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We have performed resonant Brillouin scattering experiments in ZnSe in the [100]and f110]directions. These two
directions are needed to obtain the exciton-polariton dispersion curves without ambiguity. Even if only the influence

of the isotropic part of the exchange interaction on heavy and light excitons is taken into account, the number of
polariton branches is shown to be dependent on the wave-vector direction. However, in ZnSe a three-branch-

polariton model ("quasi-isotropic" model) is enough to account for the experimental results. We obtain thus the
longitudinal-transverse (triplet) splitting E„T= 1.45+0.05 meV, and the quintuplet-transverse (triplet) splitting

h = —0.1+0.1 meV, and the masses of heavy and light excitons, M„and M„M„(100)= 1.11~0.1mo,

M, (100) = 0.3~0.05m„M„(110)= 1.95~0.1mf), M, (110)= 0.37~0.05mo in the free-electron mass unit. These

numerical values are little altered if the linear k term is taken into account.

I. INTRODUCTION

The problem of the calculation of the exciton
dispersion curve in semiconductors with a de-
generate valence band has been cleared up in
both indirect and direct gap semiconductors by
Kane. ' Contrary to the case of a nondegenerate
band' this problem has no analytical solution and
at first sight the theory is not expected to be as
precise as in the case of a nondegenerate band.
From an experimental point of view this theory
was first checked in an indirect-gap semicon-
ductor (germanium). ' In direct-gap semiconduc-
tors, with which we are dealing in the following,
the light alters the exciton dispex'sion curve and
leads to the so-call. ed polariton. ' To obtain the
polariton, dispersion curve it is well known that
a resonant Brillouin scattering' experiment is a
well suited tool [GaAs (Ref. I), Cds (Ref. 8),
CdSe (Ref. 9)J although it is not the only one
[CuCI (Ref. 10), CuBr (Ref. 11)]. In the case of
a degenerate valence band, a simple model leads
to a three-branch-polariton dispersion curve. "
The choice of a "good" semiconductor to test
this model is very restricted. In III-V semicon-
ductors the exchange interaction is too small and
in I-VII semiconductors the effect linked to a
degenerate valence band can be hidden by the
linear k term. " Thus it is easy to predict that
a "good" semiconductor belongs to II-VI com-
pounds. ' Among the cubic II-VI semiconductors
Zn compounds have the greatest exchange inter-
action and indeed the choice of ZnSe was guided
by the availability of very good samples. '~ A
complete calculation of exciton and polariton dis-
persion curves near the Brillouin-zone center
taking into account the linear 0 term, the iso-

tropic and the anisotropic part of the exchange
interaction, is reported in Ref. 11. In the case
of ZnSe, we shall see that the isotropic part of
the exchange interaction is sufficient to explain
the experimental results. Even in this case the
number of eciton branches coupled to light and
therefore the number of polariton branches de-
pends on the wave-vector direction. This re-
sult can be deduced from group theory" but
we have taken another point of view and we have
written explicitly the exciton wave functions.

In Ref. 1, the exciton wave function is expanded
in the eight-dimensional space of the n=1 exciton
ground state; the periodic part of the wave func-
tions belongs to the I', & I", representation which
describes the conduction and the degenerate val-
ence band of direct-gap semiconductors such as
ZnSe. Taking an intuitive point of view, we re-
call in the following (Sec. IIIA) the part of this
theory which is useful to study polariton disper-
sion. A more complete treatment leading to the
dispersion of the exciton states n= 1,2, . . . has
been done by Altarelli and Lipari. " Contrary to
the theory of Kane' which is based on a perturba-
tion calculation, Altarelli and Lipari" used a vari-
ational method and developed the exciton wave
function in a larger dimension space than in Ref.
1 so that the accuracy must be better. In this
paper we shall content ourselves with the eight-
dimensional space of the exciton ground state.
We must note that the theories of Refs. 1 and 15
lead to the same number of exciton branches near
the center of the Brillouin zone and more pre-
cisely to two kinds of excitons: heavy and light
ones.

In those theories the linear k term" is not con-
sidered. Thisterm splitsthe valencebandintotwo,

;) los 1981 The American Physical Society



5108 BERNARD SERNIAGE AND GUY FISHMAN

three, and four br anches in the [100],[111],and [110]
directions, respectively, and thus can induce fur-
ther splittings in the [111]and [110]directions
but not in the [100] direction. As was said above,
this term is needed in CuBr but there is not clear
evidence that such is the case for ZnSe. Never-
theless, we have taken it into account and a dis-
cussion of its relevancy is given at the end of the
theoretical part.

'The outline of this paper is as follows: In Sec.
II we present our experimental results and the
numerical values of the parameters which give
the best fit within a simple model detailed in

Sec. III. In Sec. IIIA we give the wave functions
needed for the calculation of polariton effect and

we recall the eigenvalues. In Sec. III B we give
precisely the exact form of the exchange interac-
tion used here. In Sec. IIIC we give the theoreti-
cal dispersion curve in the [100] and [110]direc-
tions. 'This permits us to justify the model used
to interpret the experimental results. The linear
k term is included in Sec. IIID and is used for the
discussion given in Sec. IV. We present our con-
clusions in Sec. V.

(1)

(2)

Es= E

Ks= K;+ q,
where E, and K, are the energy and the wave vec-
tor of the incident light inside the sample and 0
and q are the energy and the wave vector of the
acoustical phonon.

In the range of wave vectors q of interest (qs 8
x10' cm '), which can be of the order of 15/g of
the Brillouin zone (5.5 x10' cm '), the energy of
the acoustical phonons is given by the linear re-
lation

dex of ZnSe which is about 3, the light beams in-
side the sample are not misoriented by more than
4 relative to the normal to the sample surface.
'The sample is in the vacuum and cooled by a con-
tact with the cold finger of a helium crysotat so
that its temperature is a,bout 10 K.

Brillouin scattering is the scattering of light
by the acoustical phonons. 'The elementary pro-
cesses are creation or absorption of a phonon.
'The energy Es and the wave vector Ks of the two
scattered waves are given by the conservation
relations

II. EXPERIMENT

A. Principle

The resonant Brillouin scattering experiment
is now a classical one and has been described in
many papers"'4 (Fig. 1). We work in a backscat-
tering geometry, that is to say that the incident
beam and the direction of observation are per-
pendicular to the surface of the ZnSe sample.
'The incident beam is produced by a dye laser
working with Stylben 3 pumped by the uv lines of
an argon laser. The spectral resolution of the
dye laser is obtained with a triple Lyot filter and

a 1-mm-thick glass plate used as Fabry-Perot.
To analyze the scattered light, we use a simple
monochromator with a focal length of 1.5 m so
that the total resolution is better than 0.03 meV.
For practical considerations, the incident and ob-
servation directions make an angle of 12'. The
aperture of the lens situated between the sample
and the monochromator is f/6 Becau.se o.f the in-

Q=N'p q,
where v, is the sound velocity.

Far from resonance, the light dispersion is
linear and the Brillouin shift 4E is the same for
the Stokes and the anti-Stokes scattering and is
given by

~E= ~E, E, ~=2
"""-E. , (4)

where n is the optical index and c is the light
velocity. Near resonance, incident radiation pro-
pagates in the sample in a polariton mode, the
dispersion. of which is generally given by an im-
plicit equation

F(E,A)= 0.
In the case of ZnSe, this equation has three solu-
tions, as we will see in Sec. III, corresponding to
the three polariton branches" (Fig. 2)

E~= f~(A), j= 1,2, 3.
These functions f& can be inverted as follows:

MODULATOR
DYE IONIZED

ARGON LASER

MONOCHROMATOR

If( =fq
'(E) .

The Stokes and anti-Stokes shift corresponding to
transitions between the branch j and the branch l
are given by the following equations:

t
PHOTOMULTIPLIER

FIG. 1. Experimental setup.

n.E(S~, ) =
j
E(S~g ) —E,

=Rv, [f( (E( —r4E(S~, ))+f~ (E()],
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FIG. g. Sketch of the three-branch polax'iton. The
index of the bx anehes 6,re U: uppermost, I: intermed-
iate, L, : lowest branch. 8&& (AS&&} (i,j =U, I,I.}corre-
sponds to a Stokes (anti-Stokes} txansition from the
branch j to the branch j. Some transitions are explicit.~ is the negative (positive} Stokes (anti-Stokes} shift
which is experimentally measuxed.

bE(AS~i)= iE(AS~i) E;i-
=Kg,[fg(E,+bE(A S~., ))+f) '(E, )j. (9)

a) Ej=2)009meV~ QT"

-Q.5 Q
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FIG. 3. Brillouin spectra obtained in the 1100j direc-
tion for different incident energies. The small peaks
TA correspond to interaction with transverse-aeoustie
phonons: This interaction, forbidden from symmetry
considerations, is slightly allowed because incident
and scattered light are not strictly parallel.

We have performed resonant Brillouin scat-
tering experiments in the [100] and [110]direc-
tions and we have used the three-branch-polax'iton
modeV' whose sketch is given in Fig. 2 to identify
the peaks. Some examples of the Brillouin spectra
in the [100]direction are given in Fig. 3. For
energies below that of the resonance, we observe
one Stokes and one anti-Stokes Brillouin peak
which col respond to Rn intex action with the longi-
tudinal-acoustic phonons. We have measured
the light refractive index at 4.462 A Rnd we find
n= 2.86+0.05. We can thus calculate from Eq.
(4) the velocities of sound which are given in

'Table I. Our values compare well with the one
we can calculate from the elastic constants mea-
sux'ed at low temperature by Lee." Near the
resonance we observe one or two small peaks
which correspond to the intexaction with the
transverse-acoustic phonons. 'The velocities of
these transvexse vibrations are also given in
Table I.

We hRve plotted the shift of the Brlllouin peRks
as a function of the incident energy in the [100]
and [110]direction (Figs. 4 and 5). The identifi-
cation of the points needs to fit with a theoretical
model. At this point we want to make some re-

TABLE I. Velocity of sound in ZnSe. The experiments wer e pex formed at 2778 me V, i.e.,
24 meV below the resonance. Owing to the slight angle between incident and scattered light,
the transverse phonons are observed in the I100] experimental configuration.

Sound velocity(km/s}

Di x'ection
LA phonon

Our experiment Reference 17
TA phonon

Our experiment Heference 17

hoo]
t110]

4.21 + 0.15
4.82 + 0.15

4.93+ 0.15

4.11
4.62

2.67 + 0.10
2.82 ~ 0.10
2.05 + 0.10
2.3'5 + 0.10

2.8O

2.80
1.86
2.22
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FIG. 4. Stokes (b E&0) and anti-Stokes (EE&0) Brillouin shift versus the incident energy in the [100) direction.
Crosses (+) correspond to experimental points of Brillouin scattering and solid circles (e) are attributed to excited
states of I2. Numerical values quoted in this figure as the solid and dashed lines (LA and TA phonon) are calculated
without the linear k term. Dotted line (LA phonon) is calculated taking into account the linear k term using the follow

ing values: 5=-0.09 meV, M&= 0.41mo, M&=1.04mo linear k term C=3.3 &10" eV cm; other parameters are un-

changed.

marks.
(a) The shift with respect to incident frequency

is constant (0.23 meV) for some lines (hereafter
denoted I ) for an incident energy range between

2801 and 2802 meV. The I peaks are noted by a
circle in Figs. 4 and 5. Moreover, this shift
does not depend on the direction [100]or [110],
whereas the Brillouin shift of all other points
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FIG. 5. Stokes Brillouin shift versus the incident energy in the I110]direction. Crosses (+) and solid circles (e)
have the same meaning as in Fig. 4. Solid lines (LA phonon) and dashed lines (TA phonon) are calculated with the nu-

merical values quoted here. The sound velocities are given in Table I.
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(see Fig. 7). However, it is worth noting that a
number of experimental points which are well
accounted for in the three-branch-polariton model
should not exist in the two-branch model.

From another point of view, Fig. 5 shows it is
difficult in the [110]direction to discriminate
between Stokes scattering inside the lowest branch
by transverse phonons and scattering inside the
intermediate branch by longitudinal phonons,
contrary to the case of the [100]direction. All
this shows that experiments in several directions
allow us to obtain without ambiguity the three-
branch-polariton dispersion curve in ZnSe. Qur
numerical results are summarized in T; le II."

0.8
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III. THEORY

A. Eigenfunctions and eigenvalues of the exciton
Hamiltonian

The Hamiltonian leading to exciton states can be
written as~

FIG. 6. Solid lines: luminescence spectrum (with an
excitation energy above the band gap). Dashed line:
excitation spectrum of I2 showing five excited states of
l2 noted I2 (@=a,b, c,d, e). The three last are situated
between 2801 and 2802 meV.

varies with the direction because of the varia-
tion of the sound velocity. We thus think that the

peaks do not correspond to Brillouin scattering
on excitonic polaritons. Furthermore, in the

energy 2801-2802 meV there are three excited
states (I„,I„,I~ in Fig. 6) of I, which are split
by 0.23 meV on both the excitation spectrum and

luminescence spectrum of I,. TheI peaks have
an intensity which is maximum for an energy equal
to that of I~. Now we think that the I peaks ob-
served on the Brillouin spectrum correspond to
transitions between two excited states of I„as
already observed in Ref. 9. Let us note that the
shift of the I peaks is close to (i) the shift of
TA-phonon scatterings in the [100]direction, which

are not strictly forbidden due to the slight angle
between incident and scattering light and (ii) the
shift of possible scattering of an intermediate
branch in a former interpretation. " We must
note that our new interpretation of peaks I
does not qualitatively change the contents of Ref.
14 but alters quantitatively the parameters in a
significant way. The fit we finally obtain is given
in Figs. 4 and 5 and its accuracy is discussed in
the following sections.

(b) We have tried to fit the experimental points
in a classical model of a two-branch polariton
valid in the case of a nondegenerate valence band.
This model agrees with the points S„„and SLL

(10)

where H, and H„are the Hamiltonian describing the
conduction and the valence band and -e'/ax is
the effective Coulomb interaction, e being the
dielectric constant and x the distance between
the electron and the hole.

Following Ref. 1, in a direct-gap semiconductor,
the so-called relative momentum induces a term
proportional to a four-dimensional identity, and
an average mass M, [defined in Eq. (17) below]
results from this. This relative momentum does
not lead to any splitting and cannot alter the
eigenfunctions. The whole calculation leads to
splitting which is identicul to Eq. (15) below; the
Hamiltonian giving this splitting has the symmetry
of the Luttinger Hamiltonian. " Because we need
exciton wave functions to compute the polariton
dispersion curve we wish here to show what can
be deduced from a simple examination of H~.

The eigen-wave-functions of II, are iSi) and

(Sf), the quantization axis being arbitrary.
5 is a 1",-type wave function and 4 or 4 stand for
spin up or down. 'These functions will be written
)&r) (v=0 or 0) in the following.

The HamiltonianH„ is the Luttinger Hamiltoniana'
(at zero magnetic field) and the eigen wave func-
tions are of I', symmetry. Let us take the quan-
tization axis parallel to the hole wave vector. A
simple basis is given by

i
—,', m) (m = ——,', -2,2, —', )

which we write merely ~m) below. The Hamil-
tonian bIIi eanngisotropic (y, + y, ), the eigenvec-
tors ofII, are i+-', ) for the heavy holes and i+-,') for the
light holes but do not coincide with i

~-*,) and i~-,'): An

eigenfunction ~m) is a linear combination of wave
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FIG. 7. Solid and dashed lines are calculated in a tsvo-branch polariton model. Crosses (+) and solid circles (e)
have the same meaning as in Fig. 4. A number of points, accounted for by the three-branch polariton model, should
not exist in the two-branch model.

functions g). Forexample,
~

—',) contains mainlythe
function P) and they coincide only in a high-sym-
metry direction [100]or [111]or in any direction
if y, =y, . Thus the calculations will be the same
in the [100] and [111]directions but not in the
[110]direction.

With the above notations the periodic part of the
eigenfunctions of H, + H„ is

j c)8
)
m) =

(
o m).

Now let us look at the eigenvalues. The eigen-

values of H, are k'k,'/2m, (where 2' is the
Planck's constant, k, and m, are the wave vector
and the effective mass of the conduction electron).

The eigenvalues of H„are

(e'k„'/2m, )[y, +f(y„y, )]

where m, is the free-electron mass, k„ the hole
wave vector, and y, y„and y, are the Luttinger
parameters). f(y„y, ) can be written as"

TABLE II. In the first column the Luttinger parameters p&, p2, and ps are obtained from the experimental determina-
tion of light and heavy exciton masses M, and Mz. For the four other columns the masses M& and M& are deduced from
the Luttinger parameters. All the calculations are done using Eqs. (66) and (67) of Ref. 1. The conduction electron
mass is 0.16mo [after J. L. Merz, H. Kukimoto, K. Nassau, and J. W. Shiener, Phys. Rev. B 6, 545 (1972)l.

Our
exper iment Reference 18 Reference 19 Reference 20 Reference 21

[100] M)
M~

0.38 + 0.05
1.11+0.10

0.41
2.0

0.42
0.87

0.37
0.56

0.39
0.58

h. 10l M)
M

'Yf

'Y2

'Y3

0.37 + 0.05
1.95+ 0.10

4.30
1.14
1.84

0.37
4.25

3.71
1.24
1.67

0.4
1.0
3.13
0.694
0.902

0.34
0.66

4.32
0.662
1.13

0.33
0.79

4.3
0.59
1.34
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f(y„y, ) is, respectively, equal to 2r„2r„and
(y'+ Sy')' ' in [100], [111],and [110]directions.
'The eigenvalues of H, +H„are

E„(K)-E,(K)=
C

(18)

where R, is the Rydberg energy.
The splitting between heavy and light excitons is

then given by

I'2y2 I'2y2
E,(k„k„)-- ' + [y, +f(ym, y3)]

IPl g PATE Q

and the splittings are

(12)
Eq. (67) of Ref. 1 gives 1/M, which can be written
as

1 P„
M, mp

k = ' — K,
m, + ~,/r,

mk„= " ' K= P„K, K=k +k
PAL~+ mp/ j'&

(14)

and we obtain

E,(k„k~) -E (k„k„)= . P„'2f(y„y,). (15)
fBQ

Indeed the only thing we need to calculate the
polariton dispersion curve in following sections
(III B, IIIC, and IIID) is to suppose (i) the periodic
part of the eigenfunctions of H„are ~om) and (ii)
the eigenvalues of

~

o + —,') and
~

o a2) can be written
E„=f'Kf'/ 2„Mn aEd, =PE'E'/2M, (M~&M, ); i.e.,
we can define an effective mass for each eigen-
value: ~&r+ —', ) and ~o+&) are, respectively, the
wave functions of heavy and light excitons. We
need no further hypothesis.

Now let us return to the calculation of Ref. 1.
We have just seen that the Hamiltonian given

by Eq. (10) is useful to make simple symmetry
considerations but, just as it is, it cannot be used
to make an effective calculation of the energies.
'To handle the Hamiltonian H~, Kane writes

e2
+K ++ 1 231

CV
(16)

where H, + H„, —e'/er is the usual effective-mass
Hamiltonian of the excitons (where the effective
hole mass is mo/x, ) and where H„», which gives
the anisotropic splitting, between heavy and light
holes, is treated as a perturbation. The energy
of the Is exciton states is given by Eq. (64) of
Ref. 1:

(17)

@2/2
E,(k„k„)-E (k„k„)= " 2f(y„y,).

SZ p

Now from a simple effective-mass exciton
theory, where there is only one hole band of ef-
fective mass m, /r, we know that (K being the exci-
ton wave vector}

so that Eq. (18) gives the same result as Eq. (15)
as expected.

The significance of the above calculations is
clear: We can obtain eigenvectors and splittings
between the eigenvalues easily. Of course calcu-
latjon of the exciton energies as a function of the
exact values from the Luttinger parameters re-
quires the knowledge of 1/M, and therefore the
calculations of Ref. 1 or 15. Conversely these
calculations are needed to obtain the Luttinger
parameters when the heavy and light exciton mass-
es are known. Finally, let us note that (m, + mo/y„)
can be notably different from I,: i.e., that the
deviation with respect to an oversimplified ef-
fective-mass theory is important and also that it
is difficult to define an average mass for the hole
(and for the exciton) when the valence band is
degenerate.

In the following the quantization axis will always
be taken parallel to the exciton wave vector.

8. Exchange interaction

In Sec. IIIA as well as in Ref. 1, the exchange in-
teraction between electron and hole has not been
taken into account. The corresponding Hamiltonian
can be divided into two parts: an anisotropic one
which we neglect because there is no evidence for it
in ZnSe and an isotropic one which is given below.
(To be exact the isotropic part of the exchange
interaction includes terms depending on the modu-
lus of wave vector but we do not take into account
these terms and from now on we call exchange in-
teraction the part of the exchange interaction which
does not depend at all on the wave vector. )

Let us first give some precisions on the exciton
wave functions. Until now we have used the ~om)
and

~

om) basis. However, the exchange interac-
tion can be expressed simply in the )ZM) basis
which is a known linear combination of the

~

om)
functions. The

(
JM) basis is divided into a quintu-

plet state
~

2M) and a triplet state
~

1M). It is
well known24 that the

~

2M) functions are not
coupled to light, the ~10) functions are longitu-
dinal states and the

)
1+ 1) functions are the two

transverse states which are the only ones to be
coupled to light. For the polariton effect the
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wave functions of interest are the wave functions
which axe mixed with these transverse states.

The problem is now to diagonalize the sum of
two Hamiltonians: the kinetic-energy Hamil-
tonian Hr (diagonal in the

I
om& bases) and the

exchange interaction (diagonal in the IZM& basis).
The shoxt-range part of the exchange interaction
splits the eightfold-degenerate level

I
O'M) into

two degenerate levels: the quintuplet one 12M
and the triplet one I 1M&, the difference b, be-
tween these two levels being the so-called ex-
change energy. The long-range part of the ex-
change interaction splits the triplet level into
two levels: the longitudinal one

I 10& and the
twofold-degenerate transverse one

I I+ 1&.

The splitting EI.~ between these two levels is
the so-called longitudinal-transverse splitting
hereafter denoted I.TS. The splitting 5 between
the quintuplet state and the transverse triplet
state will be called quintuplet-transverse splitting
hereafter denoted QTS. In other words, ELT= E(10)
-E(1+ 1), 5 = E(1+ 1) -E (2M), where E(JM) is the
energy of the I ZM& state at IC= 0. It is worth not-
ing that optical experiments permit us to measure
the LTS and the QTS but not directly the exchange
energy.

In the ideal case where (i) the background dielec-
tric constant is equal to one and (ii) excitons are
of the Frenkel type, the long-range part of the ex-
change interaction preserves the center of gravity
of the triplet state; the longitudinal-state energy
is increased by 3 E» and the transverse-state
energy is decreased by —,

'
E~T so that the QTS 6

is equal to 5= 4 -~ E». This relation has been
used in some papers dealing with semiconduc-
tors."'" However, in this last case neither of the
conditions (i) and (ii) is satisfied so that the above
1elRtlon between 5» +» Rnd ELT ls no longer SRtls-
fied. The center of gravity of the triplet level is
not conserved by the long-range part of the ex-
change interaction and very likely is merely equal
to the exchange energy 4.26 In any case the at-
tainable experimental parameters E and V are
the useful parameters in polariton effect.

The exchange interaction Hamiltonian can be
written Rs H~„~=Hsp+HI„R» where Ha@ Rnd Hl @
correspond, respectively, to the short-range part
(4) and to the long-range part (E„T)of the ex-
change interaction. However, we prefer to write
it in a more convenient form, displaying the
quantities 6 and E» instead of 4 and E» as fol-
lows:

H „~=H +H

8
2y2+ 2y3

Ws

2 (~. -~.)

1 8
2y2+ 273

v3
2 (W, -W.)

(23)

The eigenfunctions of this Hamiltonian are

I'&=slI&+ I I--'» I-'&=ul-'&-I I-I& (,4)
I-,'-&=u I-,'-&+ h I-,'&,

c and 5 can be written explicitedly if needed, g2+
O'=I, and usually a&)b (a and 5 can be taken as
real and positive). a/b depends on (y, -y, )/y,
g and b are given for different values of this ratio
in Table IG. Of course it is a straightforward
matter to obtain lm& functions versus lm) functions.

To write the matrix Hr+ H,„,„ in the IZM& basis

basis; see the Appendix. %e now have the follow
lng:

(10 I(Hr+ H„,„)I10&=a~E, + b2E„+ 5+ ELT,

(20 I(H, + H, „,„)I20&= u'E, + h2E„ (25)

H2 ELT ~Jg~NO '

6z, and 5~0 are Kronecker symbols.
In this form H, „is valid whatever may be the

relation between 5, &, and E». In Eqs. (20), (21),
and (22) the wave-vector direction (and therefore
the quantization axis which is parallel to it) is
arbitrary, i.e., H,„,„is isotropic.

C. Exciton dispersion curve

Now the problem is to calculate the eigenfunc-
tions and the eigenvalues of the Hamiltonian

H~+ H,„,„.
%e know that the eigenfunctions of these two
Hamiltonians are, respectively, Icm& and (JM&.
Let us look at the

I
om& functions. In H» the only

off-diagonal elements proceed from 0,» so that
we must diagonalize g„23. %e will study more
particularly the case of the [110jdirection; the
case of the [100j direction has been reported in
Ref. 12.

In the [110jdirection the useful part of H„» can
be written in the lm& basis" as

Hq-55~q» (21) (2~2 l(H + H.„,„)I2+2&=u'E„+ PE, .
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TABLE III. Mixing of the )om) functions for tt [[ (110]
for different values of (p3-p2)/y2. p2 and ps are I utting-
er parameters and a and b are defined in the text [see
Eq. (24) }.

VR
—'Y9

'y2

a
(a2)

b

(b2)

0.5

1.0

1.5

0.997
(0.994)

0.993
(0.986)

0.989
(0.978)

0
(0)

0.078
(o.oo6)

0.121
(0.014)

0.145
(0.022)

[The origin of the energy scale is such that E(2M)
= 0]. All other matrix elements with ~10), ~20),

~22), and ~2-2) are equal to zero. We see that,
contrary to the case where the wave vectors are
parallel to [100 or [111](where a = 1, b = 0}, the

wave functions 10), ~20), and ~2+2) do not
correspond to pure light or heavy excitons. How-

ever, from Table IG we see that the mixing is
very weak.

The coupling with light is given by the matrix
given in Table IV. The eigenvalues X are solutions
of

)i' —(E, + E„+ 6})i+E, E„+ (E,+ E„)6/4

+ (asE, + b Es)6/2+ (v 3 /2) [ab(E, —E„)6]= 0.

(26)

In the isotropic case (y, = )„b= 0) there are only
two two-by-two matrices and we find again the
solutions of Ref. 12 valid in the [100]and [111]
directions. In the general case Eq. (26) leads to
a four-branch exciton dispersion curve coupled to
light and therefore a five-branch polariton dis-
persion curve in the [110]direction. The four-
branch exciton dispersion curve exists if these
three conditions are satisfied: (i) y, or y, x0
which means that there are two kinds of excitons
(E,xE„), (ii) the ~m) functions are not identical to
~m) functions (abc 0), and (iii) the QTS 6 is not
equal to zero.

Let us calculate an order of magnitude of these
further splittings in ZnSe. I et us take 5-0.1 meV,
E-10'cm ', we find E, —Eh-0. 6 meV but the new

splitting for each (heavy and light) exciton branch
is only of the order of 0.02 meV&&0. 6 meV.

This splitting is very small and it is not sur-
prising that we have not observed it in ZnSe: A
quasi-isotropic model is quite enough to explain
our results. As usual in a first-order perturba-
tion theory it is enough to modify the eigenvalues
(E, and E„and therefore M, and M „) following the
direction of wave vectors but not the eigenvectors
(g'- I, b' «I) and to suppose that eigenstates are
given by the two-by-two matrix obtained if a= 1,
b=0. More precisely we say that a model is
quasi-isotropic if only a two-by-two matrix is
considered and if the dependence on the wave-
vector direction is taken into account only through
the exciton masses and not through the wave
functions.

Now let us make some remarks on the number
of polariton branches. Only the eigenvalues of

TABLE IV. Matrix giving the mixing of the wave functions ~1 + 1) coupled to light to other functions inside the space

~ JM), J=l or 2 in the (1101direction (without taking into account the linear b term) E, and .EI, are, respectively, the

kinetic energy of light and heavy excitons. a and b are defined by Eq. (24) of this paper. The quantization axis is para-
llel to [110). The exact eigenvalues of this matrix are given by Eq. (26).

g2+ 3b2 3'+ b2

4 4
l+ h

~3 (g2 b2)
h4

vS ab
2

ab
(% -Eh)

2

&3(a —b ) (Es —Eh)
3g2 + b2 g2 + 3b2

4 1 4 h
—(E E)ab
2 l h

&3 ab
(E Eh

&3ab
E, —Eh)

2
ab
2
—«i -Eh)

a +3b 3a +b
4 4

E)+ Eh+ 6
~3(a —b )

4 h

ab——(E —E )
2

&30b
2

v3 (a —b)
4 2 h

3~2+ b2 ~2+3b2

4 t 4 h,
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H,„,„are isotropic, unlike those of H, E„and
E» which depend on the wave-vector direction.
Thus for an unspecified wave-vector direction
eight different eigenvalues can be found, because
the dimension of I', x I', is equal to eight. For
example, in the [110]direction whose symmetry
is not very low we have found four branches coupl-
ed to the light and therefore a five-branch polari-
ton. We wish to emphasize that this is obtained
without the linear k term, with which a four-branch
exciton can be obtained in the [110]direction.

D. Linear k term

In the [110]direction the linear I, term splits
the valence band in four sublevels, but this has
not been observed in our experiments and we do
not think that it is useful to take this term into
account H. owever, in the [100]direction the
splitting due to this term leads to two branches
and cannot be set aside at first view. Using the
method of Hopfield and Mahan, "the Hamiltonian
which takes into account the linear k term in the
[100]direction is written

(II) (21)

E,+ 3E„~S
( )l» CK

(E E)

CK

3E/+ E»

CK
El+ 3E2

»

W3—(E, -E )

(27)

+[(E,+ E„+6)2-4E,E,+ 4e'Z']'~') (28)

The four eigenvectors have the form

~„(11)+n,', (I - I)+ a',.,'i21)+ n', ,"i2 —1), (29)

where the index+ or —corresponds to the eigen-
values X, or A. . For each eigenvalue there are
two eigenvectors: j=1,2. The normalization
gives

(~ )2+ (~I )2+ (~sr)2+ (+i've)2 7

and the coupling to light is given by

(30)

4wp, =4mp, [(n„)2+ (o.,',)2]=4w p[(a„) 2+(o.;,)2],

where 42p, is the oscillator strength which is
related to the LTS E~T at K= 0.

The polariton curve is given by

(31)

I'c'K' 47rP, 4mP

E 1 —(E/A, )2 1 —(E/X )

A discussion on the importance. of the linear k
term in the polariton dispersion curve is given in
the following section.

The constant C used here is equal to that of Eq.
57 of (Ref. 28) multiplied by m2/(y, m, + 2n,). If
C=O, we find again the solutions of Ref. 12. The
two twofold-degenerate eigenvalues are

y, =2(Eg+ E„+ 5

IV. DISt:USSION

Figure 4 shows that the linear k term improves
only slightly the agreement between the theoretical
curve and the experimental points in the [100]
direction. Though the curve is not very sensitive
to the value of C, the best fit is obtained for
C=3 X I0 "e7em which compares favorably to
C = 5 x 10 "eVcm obtained in CdTe." The values
of the four parameters E», D, j/I „andM, are
given in Table II. From Table II and Fig. 4 it is
seen that in the [100]direction the linear k term
does not change the values of E~T and 5 while the
values of heavy and light exciton masses are only
slightly different. This last point shows that we
can be confident in the values of these four para-
meters but the value of C quoted here is not very
precise. We wish to point out that we have only
supposed that the exchange interaction is isotropic
and that the exciton dispersion can be accounted
for by two effective masses (the wave functions
needed for the calculation of the polariton dis-
persion curve being developed inside a I'~ xI',
space). In the [110]direction it is still less
1eallstlc to take into account the linear k term
because there is no experimental evidence for
further splittings induced by this term.

From the values of the exciton masses in the
[100]and [110]directions we have calculated the
Luttinger parameters using Eqs. (66) and (67) of
Ref. j.. The values are quoted in Table II. How-
ever, Luttinger parameters are very sensitive to
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the exact values of the exciton masses. ' " As a
matter of fact it seems to us that the values quoted
in the literature must be taken with caution in
semiconductors with a degenerate valence band 29

Anyway, the fits of Figs. 4 and 5 show that the
Kane model is widely sufficient to account fox the
details of experimental results. " Now it is known
that this model can be improved (a full discussion
is given in Ref. 15). So we must wonder about the
physical reason why the simple model used in this
paper works so well in ZnSe. In our opinion it is
because the QTS 5 is weak and thus the mixing of
the wave functions of heavy and light excitons can
be neglected even for k different from zero and
therefore the oscillator strength of each branch is
nearly constant (i.e. , independent of the magni-
tude of k}. In this case the details of the wave
function do not have much importance in fitting the
experimental curves if the masses of heavy and

light excitons are taken as unknown parameters.
At the same time in this case, the model which

is, strictly speaking, valid only in the [100]
dlrectlon becomes VRlid fol Rll directions, the
exciton masses being parameters which depend on
the A direction: Vfe obtain the quasi-isotropic
model described in Sec. IIIB.

%e can note that, 6 being negligible, the oscil-
lator strength of the heavy exciton branch is equal
to 4~ (4vPO) and gives rise to an apparent LTS for
this branch ELr=~(1.45 meV)=1. 1 meV, which is
very near the values usually quoted jn literature.
Although me have no definitive explanation of this
agreement we think that this conderation has to be
taken into account for comparison with other ex-
periments.

If the QTS is not weak, the situation can become
quite different: The use of the matrix of Table IV
is needed. Then, it is not sure that the model of
Ref. j. ls sufflclent, becRuse in such R cRse the
very details of the wave function would be needed
and the method of Ref. 15 mould become necessary:
The calculation including polariton effect would
become much more difficult.

In conclusion, we wish to make a remark on the
possible mixing between longitudinal and trans-
verse excitons in an unspecified wave-vector
directions' In our calculation in the [110]direc-
tion the I10) state is purely longitudinal, i.e.,
I10& is an eigenvector of Hr+ H„„,„. This occurs
only when the linear k term is neglected. If this
term is taken into account, the longitudinal and
transverse exciton are mixed."

V. CONCLUSION

%'e have shown that the notion of heavy and light
excitons in degenerate valence-band semiconduc-

tors is very realistic. From an experimental
point of view the useful parameters are the longi-
tudinal-transverse splitting, the quintuplet-trans-
verse (triplet) splitting, and the two masses of
heavy and light excitons, these two last parameters
depending on the direction of the wave vectors.
In ZnSe the values of these paxameters are not
very sensitive to the theory used (for example, taking
into account or not the linear k term).

Taking into account the isotropic part of the ex-
change energy me have shown that theoretically
the number of branches of the dispersion curve of
heavy and light excitons (and therefore the number
of branches of the polariton dispersion curve)
depends on the wave-vector direction. For ex-
ample, the number of branches is equal to two in
in the [100]direction and to four in the [110]
direction leading to a five-branch polariton dis-
persion curve in this last case.

However, if the QTS can be neglected (i.e., if
the QTS is much weaker than the LTS which is the
case in ZnSe}, a quasi-isotropic model is enough
to account for the experimental results. In any
ease the determination of the exchange energy and
Luttlnger pRx'RD1etex's CRD only be done ln the
framework of a model but cannot be directly de-
duced from the resonant Brillouin scattering ex-
periment.
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APPENDIX

We give here the expression the IZM& functions
in

I
g~& basis in [110]direction. The quantization

axis is parallel to [110]. We have the following:

I»&=-'[~(l&:-&+ ~3 I&-'&}-I(I& --'&-~3 I& -l&&]

I20&= —[n(I'-')+ I& --'»+ I (I& -'-&+ I4-:»]
v2

=-'[s(~3 I'--'&+ I& --:&&-5(I&&-~& 14-:»]

i2-2&=a it -,'&-aid&, -
I11)=—'[g(&3

I
4-) —if—')) —b(r3

I
4 — )+ I& --))]
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~

I —I& = -'[0(
i

& - 2 & - ~&
~

& --,')) + &(~& [& 2) +
~

& 2 ))].

The ~m) functions are given by Eq. (24). If y, =y, ,
a=1, and b=0, and we find again the standard
definition of the

~

JM ) functions where
~
m) = ~m &.
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