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The electrical and thermal resistivities (p and W) of pure Nb and Pd are calculated from nearly first principles.
Realistic Korringa-Kohn-Rostoker energy bands and wave functions, experimental phonon frequencies and

Born-von Karman eigenvectors, and rigid muffin-tin electron-phonon potentials are used to generate the velocities

and scattering probabilities in the Bloch-Boltzmann equation, at a mesh of nearly 48 000 points on the Fermi
surface. Solutions for p and 8' are exhibited at three levels of accuracy: {1) the lowest-order variational

approximation (LOVA) where the Fermi surface displaces rigidly; (2) the N-sheet approximation where different

sheets of Fermi surface displace independently; {3)a fully inelastic calculation where the ¹heet approximation is

used and the distribution function is allowed arbitrary variations with energy {normal to the Fermi surface) to reflect

the inelasticity of electron-phonon scattering. Above T = 100 K, corrections to LOVA are of order 1%, but below

T = 100 K, both the ¹heet approximation and inelasticity give large corrections to the LOVA results. These
results are also compared with Bloch-Gruneisen formulas fitted at T-O~. In the range 100 K(T& 300 K,
calculations exceed experimental results by -10%. Good agreement persists into the range 10 K5 T(100 K,
except that in Nb theory underestimates experiment significantly at the lower-temperature end, suggesting a possible

error of rigid muffin-tin models for small Q scattering, In Pd the interpretation is complicated by Coulomb effects.
Below T = 10 K, finite mesh size prevents reliable calculations. Simple models such as Bloch-Gruneisen theory are

inadequate to account for the data. Mott's (1936)"s-d" picture is shown to be qualitatively correct for Pd. Extension

of this picture to Nb was suggested subsequently by various authors, but the present calculation does not support
this.

I. INTRODUCTION

The problem of electronic transport in metals
was solved in PrinciPle over 50 years ago when
Bloch' wrote down the semiclassical Boltzmann
equation. In practice, there are still many fea-
tures which are poorly understood. In particular,
the understanding of transition metals' lags con-
siderably behind that of "simple" metals. ' The
field retains a lively interest because transport
properties, especially the electrical resistivity,
are easily measured and carry important informa-
tion about microscopic properties such as the
electron-phonon. interaction and the electron-
electron interaction. In this paper, we investi-
gate electron-phonon scattering in the transition
metals Nb and Pd. Our objective is a realistic
calculation which can be compared without adjust-
ment to experimental measurements of electrical
and thermal resistivities. We face two basic pro-
blems, first, generating the electronic velocities
and scattering probabilities in the Boltzmann
equation, and second, solving it.

First, it is necessary to know the electronic
structure of the metal (at least in the vicinity of
the Fermi energy), the phonon dispersion rela-

tions, and the electron-phonon matrix elements.
Commonly used approximations such as spherical
Fermi surfaces, Debye phonons, and electron-
phonon matrix elements derived from screened
pseudopotentials are inadequate for the transition
metals. We use energy bands and wave functions
generated by means of Korringa-Kohn-Rostocker
(KKR) band theory. We use phonon dispersion
curves and polarization vectors obtained from
Born-von Karman fits to neutron scattering ex-
periments. For the electron-phonon matrix ele-
ments, we use the "rigid muffin-tin approxima-
tion" (RMTA). ' This approximation (to be des-
cribed in Sec. II 8) is ad hoc but reasonable and
has been shown to give good results for resisti-
vity, "phonon linewidths, ' ' and the electron-
phonon mass enhancement"" for transition
metals. The use of the RMTA is the major ap-
proximation of this paper and agreement between
theory and experiment provides a stringent test
of the approximation.

To solve the Boltzmann equation, we use the
Fermi-surface harmonic and energy polynomial
formalisms developed by Allen" and Pinski. "
These formalisms allow the Boltzmann equation
(initially an integral equation in the wave vector)
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to be written as a matrix equation which can be
easily solved even for complicated materials such
as Nb and Pd.

Overall, we obtain good agreement between
theory and experiment and interpret this as a
general confirmation of the rigid muffin-tin ap-
proximation. In Nb, however, in the temperature
range of -10 to 20 K, our calculated resistivity
is lower than experiment, which may indicate that
the rigid muffin-tin matrix elements in Nb are too
weak for small momentum transfer. A second
important conclusion is that the lowest-order
variational approximation"'" to the solution to
the Boltzmann equation is inadequate at low
temperatures. The experimental low-temperature
electrical resistivity is often fitted to an expres-
sion of the form p = A + BT + C T + DT . The
usual identification of the four terms with con-
tributions from impurity, electron-electron,
"s-d" electron-phonon, and "s-s" electron-phonon
scattering seems to us flawed by serious ambigu-
ity because the corrections from improved solu-
tions of the Boltzmann equation are large and do
not obey Mattheissen's rule.

To make contact with previous work, we present
calculations performed at several levels of com-
plexity. In Sec. 0, we present calculations in
the lowest-order variational approximation
(LOVA) which show that the use of rea1istic pho-
nons, energy bands, and matrix elements (as op-
posed to traditional approximations such as the
Bloch-Griineisen formula" ) has a large effect
on the temperature dependence of transport pro-
perties of transition metals. In Sec. III, we pre-
sent more accurate solutions to the Boltzmann
equation. These correction to LOVA become very
important below about 40 K. In Sec. IV, we pre-
sent a discussion of our results.

II. LOWEST-ORDER VARIATIONAL
APPROXIMATIONS

A. Formalism

In the Boltzmann theory, the fundamental object
is the electronic distribution function I'», which
gives the number of electrons in quantum state k.
We use k as an abbreviated notation for the quan-
tum numbers (kn), 'wave vector, and band index.
In the absence of applied perturbations, I'» is the
Fermi function, f»= [exp(Pc»)+ 1j '. The pertur-
bations cause E» to deviate from f» for states near
the Fermi surface,

F =f+( )p
where energies are measured from the chemical
potential p, = c~. This defines a smooth function

Q» which for weak perturbations is linear in the
E field or the thermal gradient VT.

From the distribution function, the currents
can be calculated,

je = —2e g v (k) Q»
= crE,

» ~&»

each of which can be related to the equilibrium
transition probability P»»t:

»» x. »»k BT»tt
1

Q»»t ~ + P»»t ~

B

Formally, the distribution function can be ob-

(6)

-sf dT
jo = 2 Q e» v, (k) y»

» BEg, dx

Here, we are taking the perturbing fields to lie
in the x direction and assuming that the currents
also lie in the x direction (as required by cubic
symmetry) Th. e electron velocity v (k) is V»e»/k
and e is the magnitude of the electronic charge.
In Egs. (2) and (8), we are neglecting thermo-
electric effects —the thermal current which ac-
companies the E field and the electrical current
which accompanies the thermal gradient. These
are second-order effects which vanish in the
model we use because we assume that within k~T
of the Fermi energy, the number of states, the
electron velocities, and the scattering matrix
elements are the same above as below the Fermi
surface. Corrections to this approximation are
of the order (ksT/Ee)» (where Es is a "bandwidth"
parameter) and can become important above room
temperature. These corrections are called "Fer-
mi smearing" effects, and we hope to deal with
them in a later paper.

The distribution function Q» is determined by
the Boltzmann equation, which is known" to be
valid if the mean free path l is longer than a few
lattice constants. We neglect phonon drag, that
is, the phonons are assumed to be in equilibrium.
Thus the Boltzmann equation is

»» dT BfeE+ — v, (k) = ~ Q»»i P»i,T dX ~E»»t
where Q»t is the scattering operator. Methods
for solving Eq. (4) were given in Ref. 11. We re-
derive here some of the basic results in a less
abstract way, hoping that this will clarify the re-
sults and clarify the way our calculations have
been done. In particular, we find it helpful to
make explicit the separation of Q»t into "scat-
tering-out" and "scattering-in" terms,
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tained by solving Eq. (4),

y, =Q[q ']„, ez+ —') v, (k')

(10)

Since p has units of energy [Eq. (1)], &s and ro
must have units of time. The variational method
yields specific equations for 7~ and v~ which we
will present shortly. Equations (9) and (10) can
be interpreted as .meaning that when an E field
is applied, the Fermi distribution is rigidly shift-
ed by an amount 6), = eEvs /I-I, or when a thermal
gradient is applied it is shifted nonrigidly (be-
cause of the k dependence of e~) by an amount
(- dT/dx)(e)/T}re/II We are i.nterested in wave
vectors near the Fermi surface and use a coor-
dinate system in which a point is described by
its position on the Fermi surface (k)vs and its
distance e„above (or below) the Fermi surface.
In terms of this coordinate system, both of the
above shifts 5~ of the distribution function are in-
dependent of (k)[;s but the second is proportional
to e~.

The resulting LOVA formulas for the conduc-
tivities o and ~ are

o[0& =2N(0)(V' )e'7s,

]( ] =2N(0)(v t )'T /T

where the band averages in Eqs. (11) and (12) are
defined by

N(0)(v') —= g v'(k) —= g v„'(k}6(e))}, (13)
jt k

N(0) (v'„~') =- Q v', (k)e', (;

(11)

(12)

= —.
' (vk, &)'g v'„(k)6(~„) . (14)

but in practice, inversion of the scattering opera-
tor is difficult. Fortunately, there is a variational
principle" which allows the currents (2) and (3)
to be computed by adjusting trial functions p~.
This technique has the advantage that if P,' differs
from ((])„by an amount of order e, then the cur-
rents will differ from the exact results by amounts
of order e'. In this section, we use approximate
trial functions Qp" and p~~ "], which are the sim-
plest sensible trial functions for the cases of ap-
plied electrical fields and thermal gradients,
respectively,

PP'& = eEV„(-k)~s, (9)

] ]
~~ ia~ ~~ ra] ~z tq&

(
1 '"""'

g P),„,v„(k)v„(k")[e,~, ( )]
k~»(0) &v'„[&'] )

where the notation means that the parenthetical
primes on the argument of g„and on the subscript
of a are to be omitted for the "out" lifetimes and
the square brackets enclosing two factors of en-
ergy are to be replaced by 1 for the E-field life-
time. At high temperatures or for reasonably
isotropic impurity scattering (I/7's[o])'" is small
compared to (I/r«@])'"' because the average of
v„(k) over the Fermi surface is zero. For phonon
scattering at low temperatures, on the other hand,
P». is small unless k =k' and so the "out" and
"in" terms are comparable, (1/r~, o])'"(a (1/
r(( [o])

'"
For phonon scattering, P», has the form

(17a)

x{N((())6(e —6 +k(()}

+[N((()) +1]6(e —e' -k(())f, (17b)

where M» is the electron-phono+ matrix element
for scattering between Bloeh states k and k' due
to a phonon of polarization index j, and N((()) is
a Bose factor N(()}=[e8("~- I] '. The various life-
times (16) can be written using (17) in the form

The final forms of Eqs. (13) and (14) neglect
"Fermi smearing. " In this approximation, the
Lorenz number defined by L=rc/&rT is L=L,7'o/

7's, where Lo ——(( ks/3e . The Lorenz number
takes the Sommerfeld value Lo if the "relaxation
times" 7z and 7~ are equal. In general, these
are unequal, but, if inelastic scattering effects
are unimportant (i.e. , if impurity scattering
dominates or if the energy gained or lost by ab-
sorbing or emitting a phonon is smaller than k~T),
then 7z and &~ are equal' in LOVA.

It is now simple to solve Eq. (4) for 7s or 7(]
by substituting P„. [Eqs. (9) or (10)) and operating
on both sides of Eq. (4) with g,v„(k) for the case
of an applied E field or P,v„(k)e, for the case of
a thermal gradient. Using Eqs. (6) and (7), the
results for either 7~ or 7 can be expressed as a
"scattering-out" term minus a "scattering-in"
term,

', f dv fd fV 'vf'V ' QIM', I v ())v ( )g( Vl, .)[v v ]/vl TNv(Dv)(vv'[v*]). (1(()
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where Q, is the volume per atom and d5'~ is an element of Fermi-surface area. At this stage, it is con-
venient to neglect "Fermi smearing" because this allows the surface integrals velocities and matrix ele-
ments to be evaluated at the Fermi energy. Then the integrals over z and g' may be performed analyti-
cally and independently of the surface integrals,

out(m)
Gsfol ((()) =

2(k )2 de df g(f, c, (()) 2(k )2
~II

The various G's depend only on x =Ii(v/2kaT,

O'"' = G = x'/sinh'xE 8

Gq" = (x'/sinh'x) (1 + 4x'/v'),

Go = (x'jsinh'x)(1 —2x'/v').

(
1 " 2FABT d

out(i)))( ) ( ) a(ol
Out (in) (23

~at:Ql (d

02
n.'„,I,.)( )r( )= (

', ' ' Q ~MI„. ~{'II{)I)II(r")))(, —,,I, , )) /IEN(0)(II', ).
avt) kv~,

In cubic systems, v„(k)v„(k"') may be replaced by —', v(k) v(k")). The difference between the out and in
spectral functions is often called the transport spectral function and denoted" u,'„(co)E(&0) or u'(+xx) E(&u),

(24)

The surface integrals can now be evaluated and written in terms of transport spectral functions ())'((())E((())
which are analogs of the electron-phonon spectral function of the superconductivity theory. '6 A factor
1= f d(d 6(&o —(v„, ) is inserted into Eq. (18), yielding

n,', ((v)E((v) = (x,'„,((v)E(u&) —().,', (&u)E((()) . (25)

Generally, ()(,'„,E(&u) is much greater than a,',E(&u) except at low frequencies where ()."„E(~)nearly cancels
()'.2„,E((v) and converts the ~' dependence of the individual parts into an (v' variation of n2(„E(&o) (see
Fig. 1).

Closed-form LOVA expressions for the electrical and thermal resistivities result from Eqs. (11) and

(12) and (20)-(24),

(o) 27t'kg T d x=
%N(0)( ') i h' (26)

6 X ~2 2'
2 (27)

(28)

Again by analogy with superconducting notation, we define parameters X, and (&u')„

X„=—2 —n„'((d)E((d),
d(d

z,(II')„=2 f III ~Ia', (I )r(II),
0

where y stands for in, out, or tr. The parameter ~„=X,„,—X„is the transport analog of the dimension-
less parameter ~ which determines the superconducting transition temperature T,." An important con-
clusion of our work is that &„agrees with & to about I(P/&& for Nb and Pd when both are calculated by our
procedures. It seems probable that the result X„—X is typical of d-band metals.

In the high-temperature (small-x) limit, Eqs. (26) and (27) become

(,) 2wka Tjff k'((v')„
2'(0)(v„') " 12k,mr'

(0) 6/vkak I' X,„,((()'),„( 1, )((,((() )i,
2f))'(0)(v2) (r+ k2 Ta v2 +

2v2 iu (n

(30)

'Thus, within I.OVA, the I.orenz number approach-
es the Sommerfeld value when the thermal energy
exceeds a typical phonon energy T & 9D.

Equations (26) and (27) are modern versions of

equations derived earlier by Bloch" and by Wil-
son, "respectively, generalized" to include real-
istic energy bands, phonons', and electron-phonon
matrix elements. 'The equations of Bloch and
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Wilson are familiar from textbooks, '3'" the for-
mer being called Bloch-Gruneisen theory. To
make contact with these equations, it is QecessRry
to recall that they are based on a model employing
Debye phonons, a spherical Fermi surface and de-
formation-potential electron-phonon coupling via
longj. tudlnal phonons onlyy with no un1klRpp scRt
tering. In this model the matrix elements )M~~~. ~'
in Eq. (24) are replaced by Cq'/~ for the longitu-
dinal modes and zero for the transverse modes
where C is a constant and q=k'-k. Because of
the assumption of a spherical Fermi surface, the
factor t)'(k) can be replaced by a constant t)~2 and
v(k) 'v(k') can be replaced by t)~2(k '5'). 'The in-
tegrals over solid angles can be performed by
writing the delta function as

(d()((o-Sik'-ki)=, , 5()!')'-(+ . . . (32)

where 8 is the sound velocity and k~ is the Fermi
wave number. The results can be written as

a~, ((d)F((d)- 2Xt, ((()j(()D)4,

o.&,(~)F(+)-X,„(&u/&uD)'(2k~/q~ }2,
(34)

(33)

n,',(&o)E(&u)- A,„(u&j&uD)'[(2k~/qD)' -2ur'/(d2D],

(35)

where &~ and q~ are the Debye frequency and

wave number, respectively. Using these spectral
functions, we recover the traditional formulas
which depend on three constants p' = 2vks A.„j
[2e'N(0)(v„')], e =g&o~/ks, and krjq~,

pso(r) = 4p'r(r je)'~, (ejr),
w„(r)= (4p'/L, ,)(r/e)'

x ][1+(3jv'}(0 /q )'(e/r)'] J,(ejr)
-(»2v') ~,(e/r)),

(36)

(38)

B. Computational details

The core of our woxk is a careful evaluation of
the spectral functions (24). The basic procedures
have already been discussed' in the context of
calculations of the closely related properties y~

(the decay rate of a phonon into electron-hole
pairs) and o('((u)E(ur) (the spectral function which
determines the r, of superconductors). Equations
(1.18}, (1.12), and (1.13) of Ref. 7 need only be
generalized in a straightforward way to include
the velocity factors t)„(k)v„(k")):

The label BG on p and W [Eqs. (36) and (37)] stands
for Bloch-Gruneisen. In the case of 8', this is un-
fair to %'ilson, but the notation 8'„seems unsatis-
factory. Although these equRtloQS Rre bRsed on R

highly oversimplified model, they capture the cor-
rect trends of temperature dependence. IQ Sec.
IIC, we shall show the results of these simple mo-
dels are altered by the use of more realistic en-
ergy bands, phonon frequencies, and matrix ele-
-ments

~(+))' ( )
g

'~ f( t) Z ~ (()~ ())()(+ + )) (0)
2v '2M~

0f BJ

C()'""(q)= 3
'

2
'

&I('a~&a'«~4a &&la ~& (')«~ a{{)&.(& &).(&") (6& &' q)--
(2v 'N(0 (v„' Io~ Kv, . (40}

Just as in Hefs. 7 and 8, the wave functions and

Fermi velocities were generated on a dense mesh
at the Fermi energy (676x 48 points for Pd, 1071
x 48 points for Nb) using constant-energy search
KKR techniques. ""The double Fermi-surface
in«grals «Eq. (40) were evaluated, and the re-
sults q~~'""(q) were stored and subsequently
plugged into Eq. (39) which was evaluated using a
Gilat-Baubenheimer technique. " The potentials
used to calculate the wave functions, Fermi sur-
faces, Rnd Fermi velocities have been described
previously. The potential of Nb (V, of Ref. 7) was
adjusted slightly to achieve bettex agreement with
de Haas-van Alphen data. " The phonon frequen-
cies and polarization vectors ~~ and e~ come from
Born-von KA,rmhn fits"'" to neutron scattering ex-
periments and are calculated on a Gilat-Hauben-

I

heimer mesh which subdivides the zone-boundary
wave vector in the x direction into 24 bins. Each
electronic scattering event k -k' then corresponds
to some q bin from which the corresponding +~~ ~,
and c~~ ~, are takeo. This procedure leads to ran-
dom errors in the spectral functions (39) which
are statistically unimportant except at low (d

where the number of bins gets small. Thus, the
low-& tail of the spectral function has a relatively
large random error', leading to unreliable results
in a(r) below a temperature of order eD/24 or
-10 K. Therefore, we have calculated transport
coefficients only for T& 10 K.

The only aspect in which our work deviRtes from
rigorous one-electron theory is in the use of the
RMTA in calculating the matrix elements of -Eq.
(40}. The RMTA is the assumption that when an
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C. LOVA results

Figure 1 shows the transport spectral functions
which we have calculated for Nb and for Pd, and

2.0

153
1.0

cud
o.5—
0.0

1.03
0.5

103
0.5

MI
0.0

0

10

Pd
0.63
04—
0.2

0.0

0.4

023
0.0

GJ (THz)

'tb)

)I
I

I
I ~

I
g

I
~ I

I
~ I

~ I

I I
I

6

I i

0.15

O.io

0.05

o.oo
8

0.04

0.00

0.43

cv I
o.o

0 4 6
Cd (THz)

—0.04

FIG. 1. Spectral functions for Nb and Pd. The solid
curves denote spectral functions calculated using realis-
tic phonons, energy bands, and matrix elements. The
dashed and dotted curves are "Bloch-Gruneisen" analogs
of the realistic spectral functions. The upper panels
show n (, (&u)E(&o) which is the difference between the
spectral functions in the bottom [e,«. j„{co)E(cv)] panels.
Note the change of scale for o, jg{cc7)F(4)).

atom in a crystal is displaced its (KKH or aug-
mented plane-wave) muffin-tin potential displaces
rigidly with it. 'This is an approximation because
it does not correctly account for the redistribution
of the electron density which will occur in the real
solid. It seems, however, not to be a bad approxi-
mation for a transition metal where the d electrons
are rather tightly bound to the nucleus and where
charge fluctuations are screened out rapidly be-
cause of the high Fermi energy density of states.
It has worked well in previous electron-phonon
calculations for the transition metals. ' "

compares them with the corresponding spherical
(Debye) models [Eqs. (33)-(35)]. The coefficients
of the spherical models A.„,&uo, and kr/qD are
tabulated in 'Table I. 'The coefficients were chosen
so that the spherical models would be in agree-
ment with the calculated I OVA results at high
temperature through terms of order (~)/T' [see
Eqs. (30), (31), (36), and (37)]. This procedure
leads to the identifications &co= (3(uP)„/2)'~' and

kr/eD= (~.,t(~').,&/»g, (&')t,)"'.
Figure 2 shows p/T calculated in the two ap-

proximations for Nb and for Pd. A detailed com-
parison of theory with experiment is postponed
until Sec. IV. The point we wish to make here is
that use of more realistic energy bands, matrix
elements, and phonon frequencies alters the fre-
quency dependence of the spectral functions and
that this alteration shows up in the temperature
dependence of the transport coefficients.

The values of p/T calculated using the more
realistic spectral functions are larger at low T
than those calculated using the simple model be-
cause the calculated n,', (cu)E(&u) is larger at low &u

than 2&„(~/&uD)'. This results should not be sur-
prising; a similar effect occurs in the lattice
specific heat and has been known for some time.
'The phonon density of states is not proportional to
the Debye density of states Eo(~)= 9&v'e(u)c —~)/
&D except at very low frequencies. The true den-
sity of states quickly rises above its limiting &'
behavior because the phonon dispersion curves
typically have a negative curvature. Consequently,
if (d~ is chosen to produce the correct lattice spe-
cific heat at high T, the Debye formula will un-
derestimate the lattice specific heat at low T. This
is why eD(T) obtained by setting the Debye for-
mula equal to the observed lattice specific heat
typically decreases as the temperature is lowered.
The discrepancy between p~o and p«« is larger
than that between the Debye and experimental lat-
tice specific heats because the approximation for
the matrix elements ~M~~„. ~'-C(k -k')'/&u~ '. breaks
down for relatively small values of q= k —k' in
the transition metals. It is unlikely that a true
Bloch-Gruneisen T term in the electrical resis-
tivity has ever been observed in a transition me-
tal. The resistivity calculated from Eq. (26) var-
ies as T' only at very low temperatures &'5 K for
Nb and Pd. The T' coefficients reported in the
literature typically are observed at higher tem-
peratures and probably result from deviations of
the resistivity from Eq. (26) which arise from the
wave vector and energy dependence of the dis-
tribution function as described in Sec. III.

Figure 3 shows the thermal resistivity (multi-
plied by the Sommerfeld value of the Lorenz num-
ber L,) calculated using the realistic spectral
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TABLE I. Calculated transport parameters of Nb and Pd. The Fermi-energy density of
states N(0) and the root-mean-square Fermi velocity ((c ))' were calculated from the band
structures. The various X's and (uP) t, were calculated from the relevant spectral functions.
The final three parameters give the Bloch-GrOneisen-Wilson fits of Eqs. (36) and (37).
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k~/qD
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0.055

197.6
197.7

9.0550
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FIG. 2. Electrical resistivity divided by temperature
for Nb and Pd in the lowest-order variational approxi-
mation. The curves labeled LOVA were calculated using
the realistic forms of ~t~~(u)$'(~) shown in Fig. 1. The
curves labeled BG were calculated using the Blotch-Grun-
eisen form of the transport spectral function (also shown

in Fig. 1).

FIG. 3. Thermal resistivity of Nb and Pd in the
lowestMrder vRriationRl RpproxiIQation. That component
of the thermal resistivity, 8', which satisfies the Wiede-
mann-Franz law has been subtracted. The curve
labeled LOVA was calculated using the realistic ver-
sions of ~o„t(K)E(M) and A~(cd)E(N). The curves lRbeled
BG were calculated using the Bloch-Gruneisen analogs
of these spectral functions.
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III. BEYOND LOVA

A. Formalism

In this section, we show how to obtain a better
solution to the Boltzman equation by allowing
wave-vector and energy dependence of the dis-
tribution function. We also derive expressions
for the electrical and thermal conductivities
which are computationaHy convenient for transi-
tion metals. These expressions are slight mod-
ifications of the results of Allen' and Pinski. '2

Following Ref. 11, we expand the distribution
function in terms of functions FI(k, c) and o„(c),

y, = g y„,F,(k, c)0„(c) .

The functions EI(k, c) are orthonormal over a
constant energy surface of energy e,

Q F,(k, c)F,.(k, c)5(c, -c) +5(c, -c)=5„„

(41)

(42)

and are used to describe the variation of Q, from
point to point on this surface. The functions II„(c),
on the other hand, are orthonormal with weighting
function ( 5f/5c), -

~a~ ~~ ~ =~a~ ~

and are used to describe the variations of P in

directions normal to a constant energy surface.
From Eq. (17b) it is clear that the transitions
caused by the scattex ing operator occur between
states within -+k~T of the Fermi energy. In this
paper, we are interested in temperatures of
several hundxed degrees Kelvin or less. Over
this energy range, the topology of the constant
energy surface of a typical metal does not change
appreciably so that we need only evaluate the
functions E,(k, c) at the Fermi energy. Conse-
quently, we oinit the c variable FI(k, c)- E&(k)c

ff Fermi smearing is neglected, Eqs. (42) and

(43) can be combined to yield the orthogonality
relation

g F,(k)0„(c,)F,, (k)0 (c„)I
— =N(0)5„5„. .(44)

Several. choices are available for the functions

functions and using the simple model. In order to
emphasize the temperature variation not contained
in the resistivity we have subtracted out p/T, that
part of the thermal resistivity which obeys the
Wiedeman-Franz law. The Wilson formula is
substantially above the more xealistic I OVA re-
sults below 100 K because cr,'„,(~)E(&u) is substan-
tially larger at low (d in the %'ilson model than in
the more realistic calculation.

EI(k) A. llen suggested orthogonal polynomials
in the Fermi velocity (which he call.ed Fermi-
surface harmonics) and showed that only functions
with 1"» symmetry need be considered: for a cubic
system since Q, must have this symmetry. Un-
fortunately, Khan and AHen26 have recentl. y found
that Fermi-surface harmonies constructed in this
way are not suitable for expanding the I', function
A. (mass enhancement) because of slow conver-
gence. Polynomials in the wave-vector compon-
ents appeared to give better convergence in their
tests. Convergence studies of P, have not yet
been made.

The calculations to be described below were
performed using first-order Fermi-surface
harmonies in the "disjoint representation, " that
ls)

F,(k) =II„(k)5,(k)/II, , (45)

where the coefficients C are chosen so that Eq.
(43) is satisfied. They can be obtained from a
recursion rel.ation given in Ref. 11. The first two
of these polynomials are 0, =1, oI = v'3c/IIksT
Another possible choice is the set of I egendre
polynomials with argument tanh(c/2ksT),

&r„(c)= (2m+1)'~'P„(tanhc/2k, r). (43)

These functions satisfy Eq. (43) automatically,
and have been used by Engquist ' to study 0(T).
Pinski" found that the set equation (48) gives a
very rapid convergence for the ideal thermal con-
ductivity at l.ow T but that the polynomials in c

[Eq. (4V)] gave better results at high T. A mixed
basis, 1, tanhc/2ksT and higher-order polyno-
mials in e gave good results at all temperatures.

The calculations to be described below employed

where 5&(k) is unity for k on sheet j of the Fermi
surface and zero elsewhere. The coefficient e~'
18 clloseII 80 that Eq. (42) 18 satisfied,

iv, (0)(I„'),l, 'I'
lv(0) )

where N,.(0)(vg~ is identical. to the quantity defined
in Eq. (13) except that the Fermi-surface integral
implied by Eq. (13) is restricted to sheet j of the
Fermi surface. The coefficients v& have the use-
ful property QIv,'=(u„'). An expansion of p,
in the basis of Eq. (45) amounts to a generaliza-
tion of Eqs. (9) and (10) to allow different relax-
ation times on each sheet of the Fermi surface.

Tl1e cl101ce of tile f1111ctloIls II„(c) 18 also sonle-
what arbitrary. AHen suggested orthogonal poly-
nomials in e,

0„(c)= (2m+1)'I' g Cen
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the polynomials in e [Eq. (47)] together with a
continued-fraction extrapolation to approximate
the limit of an infinite number of polynomials.
This extrapolation procedure was found'2 to be
satisfactory [when using the basis set of Eq. (47)]
for getting the correct thermal resistivity at l.ow
temperature.

By using the orthogonality relation [Eq. (44)]
and the expansions described above

7A'~ dT
eE5np+ ~2 d 5nl VI= —Q Q,nun QI')n

j'n' (55)

Thus, the Boltzmann equation has been converted
into a matrix equation which is easily solved by
inverting the scattering operator Q&„, ~ which from
Eqs. (52) and (44) may be written

q,.„,, = g F,(k)c„(~,)q„.z, (k ),(") . (56)
kk~

v, (k) =Q v,F,.(k), (49) The equations for 0 and x in this basis are

(Tl (E'» )
m'j'p~ T

(50) 8 = 2e Q ['Q ]Ipse pvgvp

x n, ,(»)v, ( „)(- )
6f

86~,

Eqs. (2)-(4) can be transformed into

J@=- 2e Q QIpvq

(51)

(52)

(56)
dP

The expression for, Q,.„J,~ [Eq. (56) can be devel-
oped in a manner analogous to our treatment of
the LORNA in Sec. II. The scattering operator is
written as a sum of scattering-out and scattering-
in terms, and Fermi smearing is neglected, al-
lowing Q,.„",',,(„',"' to be written in terms of general-
ized spectral functions (I',„«„)(jj', (())F((d) and

fl'equellcy-depelldeIlt fllllctions G„n, (k(()/2ks+)

A'~T
Jo =2~ reZ&IIv»- (54) (59)

where the sheet-decomposed spectral functions
are given by

d8, v„'(k) dS„,

y S&~ vg Ftv~i

&S, v, (k) dS„v,(k)~
2)I I fIV» VI p k V». Vg.

The frequency-dePendent functions G„'„"'""(x)(where x =h(d/2ks T) are given by

«'g(&, &', p))o„(&)8„.(~")= (x'/8inh'x) „'„"!""(x).

(61)

Tile polyllollllals I„„.' ' (x) are simply related to
similar polynomials denoted I+„, and I„„,by Allen"

functions G'„"„,"'"(x)are universal functions in-
dependent of the material under consideration.
At high T (small x) the polynomials I„„,approach
5„,, which makes the scattering operator [Eq.
(59)] diagonal in nn, ' with corrections of order
(ev/7')'. Thus to order (eD/T)' the high-T trans-
port coefficients are not affected by & dependence
of P, at least within our approximation of neglect-
ing Fermi smearing.

B. Computational details

The sheet-decomposed spectral function
a,'„«„)(jj';(p)E((d) given by Eqs. (60) and (61) were
calculated using the same techniques as were
used in evaluating the full spectral functions
&,'„««(«))E((d), the only difference being that the
Fermi-surface integrals over k and k' in Eq. (40)
were restricted to the appropriate sheets of the
Fermi surface. Nb and Pd Fermi surfaces both
have three significant sheets. For Pd, a tiny hole
pocket at the I point does not occur in our Fermi
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surface because we neglect spin-orbit coupling.
The functions G'„„"P"(hto/2k' T) were evaluated

using Eq. (62) and the techniques described in
Ref. 12. Energy polynomials of order zero through
ten were included. The scattering matrix Q&„J.„.
was then calculated as a function of temperature
using Eq. (59) and finally o and ~ were evaluated
using Eqs. (57) and (58). Because G'„„",'"" (and

consequently Q&„&.„,) vanishes unless n and n' are
either both even or both odd, the scattering ma-
trix may be written in a block diagonal form which
makes it apparent that only the even (odd) en-
ergy polynomials enter the expression for the
electrical (thermal) conductivity.

CO
~~ o-
O

o—

BO 40

T(K)
60 80 100

C. Results with an anisotropic and energy-dependent
distribution function

Below -100 K in Nb and Pd, we find that the
distribution function Q, takes advantage of its
variational flexibility to enhance the currents
significantly. We illustrate separately the en-
hancement due to anisotropy (variatidn with k
in the Fermi surface) and energy dependence
(variation perpendicular to the Fermi surface) of

CO

O

CD

O

Our calculations permit anisotropy only to the
extent that different sheets of Fermi surface are
allowed to displace by different amounts. We call
this the "N-sheet" model. The results for p and

W (denoted p„, W„) as a function of T are shown

in Fig. 4. To clarify the effect of anisotropy,
these are shown as ratios of the LOVA results,
where all sheets are constrained to displace the

same amount. Three features stand out: (a) the
effect is small above 50 K, (b) the effect is larger
in Pd than Nb, and (c) a qualitative but not quan-
titative Wiedemann-Franz scaling is obeyed. The
proportionality of p to WT has already failed at
these temperatures because of inelastic scattering.
Nevertheless, it is instructive to observe that the

enhancement of 0 due to anisotropy is quite sim-
ilar to the enhancement of v, but strict numerical
equality of these enhancements does not occur (nor
does theory tell us to expect it. )

Observation (a), the smallness of the anisotropy
enhancement above 50 K, needs some cautionary
remarks. An approximate formula for the en-
hancement for T a ~D can be worked out as follows.
We have already remarked that at high T, scat-
tering in is small compared to scattering out.
If we neglect scattering in, the Boltzmann equa-
tion is no longer an integral equation and the
exact solution for o' is

V~T~ 96

ZO 40 60

(b).

100

FIG. 4. The effect on the electrical and thermal re-
sistivities of Nb and Pd of allowing intersheet variations
in the distribution function. p~ and W„are the electrical
and thermal resistivities in the N-sheet approximation.

p&p&A and WzpyA are the resistivities calculated in low-
est-order variational approximation using a realistic
spectral function.

where T~ is the "quasiparticle lifetime" which
at high temperatures is h/2vh~ksT, and X„ is the
mass enhancement. Let us define an average
denoted by ( )„,

(64)

(65)

where the last equality is valid for weak aniso-
tropy, i.e., if 5K=X» —(X)„is small, compared
to k. There is a close analogy ~ with the theory

Thus, the "exact" answer [Eq. (63)j is propor-
tional to (1/X)„, whereas, if we use LOVA and
discard scattering in, the result is proportional
instead to 1/X, =1/(X)„, Thus, the enhancement
of 0 due to anistropy is

5o/o„„„(~).,(1/~)„- 1 =- ((6~)2)„/(Xa)., (7' a e,),
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of anlstropy enhancement of the superconducting
Our high-& enhancement is an effect of

order 170, corresponding to a X anistropy of
-10%, Two comments need to be mad F t
we underestimate the X anistropy by making the

-sheet model. Second, X anistropy has been
studied bie y e Haas —van Alphen measurements, ~
Rnd our rigid muffin-tin procedures g' less
anistropy " than is estimated from experiment.
Coleridge" has illustrated how the RMTA can

Thus for both reasons th h h &

Rnistropy enhancement of o' is probably larger
than our calculation shows.

At low Tlow T, only small-(d phonons can scatter
electrons which means that sc tt

lo
go increasingly into nearby k states as T
owered. . At k~T «@vq where q

' th
8 RS ls

„,w ereq „lsthe
minimum wave vector coupling different sheets
of Fermi surface, the different sheets become
decoupled. Anisotropy effects are greater at
low T', partly because the lax ge momentum
transfexs available at high T tend to average
out Rnisotropy and partly because at small th 8
p Qon dispel sion ls particularly anisotroplc.

e can now explain observation (b), that the low-&
anisotropy enhancement is particularly large in
Pd. The I"-centered sheet in Pd has large vel-
ooties and thus a small N&(0) [only g% of the
tote~~o~I. To ~ ~1~1, Thus, when sheets become decoupled,
the quasiparticle lifetime v fo I'- h tor -s eet electrons
becomes particularly large du t th 18 o 8 ow deQsity
o states available for scattering procrocesses.

so, e cancellation of scattering in against
scattexing out is more effective for I"-sheet elec-
trons because the curvatuxe of this surface is
smaller, making v~ v~, closer to s~ for fixed
small k- k'. Figure 5 plots the lifetimes of each

30 K ther
sheet normalized to the mean lif t' 8 18 lnle ~ 8 Ow

K there is a dramRtic increRse of the I -sheet
lifetime in Pd sh owing that sheets are becoming
decoupled. In Nb, where the different sheets

the eff
have velocities which are all roughl y comparable,

e effect is smaller. A further discussion of
these effects is given in Sec. IV where we make
a critical analysis of the "s-d" model.

We now consider the additional enhancement
coming from energy dependence. Figure 6 shows
the resultsth, p~ Rnd 8'cF where CF denotes that
the coIDplete energy dependence is extracted by
continued fraction extx'apolations based on the
first 10 energy polynomials. The results pc F
Rnd @c~ contain both anlsotropy and energy de-
pendence and are shown normalized to d

th
0 pg an

8 results with anisotropy but th
ependence. Two of the three observations made

in connection with Fig. 4 apply also here. First

OPEN

20 40 100

80 40 60 80 100

T(K)
FIG. 5. Lifetimes for electrons on diff

surface sheets of Nb and Pd. 7- ie the avera
n erent Fermi

fl t ht de ee g ue to scattering-out proceesee.

lifetime.
7 is the average over all sheets of ths o e scattering-out

thexe ls qualitative but Qot quantitative Wiede-
mann-Franz scRllng. TIlls observRtlon would be
less applicable if we had results below 10 K as
is clear from HRef. 12. In the isotropic case '

1

spherical sheet
ase sing e

R 8 88 pc F plyA muSt gO bRCk to 1 at
&=0, whereas @'

W~ovA
anisotropy is included, these effects interact

p e = imits do not arise. Second, the
enhancement of 0' and & due to energy de end
goes awa

epen ence

DIA. Th
y at high &. This was expla d

'
Sine ln @c.

e enhancement occurs because when
there 18 lnelRstlclty ln the sca er1llg» fp Can take
Rdv

' ree om as a functionadvantage of its variational fr d
o &~ to maximize the currents. As T b
~9 the in

8 eCOID88

e inelasticity becomes increasingly un-
important. Unlikn . n i e Fig. 4, the enhancement in
Fi, 6i
sho 8 R 8 8nhRnceIDentSIlowed ln the lsotxoplc cas ' th t th

the r
epends on a parameter (& 1q )2 h hw lc determines

For
e relative strength of a' ((o)E((u) d
ox both Pd and Nb the corresp d

(u an a„(u)F(ar).
I'I'8spoQ lIlg parameter

m e series expansions [Egs. (30) and (31)j,
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current carried by the phonons. The lattice ther-
mal conductivity of Nb has been estimated by
Moore eI; aIt.33 from measurements on a series
of dilute alloys. Their values for the electronic
thermal xesistivity allowing for the lattice ther-
IIIR1 clll'I'ellt Rre showII 111 Flg, V(b) (x s). We
have corrected the Nb and Pd thermal-conduc-
tivity data of Ho et &E."for the lattice thermal
current using"

(66)

20 100

60

(b)

100

FIG. 6. Effect on the electrical and thermal reeietiv-
itiee of Nb and Pd of allowing the distribution function

4 to be energy dependent. pcF and Pcp are the electri-
cal and thermal resietivitiee calculated using an energy
polynomial expansion for the distribution function with a
continued-fraction extrapolation to approximate the limit
of an infinite number of energy polynomials. pep and
%'cF contain effects of energy dependence and sheet-to-
eheet variations of the distribution function; only the
sheet-to-sheet variatione are contained in p& and 8&.

namely, (1.,„,(&a'), /3I1„(&u'}„)'~' is approximately
1/MS and this probably Iluite generally true in
d-band metals, suggesting that enhancement due
to energy dependence may be only weakly depen-
dent on details specific to the material.

D. Comparison with experjtment

In Figs. V and 8, we compare our calculated
electrical and thermal resistivities with experi-
ment. The experimental data are from %ebbs»
(Nb p), Ho et ale (NB & and Pd 8"), Moore
et al." (Nb 9'), and Williams and Weaver"
(Pd p). The electrical resistivities near room
temperature are in good agreement with experi-
ment. Theory (dashed) exceeds experiment (solid)
by about 10/0 for both Nb and Pd.

In comparing the calculated thermal resistivities
with experiment one should allow for the heat

where the first term describes a lattice thermal
resistance due to phonon decay into electron-
hole pairs and the second term arises from pho-
non-phonon scattering. We estimate A =11 K cm/
watt, & =0.02 cm/watt for Nb and A =2.9 K cm/
watt, 8 =0.04 cm/watt for Pd. The effect of
cox'x'ectlDg fox' the lattice coDductlvlty ls to 1D-

crease the experimental electronic thermal re-
sistivity by about 670 for Nb Rnd about 14% for
Pd over the tempexature range i,00-300 K. %Pith

these corxections to the experimental data the
electrical and thermal resistivities form a con-
sistent picture at temperatures in the 100-300
K range. The calculated electrical and thermal
resistivities are slightly high (-107II) for both Nb
and Pd.

The overestimate of 10% probably derives from
two uncertain aspects of the theory: first, the
rigid muffin-tin model and second the more
fundamental question of whether the band structure
we use gives correctly the quasiparticle energies
needed for transport theory. This second ques-
tion seems at the moment difficult to settle. The
fact that our calculation agrees with experiment
to within 10$ suggests that the band structure is
quite good for transport properties, unless there
is a degree of cancellation of errors from the two
souxces. A third possible source of error is our
neglect of Permi smearing. This effect is quite
important at higher temperatures in, these materi-
als and is responsible'"~' (together with an-
harmonicity in Nb) for substantial negative de-
viations from linearity in the resistivity. These
deviations are readily detectable above about
500 K in both materials and may be important
at 300 K.

Prom 30 to 100 K there i.s good agreement be-
tween themy and experiment for both materials.
(We prefer the data of Moore et a/. for the Nb
thermal resistivity. ) At lower temperatures
(10-20 K), however, it appears (especially for
Nb) tllRt tile CRlclllRted VRllles of the 18slstivlty
are lower than the measuxed ones. The compax'i-
son between theox'y and expex'lment ls complicated
in this temperature range by impurity scattering
and by the possibility of electron-electron and
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X ~X XXXX

'CF

10
I I I I I I I I

I

100

T (K)

(a}
CF

I

10

yW,
I I I I I I I I

100

v (K)

(b}

FIG. 7. Calculated electrical and thermal resistivities of Nb compared with experiment. Dotted curves were calcu-
lated in lowest-order variational approximation using realistic spectral functions. Dashed curves labeled CF are our
"best" solutions to the Boltzmann equation. Solid curves and x 's are experiment (Befs. 31-33). Impurity resistivities
have been subtracted from the experimental curves. W'0 is the thermal resistivity due to impurity scattering. The re-
sidual electrical resistivity for the data of (a) is 0.75x10 pO cm. The experimental thermal resistivity (Ref. 32,
shown as the solid line) has been corrected for the thermal current carried by the lattice [Eq. (66)] . The data of Ref.
33 (shown as x's) had already been corrected.

electron-paramagnon scattering in Pd.
Impurity scattering effectively increases the

electron-phonon resistivity because the distri-
bution function cannot simultaneously adjust to
take full advantage of both types of scattering
anisotropy simultaneously. A careful treatment
of this effect would require a detailed knowledge
of the types and concentrations of the impurities
and other lattice imperfections and is beyond
the scope of this paper. Qualitatively, we expect
the electron-phonon resistivity to rise above
per(T) as impurity scattering becomes important
and to approach a value comparable to p«»
in the impurity-dominated regime.

For Webb's sample, the impurity resistivity
p, was very small (0.75 && 10 ' @Oem) and should
not affect the electron-phonon resistivity above
10 K. Thus, it appears from Fig. 7(a) that the
calculation underestimated the strength of the
electron-phonon scattering at low temperatures.
It should be noted that a better solution to the
Boltzmann equation could only lower pcgT). The
most likely source of this discrepancy between
theory and experiment is again our use of rigid

muffin-tin matrix elements. The only way of
avoiding this conclusion that we can see is to
ascribe part of low-temperature resistivity to
electron-electron or electron-paramagnon scat-
tering. Since the experimental resistivity" varies
as T' rather than as T at low temperatures, this
interpretation is somewhat strained. One of us4

has listed evidence from several sources that
the rigid muffin-tin matrix elements are too weak
for low momentum transfer, although Ruesink
et a/."reached a different conclusion from an
analysis of the effects of shear strains on de
Haas-van Alphen orbits.

The interpretation of the low-temperature re-
sistivity of Pd is even more complicated. Fi-
gures 8(a) and 8(b) show the calculated and ex-
perimental values of the electrical and thermal
resistivities. Impurity resistivities, p, (~ T )
and Wo (~T ') have been subtracted from the
experimental electrical and thermal resistivities,
respectively. At first glance, the calculated
resistivities appear to be in reasonable agree-
ment with experiment at low temperature. The
resistivities follow pcF and WcF above p, and
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Q'„respectively but lie above the CF curves at
lower temperatures approaching the LOVA
results, as expected, in the impurity-dominated
regime. This interpretation is probably not
correct, however, since the temperature-de-
pendent part of the electrical resistivity is do-
minated below 10 K by a term proportional to
&' which lies well above any reasonable ex-
trapolation of the calculated electron-phonon
electrical resistivity to lower temperatures.

This T' term and a corresponding term pro-
portional to 1" in the thermal resistivity have
received much attention. ' ' High-precision
measurements using superconducting quantum-
interference devices (SQUID's) have established
that the temperature dependence of the electrical
resistivity of Pd is accurately given by

CF
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I I I I I I I

100

v (K)

I
I

I
I

I
I
I

I
t
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I

I
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I I I I I I I I l

100

T (K)

FIG. 8. Calculated electrical and thermal resistivities
of Pd compared with experiment. Dotted curves are
calculated in LOVA. Dashed curves are our "best"
solution to the Boltzmann equation. The solid curves are
the experimental data (Refs. 32 and 34) after correction
for impurity scattering and in the case of the thermal

resistivity for the lattice thermal current. po and 8&

denote the electrical and thermal impurity resistivities.

(67)

below 5 K. The magnitude of A, however, ap-
pears to be sample dependent. Webb et al.4' de-
terminedA to be 1.59x 10"Acm/K' for a very
pure sample (residual resistivity ratio of 22 500)
while Uher and Schroeder4' foundA to be 3.48
x10" Acm/K' in a sample with a residual re-
sistance ratio of 1127. The higher value of A is
typical of values obtained using standard four-
probe techniques to measure the resistivity. ~ ' "
Schindler and Rice" found that small amounts
of Ni cause both the susceptibility X and the coef-
ficient to increase dramatically, whereas'Greig
and Rowlands4' found that most impurities cause
A to decrease. Still, it is difficult to reconcile
the different values of A obtained in Refs. 43 and
45.

Since the T' term in the electrical resistivity
is usually attributed to electron-electron or
electron-paramagnon scattering, we would like to
subtract it from the experimental data so that we

can compare the remainder with the calculated
electron-phonon resistivity. The data show that
7' behavior cannot be assumed to persist at high
temperature. Using the higher value of A, the g'
term amounts to 30% of the observed electrical
resistivity at 300 K and would exceed it above
1000 K. If we use the smaller value of A, the T'
term exceeds the observed resistivity above 1700
K. Fermi smearing (and also possible "satura-
tion" effects" associated with short mean free
paths) complicated the analysis of the resistivity
of Pd above 500 K, but even below 500 K it is
clearly necessary to abandon Eg. (67).

One way to resolve the problem is to attribute
the I' term to scattering from spin fluctuations,
and to assume a relatively low spin-fluctuation
temperature. Using a simple approximation for
the spin-fluctuation (SF) spectral function, Schind-
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ler and Rice" derived a temperature dependence
of the spin-fluctuation resistivity of the form

(68)
with Gs„of the order 200 K. In Fig. 9, we again
compare theory to experiment but in this case we
have subtracted from the experimental resistivity
not only p, but also ps„ is given by Eq. (68). The
spin-fluctuation temperature was assumed to be
190 K, the value obtained by extrapolating the
spin-fluctuation temperatures of Pd(Ni) alloys"
to zero Ni concentration. The coefficient a was
chosen to be 0.174 p. Q cm, a value which corre-
sponds to A = 1.59x 10 "0 cm/K' in Eq. (67).
This value of A agrees with the value obtained on
the purest sample available" and gives a good fit
to the low-temperature data of Williams and
Weaver which we are using. The agreement be-
tween theory and experiment seems quite reason-
able at all temperatures.

We have considered two alternate ways to re-
solve the problem of the "missing" high-g T'
resistivity of Pd. First, "Fermi smearing" has
a large effect' on p(T) above 500 K, and acts to
diminish the el.ectron-phonon resistivity. It seems

possible that Coulomb scattering would be even
more strongly reduced by Fermi smearing be-
cause it is more sensitive to electronic density of
states. Second, "saturation" of p(T) isknowntooc-
cur in d-band compounds" when the mean free path l
approaches unit-cell dimensions a. There is poss-
ible" but not definitive" evidence for "saturation"
in Nb for g & 1000K. Because of the small Fermi
velocities in Pd (Table I) the values of I/a are not
large and "saturation" is a possible effect. Con-
sistent with this possibility, the resistivity
of Pd can be quite nicely fitted by a "shunt-resist-
or model" p

' = p '„,+p,'„as used for 415 me-
tals, "where the Boltzmann resistivity p~, is
equal to our calculated electron-phonon part plus
Eq. (67), and p,„ is -70 pG cm. The idea here
is that the g' term is "missing" at high 7 not be-
cause it goes away [as in Eq. (68)], but because
it is hidden by "saturation. " However, the value

p,„=70p.Q cm is smaller by 2 than in metals
where "saturation" is more clearly documented.
Thus we prefer the paramagnon explanation. The
fact that A is larger in Pd than in Nb, that it in-
creases dramatically with Ni impurities and
scales with g, and that superconductivity is sup-
pressed in Pd, all argue for a special "paramag-
non" effect with a reasonably small characteris-
tic temperature 8» . Even accepting this ex-
planation, the details of Eq. (68) are not to be
trusted, and substantial uncertainty remains. It
is surprising how well electron-phonon effects
alone seem to account for the data above 10 K as
shown in Fig. 7(a).

IV. CONCLUSIONS
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FIG. 9. Calculated electron-phonon resistivity
(dashed and dotted lines) of Pd compared with experi-
ment. The solid line is experiment (Ref. 34) with po
subtracted as in Fig. 8(a). The dot-dashed line is ex-
periment with electron-paramagnon scattering subtrac-
ted using Eq. (68).

To summarize, the overall agreement with ex-
perimental transport coefficients in Nb and Pd is
very good. This, combined with the successes in
predicting linewidths of phonons, ' ' provides
strong confirmation of the RMTA, and a clear
demonstration of the applicability of the Bloch-
Boltzmann theory of transport to transition ele-
ments. The fact that we underestimate p at low
g in Nb can be interpreted as possible evidence
that RMTA is wrong4 at small q in Nb.

Our results illustrate quite vividly the inade-
quacy of simple model, theories for understanding
details of g dependence in these metals. The
Bloch-Grtlneisen formula p-T'J, (8/T) and the
corresponding formula for PV capture the correct
overall shape of p(T) but make many unrealistic
assumptions and approximations. These show up
as strong departures in our results from the
simple BG behavior. There is an accidental tend-
ency for some of these departures to cancel
Partially. The corrections to BG behavior are of
two types, improvements in the model and im-
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provements in the solution of the Boltzmann equa-
tion. The use of realistic energy bands, phonons,
and coupling matrix elements, leads to significant
changes in the LOVA solutions for. p and 5'. The
LOVA represents the same level. of mathematical.
approximation as BG theory does in solving the
Boltzmann theory. The more realistic LOVA re-
sults have a higher p at low T, and a lower I.,W'

—plT, for Nb, Pd, and no doubt most other me-
tals. However, it is very important to seek im-
proved solutions of the Boltzmann theory, which
will reduce the predicted p and W (this is where
partially ca,ncelling errors can accidentally make
BG theory look better than it is). The enhance-
ment of 0 and x due to scattering anisotropy on the
Fermi surface is difficult to calculate well, and

our N-sheet model represents a first attempt.
The enhancement due to c~ dependence of the dis-
tribution function can now be regarded as a
solved problem, ' ' and we have fully accounted
for this effect. Both types of enhancement will be
altered by impurity scattering, leading to large
deviations from Mattheissen's rule (DMR) at tem-
peratures T & 80 K. Such effects have been seen
in dilute Pd alloys by Azabar and Williams" and

by Williams and Weaver. " Theory thus tells us
that low-T resistivity should not obey any simple
theory and should be highly sensitive to impurity
concentration. In particular, the low-T power
law is still, in principle, T' (neglecting Coulomb
scattering and phonon drag) but the temperature
range where T' should be obeyed is drastically
reduced even in LOVA, and will be further altered
by anisotropy enhancement effects and DMR.

It is worth giving special mention to the "s-d"
model. Originally, it was given by Mott" as a
model for Pd and Ni. He supposed there were
two sheets of Fermi surface, containing slow and

fast (d and s, respectively) electrons. The s
electrons, being fast, would carry most of the
current. Since the d density of states is large, the
dominant scattering would be s to d. Our results
for Pd agree qualitatively with this picture. The
fast electrons are on the I"-centered sheet (which
is dominantly d- rather than s-like in character,
but this does not alter the physics, only the
names). The slow electrons are on the jungle

gym; other pieces of Fermi surface are not signi-
ficant. In LOVA, the I' electrons carry V3% of
the current, even though only 8% of the density of
states resides there. Scattering is dominantly
from the 1" sheet to the jungle gym. In the more
realistic N-sheet approximation, the F-centered
sheet carries even a larger fraction of the cur-
rent, up to 9V% at 10 K. Nb, on the other hand,
has no sheet of fast electrons, and the s-d model,
does not apply even qualitatively.

Further matheme. tical development of this model
was given by Wilson" who proposed that this mod-
el. should give an extra term in the resistivity
proportional to T'Z, (e/T), but reduced by
e ~ ' /~ ~ where Z -„=Sv,q is the minimum pho-
non energy necessary to scatter from an "s"
sheet to a "d" sheet. Subsequently, many authors
have kept the T'J', (e/T) part, but dropped the ex-
ponential reduction. We find no justification for
either of these in Pd. A T' law requires that
spectral. functions remain Debye-type for frequen-
cies ~ considerabl. y higher than v, q~, whereas
we find the Debye tail to occur only at low e. Be-
havior close to T' has been found by Webb" in Nb.
This appea, rs accidental to us. We can assert
with confidence that it has nothing to do with "s
-d" scattering.

This brings us to our final point, the signifi-
cance of fitting data to simple formulas. Obvious-
ly, it is pleasing to have a simple fit, and a pow-
er series in T is logical to try at low T. How-
ever, great caution is needed when assigning an
interpretation to such a fit. Suppose the form
a+bT'+cT" works where n is typically 3 or 5.
The coefficient b may measure the strength of
electron-electron (Coulomb or spin-fluctuation)
scattering. However, to be confident of this, one
must verify that b varies only weakly with a, as
different samples are measured, and also high
enough purity should be attempted so that bT'
exceeds both a and cT" for a decent temperature
interval. Experiments on Pd come close to satis-
fying these tests but there is need for further
work to confirm electron-electron scattering.
Similar comments apply if an assignment is to be
made to the coefficient c. The power-series fit
will, of course, cover only the low-T region. In
order to fit a wider region, it is common to mul-
tiply T" by J„(e/T), which permits a smooth in-
terpolation between T" for T ~ e and 7' for T R e.
We see no reason to discourage this practice,
except for the problem that such a fit suggests
an unwarranted interpretation. W'e strongly sug-
gest that the function J„showed be regarded as
only an interpolation function.
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