRD. Instead, it turns out that
one can calculate the force to all orders in V if
one takes the lowest-order perturbation-theory
expression for the force and replaces V by the
T matrix for the impurity.®” This procedure is
valid for isolated impurities; for more compli-
cated scatterers, the force can also be expressed
in terms of T matrices.®” Thus, the RRD need
not be explicitly singled out in calculating electro-
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migration forces. Nonetheless, from a fundamen-
tal point of view, it is desirable to investigate the
local RRD field near an impurity. Besides il-
luminating some hidden assumptions in transport
theory, such an investigation will clarify the pic-
ture of Landauer and Woo® for electromigration
and other transport phenomena,?3

In this paper we present an explicit calculation
of the RRD charge density and the associated local
electric field around an impurity in a jellium back-
ground. The calculation is performed for an im-
purity which is predominantly an s-wave scatterer.
Calculation of the local field is formally equivalent
to determining the force on a weak scatterer in
the vicinity of the impurity. Our results will thus
be immediately applicable to the problem of de-
termining the electromigration force on a weak
scatterer due to interference effects caused by
the presence of a strong s-wave scatterer in its
neighborhood. No explicit calculation of inter-
ference effects in electromigration has appeared
in the literature except for the case of only weak
scatterers.!® In a study of liquid metals we again
used weak-scattering expressions, but followed
heuristic arguments to replace V by the T' ma-
trix.!” These procedures, as we discuss in Sec.
1V, systematically discard RRD contributions.
As a result of the present study we can estimate
the errors involved.

As far as the structure of the RRD is concerned,
we shall see that the long-range dipole field of
the RRD is precisely as described by Landauer.®
However, the actual charge distribution of the
RRD is not so localized as assumed by Landauer
and Woo.® Instead, we find the RRD extends over
a large region where it is inextricably intertwined
with Friedel oscillations.

II. LOCAL FIELDS AND CHARGE DENSITIES

We wish to obtain the response of an electron
gas to an impurity in the presence of an applied
electric field. The Kubo linear-response forma-
lism has been applied to this problem®® and has
led to a better picture of the local fields and charge
densities around the impurity,%7:11:18°20 For an
impurity in jellium all of the linear-response re-
sults agree with each other and with Liouville-
equation calculations in the relaxation-time ap-
proximation®!? in the regime kzl> 1, where kg
is the Fermi wave vector and [ is the mean free
path.? This k,I> 1 regime is the regime of phys-
ical interest for metals describable within a jel-
lium model.

The diagrammatic Green’s-function calculation
of Sham” was the most general of the first linear-
response calculations in that it explicitly included
electron screening and strong scattering by the

impurity. Further studies based on the diagram-
matic technique have also been made,!1%2°

Within an independent-particle approximation
these analyses lead to the physically appealing
result that the local electron density n,(¥) around
an impurity can be obtained by simply populating
the electron scattering states ng(?) according to
the distribution function g appropriate to the
electron-transport problem. This result is ex-
plicitly derived by Schaich® and is also implicit
in Sham’s analysis.” The expression for the den-
sity is

no(?)=§grl¢ﬁ(?)lz, @)

where the sum is over all states k and where g%
is the solution of the Boltzmann equation, namely

gt=—-T1eVr Edler —ep). (2)

Here 7 is the relaxation time, ¢ is the charge of
the proton, ¥ is the electron velocity, and Eo
is the macroscopic electric field. The Fermi
energy is denoted by €, and the energy of the state
k is eg =7%k?/2m, where m is the electron mass.
The wave function g3 () evolves from an incoming
plane wave exp(ik+¥)/Q'/?, where Q is the crystal
volume. In our model the electron propagates
as a free particle, except for its interaction with
the impurity. Equation (1) is of the form assumed
by Bosvieux-Friedel** for the “dynamic polariza-
tion” due to the electron current, i.e., the “elec-
tron wind” effect. This has been pointed out by
Schaich.

When the independent-particle picture is gen-
eralized to include a self-consistent treatment
of the electron-electron interaction, the electron
density is no longer given by Eq. (1). If screening
is considered within the random-phase approxi-
mation (RPA) or, more generally, if local linear
screening is assumed, one can show that the true
density is not given by Eq. (1), but rather by

n(F) =no(T) +n,(F), (3)
where # is the true density and »n,, is the screening

density. The Fourier transform of », is related
to n, according to the linear relation®?-2®

5= 2@

@ @)’ (4)
where e(q) is the dielectric function and will be
assumed to be that given within the RPA.

The force ¥ exerted on an ion, or any object
which interacts with the electrons, can be written
in the form*18

Few [ acr) 2alim ooy, 5)
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where R is the position of the ion and v (T - R)
is the bare potential which describes the interac-
tion of the electrons with the ion of interest. In
Eq. (5) we are only considering the force arising
from the local electron response n(¥). The force
exerted by the macroscopic field E, can be added
on separately as ZeE,, where Ze is the charge
of the ion. We are not concerned with this direct
force here so we shall ignore it.

Using expression (4) one can transform Eq. (5)
into the alternate form?®

F= [ y(n 2E=R g, Q)

where p is the screened potential. The Fourier
transforms of v(¥) and v, () are related by the
dielectric function, i.e., v(§)=v,(§)/e(q).

The local electric field, which we denote by 5E,
can be immediately obtained by applying Eq. (6)
to find the force on a test charge @ at position
R.* Taking the limit of ¥/Q as @ - 0, this gives
for the local field at position R the result

sE(R)= f no(F) m%ﬁ d%, ™

where ¢ is the screened electrical potential.
Within the RPA the transform of ¢(¥) is given
by ¢(§) = - 4me/q%(q). The total field at R is the
sum of 6E and the applied field E,.

IIIl. MODEL CALCULATION

We consider the charge distribution around a
highly-localized spherically symmetric impurity
potential, The scattering wave functions can be
expanded in partial waves and written in the form?*

(P = Q—lr (e‘“”f 3 @r+1)itp,(E-#)
1=0

X[Rz () =4 (k"’)]) , (8

where the P, are the Legendre polynomials and
their argument % -9 is the cosine of the angle be-
tween k and ¥. The impurity is taken to be cen-
tered at the origin. R,(») is a radial solution of
the Schrddinger equation and j; is a spherical
Bessel function. If we take the potential to be of
muffin-tin form, the exterior solutions can be
expressed in terms of the phase shifts 5, as fol-
lows?%:

R, (7)=e*®1] j,(kr)coss, —n, (kv)sing,], 9

where »;, represents a spherical Neumann func-
tion. Expression (9) is valid for » >¥yr, where

7 yr 1S the muffin-tin radius.” It is apparent from
Eqgs. (1) and (2) that we are interested in the case
k=kg, and thus the §, are the phase shifts at the

Fermi energy.

We now restrict our attention to impurities which
scatter electrons isotropically, i.e., s-wave scat-
terers. (An example of such an impurity is hy-
drogen in copper.?%) Since now only the Z=0 phase
shift is appreciable, the sum over [ in Eq. (8)
contains only the /=0 term. The wave function
in the exterior region (v >%y;) then becomes

- 1 TerT
(P =g e’ +93(r)], (10)
where the scattered wave zp;s;(r) is given by

B (¥) = ji=olkr)(@*® cosd — 1) = ;o (k7)e*sing, (11)

and § denotes the /=0 phase shift.
We can now evaluate »,(T) using expressions
(1), (2), (10), and (11). The result is

no(F) = ZETLCO0 1 (o) s Pl (12)

where 6 is the angle between E, and ¥. The func-
tions I'gr and I'gygp, Will be seen to describe the
Bosvieux-Friedel (BF) dipole'* and the RRD, re-
spectively. They are given by

1 /1 cos2
Tpr(p)=- ——(-— ~sin2p - —Q) sind cosd
BF\P 207 P Y P

(13)
and

PRRD(p) = '2‘1‘;5 (1 +cos2p - ‘S'.%ZB) sin?5. (14)

The argument p is k7. The above expressions
are valid for »>»yr. Since we can, in principle,
imagine 7 yr to be of arbitrarily short range, p
can also be taken to be arbitrarily small. In the
small-p limit, T'gp — (—p/3)sindcosd and I'grp

-~ — 1 sin®s.

In the limit of weak scattering (5« 1), I'p is
proportional to 6 and hence proportional to the
impurity potential strength. This is precisely
the behavior of the dipolar distribution originally
derived by Bosvieux and Friedel.'* Thus I'pe
describes the BF dipole. I'ggp, on the other hand,
is proportional to sin?5, and hence to the cross
section. This is characteristic of Landauer’s
RRD.! For large » there is a nonoscillatory com-
ponent of I'gpp, Namely the 1p? term in expression
(14). This leads to an asymptotic »,(¥) which is
consistent with a general asymptotic RRD expres-
sion derived by Schaich.®* Further discussion
of the BF vs RRD separation is given at the close
of Sec. IV.

Plots of I'rgp(p) and I'yp(p) are shown in Fig.

1. We note that there is no special behavior near
the origin associated with I'gzp. For small p the
3p? term which gave the asymptotic RRD behavior
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FIG. 1. Quantities Izpp and I'yp vs p, where p =k 7.
The actual values of T'ggp and Iyp are obtained from the
displayed values by multiplication by sin®s and siné cossd,
respectively. I'pgp and I'py are related to the un-
screened density ny(¥) by Eq. (12). They are related to
the local electrical potential by Eqs. (12) and (25).

in I'ggp has been analytically absorbed by the
Friedel oscillations of the other terms.?®

Having obtained an expression for »,(¥), we can
determine the true electron density »(¥) by means
of the Fourier-transform expression (3). For
simplicity we evaluate »(T) in the regime that
the Thomas-Fermi screening length is shorter
than other relevant lengths in the problem. In
principle, this can be a valid regime. In practice,
however, the screening length is not much shorter
than the electron wavelength. We return to this
point in Sec. IV. The Thomas-Fermi dielectric
function is particularly simple in the regime of
small screening length: It reduces to e(q)=a?/q2,
where a is the Thomas-Fermi wave vector. For
a parabolic band of electrons, a equals (4mkpe?/
m%%)'/2, showing that a small screening length
1/a can always be arranged, in principle, by
appropriate choice of 2, and the effective mass m.

Using this ¢ - 0 form of the Thomas-Fermi di-
electric function €(gq), we deduce from Eq. (4)
that

n(F)=-a"?v?ny(¥). (15)

Upon evaluating v25,(F) with »,(¥) given by Eq.
(12), we find

n(F) = — 2RETeEq <C°S€>[an(p) +Gran(p)], (16)

a’r? ¥?
where
2 2 4
Ger(p)= [—— +(—-———)cos2
Br\pP ps ps P P

+<543 - 2> sin2p] sind cosd 1)

and

4
Grro(p) = [(;5 - 2)cos2p + (‘% - ‘%) sin2p] sin?5 (18)

correspond to BF and RRD contributions, respec-
tively. The results are plotted in Fig. 2. Note
that for small p, Ggp /7%~ 0 while Gggp—~ Z5in%5.
Of vital importance in discussions of the RRD,
especially as it applies to electromigration, ® is
the spatial extension of the RRD. To obtain this
we calculated the dipole moment of the true elec-
tron distribution associated with the RRD. The
dipole moment p of all charge contained within
a radius 7 is given by

pr)==-e fu(r - (¥’ d%’, (19)

where u is the step function defined by «(x)=1
for x>0 and u(x) =0 for x< 0. The dipole moment
is along the z direction, which is the direction
of E,.

The RRD dipole moment contains only the Gggp
contribution to #(¥’) in Eq. (19). The result for
the RRD dipole moment is

p(r)=p,o|3 +2 cos2p - 12 -p)sin2p}, (20)
3\p

where
0= — —Z-Z”ELE—“ sin25 (21)
F

would be the value of the dipole moment for the
RRD given by Landauer if s-wave scattering is
assumed in Landauer’s expression.! The quantity
p(7) is plotted in Fig. 3. We note that for » -,

-

FIG. 2. Quantities Grgpp and Ggy vs p. These quanti-
ties are related to the screened density »(¥) by Eq. (16).
As in Fig. 1, the values displayed do not include the
sin5 and siné coss factors for the RRD and BF quanti-
ties, respectively.
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FIG. 3. Plot of the RRD dipole moment for the
screened density »(¥). The quantity p/p, is the dipole
moment for all charge up to radius p and normalized to
the value pj, which is the value of the RRD dipole mo-
ment calculated by Landauer.

our p(r) diverges as 7 sin2k,». The conclusion
is that there is no localized dipole moment asso-
ciated with the RRD distribution.

We now calculate the local field §E according
to Eq. (7). The electrical potential ¢ to be used
in that equation is the Thomas-Fermi potential
¢(¥) =~ (e/r)exp(-ar). It is convenient to inte-
grate Eq. (7) by parts and obtain for the local
field the result

oB(®)= - [ (5 -B) 2D oy (22)

Again, for simplicity, we assume that the
screening length 1/ is much smaller than the
scale of variation of n,(»). Equation (22) immedi-
ately reduces to

SB(F) = 2Te no (23)

a? oF

T=R

Equation (23) implies that the local electrical
potential is proportional to n,. The local poten-
tial & at any position is related to the local field
at that position according to the defining equation

SE(F)=-va(¥), (24)

where vV =9 /0% and where we have now used the
variable T rather than R to denote a general point
in space where the fields are to be calculated.

It follows from Eqgs. (23) and (24) that

& (T) = — dmea 2 ny(F). (25)

Thus, the quantities I'py and T'ggp appearing in
Eqgs. (12)—(14) and displayed in Fig. 1 are actually
the BF and RRD components of the local potential
field. For - the average field is clearly domi-
nated by the term (3p?)sin® in I'ggp since the term

involving cos2p averages to near zero over a vol-
ume containing several electron wavelengths.
When the leading asymptotic term in I'yzyp is used
in Eq. (25), it is easily seen that the resulting
potential field is precisely the electrostatic field
arising from a dipole whose value is p,Z, where p,
is defined by Eq. (21) and 2 is a unit vector in

the direction of E,. This verifies Landauer’s
picture for the long-range average field of the
RRD.

It is of interest to have an explicit expression
for the electric field 6E. The component of the
local field in the z direction is easily obtained
from Eqgs. (24) and (25) and the n,(T) expression
(12). We find

3
5§,= 8ekeTE, (I"(p) sin®g + dr(p) cosze), (26)
p dp

7o ?

where in Eq. (26) the RRD field is obtained by
inserting I'grp for I', while the BF field is ob-
tained by inserting I'ye for I'. The results for
T'/p and dI'/dp are plotted in Fig. 4. The BF field
is regular for » - 0. There is an apparent diver-
gence in I'zpp(p)/p since I'rrp(0) does not vanish.
However, recall that our expressions apply for

¥ 27y only. Inside the muffin tin the interior
solutions R, () are well behaved and §E, is, of
course, finite.
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FIG. 4. Quantities dT'/dp and I'/p vs p, showing RRD
and BF contributions. These quantities are related to
the local electric field by Eq. (26). As in Fig. 1, the
values displayed do not include the sin%5 and siné cosd
factors for the RRD and BF quantities, respectively.



IV. DISCUSSION

We have evaluated the microscopic field and
charge density around an s-like impurity scatterer
ina jellium background. The field given by Eq.
(26) gives precisely the asymptotic behavior ob-
tained by Landauer in a semiclassical analysis.!
A superposition of such dipole fields gives the
extra field needed to drive electrons past a region
containing impurities.

If one considers a conductor in which the only
source of scattering is impurity scattering, then
one is led to the conclusion that there is, in fact,
no true external field. Rather, there is only a
self-consistent field internally generated by a
superposition of RRD’s. It is this superposition
which yields the macroscopic electric field in a
metal. To a certain extent, then, “exact” quan-
tum-mechanical derivations of transport pheno-
mena.are less than rigorous since in such treat-
ments an external field is taken as the perturba-
tion in the system Hamiltonian. (This, of course,
was also assumed here since the expressions used
in Sec. II were based on the “exact” Kubo forma-
lism.)

As we have discussed elsewhere, * there are
standard tricks to short-circuit the internally
generated RRD field. Among these tricks are
the assumption of toroidal geometry, periodic
boundary conditions, or an “infinite medium,”
i.e., a medium where average dipole fields are
taken to vanish by “symmetry.” None of these
methods is free of objections.*” Nonetheless,
the procedure used here and outlined elsewhere*
is sensible. First we focus on a small region
(within a mean free path) around the impurity.
Everything outside this region is treated as set-
ting up an external field within the region. This
enables us to obtain a local field using Kubo
theory. Finally, we find that our local field
summed over all impurities is precisely the field
assumed in the first place. This closes the self-
consistency loop. Although this procedure gives
no new results for the conductivity in a homogen-
eous medium, it does imply that great care is
needed in treating inhomogeneous media when
the scale of the inhomogeneity is comparable to
a mean free path.

Perhaps the most surprising feature of our cal-
culation is the elusive nature of the RRD charge
distribution. It is not localized within the order
of screening lengths or electron wavelengths.
Instead, the RRD is hidden, chameleonlike, within
the Friedel oscillations which extend to large
distances around the impurity. At large distances
it appears as though the average RRD field is
emanating from a dipole at the origin. If one were
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to ignore all oscillatory terms involving cos2p

and sin2p in Egs. (13) and (14), then it would also
appear as if the RRD were a dipole of strength p,
at the origin. But this is misleading since there
is no RRD singularity at the origin; the oscillatory
terms combine with the would-be singular term

to give smooth behavior with no localized dipole
near the impurity. This is seen in the figures.

We note from expression (26) and Fig. 3 that
the field of the RRD near the impurity is opposite
to the external field. Also, the true charge den-
sity —en(¥) due to the RRD near the impurity is
in the opposite sense to that expected for a local-
ized dipole moment p 2 near the impurity. The
BF field near the impurity is opposite to ﬁo for
an attractive potential (56> 0) and in the direction
of E, for a repulsive potential (5< 0). The BF
force on the impurity is thus always in the direc-
tion of the electron wind. It is clear from the
figures that the structure in the RRD and BF fields
cannot simply be attributed to localized dipoles.
The Friedel oscillations are an essential part of
the near- and far-field structure.

We now discuss implications for the driving
force in electromigration. Our results apply to
the calculation of the force exerted on a weak,
very localized scatterer due to the presence of a
strong s-like scatterer in its vicinity. This force
corresponds to an interference effect between
two scatterers and has thus far been calculated
only from weak-scattering expressions,'®’

The force on the weak scatterer can be simply
obtained from Eq. (6) by first integrating by parts.
The result, analogous to Eq. (22), is

F,=- f V(F-R) a—’?z@ &, @1)

where V is the (screened) potential of the weak
scatterer. We now assume a very localized scat-
terer modeled by a delta-function potential v
=A5(T - R), where A is the strength parameter.
With this form Eq. (27) becomes

2
F,=- %T"ie- o, (28)
where OF, is the local field at the position of the
weak scatterer and is given by Eqs. (23) or (26).
Equation (28) gives the force on the weak scatter-
er correct to linear order in the strength of the
weak scatterer. The discussion we have given
for 6E, (see Fig. 3) thus applies to the force F,.
We comment on the apparent large RRD con-
tribution to the force F, and the field 6E, as » - 0.
This behavior arises from the 1/p divergence
in the term I'ggp/p in Eq. (26). The divergence
appears in the RRD term and not the BF term
because in the exterior solution given by Eq. (11)
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the “singular” n,., term contributes to I'ggp, While
the “well behaved” j,., term contributes to I'yg.
If we wish to claim that » - 0 is a physically rele-
vant domain for our expressions, we must also
choose 7 yr— 0 since we have used solutions valid
for »>7 yr only. The condition » yy— 0 and the
condition that only s-wave scattering is appreci-
able places severe restrictions on the impurity
potential and the resulting value of 5. For exam-
ple, to satisfy these conditions for a spherical-
well model potential we need a very deep potential
and small §. As a result of small §, the BF con-
tribution would dominate the force on an isolated
impurity. In fact, it is generally true that the
force on an isolated impurity is in the direction
of the electron wind, i.e., in the direction of the
BF force. This has been established from T -
matrix expressions®? which are rigorous conse-
quences of the expressions (1) and (6) used here.
We emphasize that a weak scattering treatment
of the s-wave scatterer would give a spatial varia-
tion of the field exactly like the BF field which
we have calculated. The lowest-order perturba-
tion-theory result simply replaces the sind cosd
factor in I'ge by the factor 6. The RRD fields
do not, however, appear in lowest-order pertur-
bation theory. Therefore, to the extent that the
RRD fields are comparable to, or exceed, the
BF fields in Fig. 4, one must go beyond perturba-
tion theory and use the strong-scattering theory
presented here. Typically kp7yr~ 1 for metals,
so that p>1 is the appropriate region in the fig-
ures. Inthat region the BF and RRD terms are
comparable, except that 'y contains the factor
cosd sind while I'ggp contains the factor sin®j.
As an example, if 6~ 0.3, the RRD fields are
around 30% of the BF fields. The most dramatic
differences show up at resonance (5=7/2), where
the BF contribution vanishes entirely. Further-
more, the structure of the RRD fields and BF
are always different. It is not possible to simu-
late RRD contributions simply by changing 6 or
choosing a “better” potential or pseudopotential.
The distinction between the RRD and BF contri-
butions to the force F, also arises in T-matrix
expressions. A T-matrix expression which is
equivalent to Eq. (27) is®

F,=2m Z; gt <6%, (EIT"’IT&) (K| 7|k 6t - ep),

ke
(29)

where R, is the z coordinate of the impurity on
which the force is to be calculated and 7" and 7¢
denote the T matrix for the localized impurity
complex. (The + signs denote electron or hole
propagators in the defining equation for 7.)

If Eq. (29) is applied to the problem of a strong
s-wave scatterer and a weak second scatterer,
expression (28) is obtained to lowest order in V.
If one approximates the T matrix in a single-site
picture, one writes T®=¢® +Vy, where t® rep-
resents the T matrix of the isolated strong scat-
terer. Using this in Eq. (29) and taking the real
part of that expression, we find that F, is pre-
cisely the result we have obtained for the BF con-
tribution alone. The RRD f{field is completely lost
in this procedure. The RRD contribution requires
one to include multiple scattering terms in 7¢
when evaluating Eq. (29), i.e., terms to all orders
in the strong scatterer and first order in V. We
have already seen that such terms are important,
especially at resonance. We expect that these
RRD-related terms would be important correc-
tions in single-site calculations of both electro-
migration forces and resistivities for clusters
of strong scatterers in both solid and liquid met-
alS.17’27

We comment on our approximations. The cen-
tral approximation is the use of linear screening.
As far as we are aware, this approximation is
common to all previous self-consistent treatments
of fields and charges in electron transport. A
discussion of linear versus non-linear screening
has been given elsewhere® in the context of Kubo
formalism. An improved treatment of screening
is not expected to lead to substantial changes in
any of our results.

The particular assumption of short screening
length simplified the calculations and allowed us
to obtain analytic expressions for fields and charge
densities. Expressions which are valid independ-
ent of any screening-length assumptions include
Eq. (12) for n,(¥) and Eq. (28) for the force on a
weak very localized scatterer. [In using Eq. (28)
for the force, one must use the 3E, expression
(26) even though this expression does not give
the actual local field if the screening length is
not small.]

When the screening length is not small (a < kg),
the Friedel oscillations we have found in »(¥F)
and 6E (¥) will be somewhat washed out. In gen-
eral, one would have to average our calculated
n(T) or 6E(T) over the region containing the Thom-
as-Fermi screening potential. For example, the
true local field would be given by

-a|T-T1
Ig‘f"::%','r éﬁc(?')d3r’, (30)

_a?

o (T)= -
where 8E, represents the calculated value for
a -, i.e., expression (26). The relation (30)

also holds between the true density »(¥) and the

calculated density »,(T), where n,(T) is given by
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Eq. (16). The major effect of the integration is

to average our results over a distance of order
1/a, and hence to diminish somewhat the ampli-
tude of the Friedel oscillations in fields and charge
densities. The qualitative picture we have found
for the RRD would not change very much.

V. CONCLUSIONS

The RRD has been found to play an important
role in the local field and electromigration driving
forces. Our calculations give the first quantita-
tive description of the RRD. The long-range (aver-
age) RRD field is exactly as described by Lan-
dauer. We found that the RRD does not arise from
a very localized charge distribution around the
impurity; rather, the RRD is extended and con-
tains important contributions from long-range
Friedel oscillations. Since our expressions are
valid for distances up to a mean free path from
the impurity, we conclude that the sources of the
RRD are effectively distributed over a distance
on the order of a mean free path from the impur-
ity.

The RRD contributions to the electromigration
driving force has been calculated for the case of
a weak scatterer near a strong scatterer [Eq. (28)].
This RRD contribution is missing in previous cal-
culations based on perturbation theory or single-
site T matrices. RRD corrections are appreci-
able, and near a scattering resonance they be-
come dominant,

Finally, we comment on the separation of RRD
and BF terms throughout our analysis. The total
charge density (BF +RRD) is, of course, the rel-
evant physical quantity. The fact that the charge
density neatly separates into parts which we de-
fine as BF and RRD quantities is convenient, but
not essential, in our investigation. The BF and
RRD densities are precisely defined in Eqs. (13)
and (14) according to whether they exhibit sin?§
behavior (RRD) or sing coss behavior (BF). The
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RRD quantities are thus proportional to the cross
section as in Landauer’s treatment.! The BF
quantities are identical to the perturbation-theory
results of Bosvieux and Friedel** when one in-
vokes the weak-scattering limit (5« 1) and re-
places sind cosd by 6 in our expressions. Note
that the RRD distribution does contain some “in-
terference” terms and Friedel oscillations as
well as the "2 asymptotic behavior, ¢ and is thus
not precisely the quantity which has been envision-
ed by Landauer.'”®* The separation of the inter-
ference terms and the Friedel oscillations from
the RRD distribution is only possible in the asymp-
totic limit.® However, such asymptotic separa-
tions have no meaning close to the impurity, i.e.,
there is no meaningful analytic continuation of

the asymptotic form to the - 0 limit. Qur cal-
culations show that there is no localized dipolar
charge near the impurity on a microscopic scale.
However, on the macroscopic scale there are
electric fields set up which appear to emanate
from a microscopically localized dipolar charge.
These are our main conclusions and they are not
dependent on the fact that we have made a particu-
lar separation between BF and RRD quantities.

We emphasize this point because the BF and RRD
separation is not so neatly made when the scatter-
ing potential is more complicated as, for example,
when several phase shifts are appreciable. One
could, in that case, still follow the general analy-
sis of this paper, but without explicitly separat-
ing the charge density into RRD and BF quantities.
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