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Solitons in polyacetylene: Optical absorption in lightly doped polyacetylene
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Optical-absorption spectra of lightly doped trans-polyacetylene are studied theoretically within the Su, Schrieffer,
and Heeger model and within the dilute-gas approximation for solitons. The present theory describes
semiquantitatively the experimental results by Suzuki et al,

I. INTRODUCTION

There has been great recent interest in solitons
in polyacetylene since the proposal" that neutral
and charged solitons dominate magnetic, electric,
and optical properties of undoped and lightly doped
polyacetylene. Very recently Suzuki et al.' have
reported a beautiful optical-absorption measure-
ment from lightly doped polyacetylene and have
interpreted their experimental data by a theoretical
calculation based on the continuum version of the
Su, Schrieffer, and Heeger (SSH) model.

Although the calculated absorption coefficient
due to the midgap states introduced by solitons
appears to describe at least qualitatively the ex-
perimental observation, the calculated absorption
coefficient associated with the interband transition
in the presence of solitons did not appear to des-
cribe the experimental observation even qualita-
tively (the revised version gives a somewhat
better description).

The object of the present work is to reexamine
theoretically the optical-absorption spectra of
trans-polyacetylene in the presence of a finite
density of solitons. We shall make use of the con-
tinuum version of the SSH model formulated by
Takayama, Lin-Liu, and Maki (TLM)."'

We shall first show that the interband transition
probability in the presence of a single soliton has
a spurious infrared divergence. This divergence
is eliminated if the effects of other solitons in the
same chain are included; the finite concentration
of solitons introduces the topological disorder in
the chain with the coherence length inversely
proportional to the soliton density n„which pro-
vides a natural infrared cutoff in the theory. This
situation is very similar to that discussed by
Krumhansl and Schrieffer' in the case of the Q'
model.

The resulting optical-absorption spectra appear
to describe reasonably well the observed optical-
absorption spectra. Indeed we can infer the soli-
ton density in the lightly doped polyacetylene by
comparing the theory with the observed optical
density. It appears that the soliton densities

associated with the optical-absorption spectra'
are always larger than the dopant concentration
by almost a factor of 2, if we assume that each
dopant contributes a single soliton to polyacetylene.
Furthermore, the soliton densities are not linear
in C, the dopant concentration, but have more
complicated dependence on C, which may be partly
due to the inhomogeneity of doping. In any case,
however, the above experimental results demon-
strate that the soliton densities increase steadily
with doping up to C =0.5%. In order to construct
a theory which describes quantitatively the ex-
perimental observation, the inclusion of the lattice
fluctuation as well as the randomness in the bond
length associated with the bending of the (CH)»
chain seems to be necessary. These questions
will be addressed in future publications.

II. FORMULATION

The optical-absorption coefficient is propor-
tional to the electrical conductivity o(&u}. The
electrical conductivity is, on the other hand, ex-
pressed in terms of the current-current correla-
tion function (Kubo formula} as

where ([j,j]) is the retarded product of the cur-
rent operator j(», t}. Here we are concerned with
the conductivity where the current j flows along
the CH chain' (i.e. , j parallel to the chain direc-
tion}.

In order to illustrate the method, let us calculate
([j,j]) in the soliton-free case. We assume that
the system is described by the Hamiltonian'"'

4)g
H =- — „dx~'xc 2g»

+ Q Jl dxq', (x)[ in~a, s„+-o, &(x)]q,(x), (2)
S

where

g=4o', (a/M}, ore=4K/M, b(x) =g(a/M) y(x),

(3)
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and y„= (-1)"y„, the lattice displacement. Equa-
tion (2} is the continuum version of the SSH model,
where g(x) =-(„"&"„)')is the spinor representation of
the electron field.' The soliton-free dimerized
state corresponds to n(x) =- n=4We '", where
4W is the total bandwidth and X =g /()[rrur&')) is the
effective coupling constant. " The electron Green's
function is given by

G(&u„, k) = —(i&0„+ o,vzk+ o,n) '

= —( i&o,-+ o,v~0+ o,n)(&o'„+ E',) ', {4)

[(v }t)2+ na]lh

and &d„=27[T(n+ —,) is the Matsubara frequency for

the fermion.
Making use of the fact that the current operator

is given by

the retarded product of the current operator is
given by

(D,j]),{i&d„)=2T(evr)' —Tr[o,G (&o„,k)
dk

x(z,G(&d„„,u)] ( I)

by analytical continuation. At T =0 K then, Eq.
(7}is easily evaluated as

28 v~/ 1
]
I — (, ),g, sin-'z for

fate(I

28 vr I 1 w.r I. = &, „„-i-cosh-'z&j for Iz(&I,
«H

where z = &()/2n. The frequency-dependent con-
ductivity from a single chain of A"ass-polyace-
tylene is given by

vrhere

1/I vrk+ in(x)

~»ch vgas obtained previously by SSH.'

III. CONDUCTIVITY IN THE PRESENCE
OF SOI.ITONS

In order to study the effects of solitons on o(u&),

me shall first consider a polyacetylene with a
single soliton at x =x,. In this case the Green's
function is given by

( )
1 ~(uf(x)u, (y) u~ (x}v,(y)

i&d„E,p,* {)xu(-)yves(x)v, (y)

1 v,*(x)v,(y) -v,*(x)u,(y)
i &a„+Z, u,*(x)v,(y-) u&*, (x)u, (y)

1 (x-x,&

ue(x) =iv~(x) = sech(

Here me have made use of the electron wave func-
tions given in TLM.~

The retarded product of the current operators
for a single polyacetylene chain is calculated as

(14)([)j))(f«„)=Rr(««~)*I 'Q f Je't' "—"Tr[«c(« '«)«*0( «[, „, „,
where now G(&d„, k) is given by Eq. (11) and we have averaged over the soliton position x, . Here I is the
length of the (CH)„chain. Then Eq. (14) is rewritten as

(15)
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where

a 00

I ((d) =
2

dk dk'~M, , ~ (E +E )2
(2) vr I (21 2 2(E2+E2, )

OO 1/2

CO

1 1
M,"'„=— dx[u, (x)v', .(x)+v,(x)u', ,(x)]e'"' '*= dx — +i&(x) —+ ~

e'"' '*

'L7T vga vga t + 1 1= —5(k —k') —
i
———+ f csch —(k —k') $ iEa &~) 2 &a &~ 2 )

Here I ((d) is associated with the midgap transition, while 1 (v) describes the interband transition.
Taking the imaginary part of Eq. (15), the conductivity in the presence of a single soliton is given by

) (()( ) + (21( (20)

where
0(2 2o'" = (e'v') 1(' dk sech( —k] 5(E —&u) = —~v'(z' —~) ' ' sech'[(((z' —~)' ']6(~z I

-~), (21)I )
' 4

o '((o) = v/ dk dk' 5(k -k') — ———+ —
i ( csch —(k —k"')$

i 5(E2+E2. (e), (22)-
e'v', (" ", , (vg v,k' n (1 1 )
4 L,

~
g g 2 g

where Eq. &21), which describes the midgap
transition, has been correctly given by Suzuki
et al. ' On the other hand, Eq. (22), which des-
cribes the interband transition, diverges because
of the pole at &=A'. This divergence is elimin-
ated by introducing the effect of other solitions,
which gives rise to a finite coherence length ],-=a(2n, ) ', where a is the distance between two

adjacent (CH) groups measured along the (CH)„-

chain direction and n, is the soliton density. A

detailed discussion of the topological disorder
due the a finite sol. iton density will be described
in Appendix A ~ With this in mind replace the pole
in Eq. (22) by

(k —k )-'- [(k - k )'+ (2n, a ')2] '

etc. Then Eq. (22) is rewritten as

&2i v~k v~A'' 2n, a ' (1 1
J~

"' "'[( k)+(2na-)) '
E -E, (k k)-'IE '-E, '"+"-"'

x/2
e2 4] (P-1)

dy 1 ( z2 2 1/2 ff 2

vn L K +y [(z —y')'+y'] (z —y —1 z —y
(23)

where

z =&@/2&, K=n, )a ' .

Finally, in the presence of a finite density of soliton, we have

2 2

o((0) = K 8(~z~--,')
2

(z'--,') '/'sech'[(((z'--, ')'/']

(c2 I)j /2
K

y If2+ 2
(

2 2)2 2 2 2 2 2

(24)
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which is obtained by multiplying I,I.a ' on Eq.
(20).

The above expression is numerically evaluated
for several n, 's and shown in Fig. 1. %'e have
taken $/a = 7 in the numerical calculation. As is
easily seen, the present results describe semi-
quantitatively the observed optical spectra, of
lightly doped polyacetylene for the whole fre-
quency range, if we ignore the square-root singu-
larities at the thresholds of the midgap transition
as well as the interband transition. These singu™
larities may be washed away, if the effects of
the thermal phonons are included in the theoreti-
cal calculation.

However, eompa, ring the relative weight of the
absorption due to the midgap transition to the
total absorption, it appears that the soliton den-
sities n, are consistently larger than the dopant
concentration C, if each dopant introduces one
soliton to polyacetylene. For example, - we obtain

n, = 0.08, 0.16, 0.42, and 0.91% for C = 0, 0.01, 0.1,
and 0.5%, respectively, by analyzing the optical-
absorption spectra reported by Suzuki et al, .' In
particular, n, = 0.08 for undoped polyacetylene
appears to be consistent with magnetic suscep-
tibility measurements in pristine trans-poly-
aeetylene. " " Furthermore, if we take the pre-
sent analysis at face value, a single dopant ap-
pears to create more than one soliton for example,

2.0

l.5-

l.o-

0,5 l. o
I

l. 5 2.0

FIG. 1. The optical-absorption spectra are calculated
as function of reduced optical frequency g =u/{M) for
the soliton density n, =o {solid curve), n =1% {broken
curves) and n, = 2% {chained curve). Note that the mid-
gap absorption increases linearly with n~.

one and a half solitons on the average. This may
be plausible as the soliton ca.nnot be created singly
in a single (CH), chain due to the topological con-
straint.

In the limit of small n„Eq. (25) may be ap-
proximated as

o(~)=- — & —(z'-l) '~sech'[~(z'-4)'']e(lzl--')+e(lzl-1)z '(z' —1) ''(1-2« ')+0(lf'), (26)
2

wherez = &/(2b, ) andK =n, $a
This is a reasonable approximation for K ~ 10"'

(or n, ~ 0.1%) and z not far from the interband
threshold (z —1s 1). The interband term in the
above expression is similar to the one in the re-
vised version of Suzuki et al.' but differs in de-
tails. Furthermore, the present expression ap-
pears not to satisfy the optical sum rule. This is
easily seen from

2 eo

dz(z' —-') ' 'sech'[s(z'--, ')' '] = 2 82
I/Z

2 dzz 'z' —1 ' '=
—,
' =1.3333.. . .

l

However, we do not yet understand why the sum
rule is not obeyed.

So far we have completely neglected the Coulomb
interaction between electrons as in the original
SSH model. ' If the Coulomb interaction were in-
cluded, this would produce bound states of electron

and hole (i.e., excitons) which would introduce
an additional exciton structure'~ below ~ = 2h.
Therefore the optical-absorption experiment mill

be extemely useful to assess the importance of
the Coulomb interaction in polyaeetylene.

IV. CONCLUDING REMARKS

Making use of the Green's-function technique,
we have calculated the electric conductivity of
trans-polyacetylene in the presence of solitons.
The present theory appears to account semiquanti-
tavely for the observed optical-absorption spectra
by Suzuki et aE.' on trans-polyaeetylene doped
with AsF„ if the soliton density is assumed slight-
ly larger than that inferred from the dopant con-
centration. The larger soliton density may arise
from the intrinsic solitons, inhomogeneity of
doping, and/or the doping mechanism of which
detail is not known.

The most significant discrepancies between the
present theory and the observed optical spectra
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are rounding of the observed spectra near the
thresholds of both the midgap transition and the
interband transition. We believe that inclusion of
the lattice fluctuation (thermal as well as quantum
mechanical) will produce sufficient rounding in
the absorption spectra near the thresholds. This
will be considered in a future publication.

After completing this work we received a re-
port by Gammel and Krumhansl on the optical
absorption in polyacetylene with similar results.
However, their treatment as well as their ex-
pression of the interband absorption are some-
what different from ours.
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APPENDIX: THE TOPOLOGICAL DISORDER
IN POLYACETYLENE DUE TO SOLITONS

We shall first consider the correlation of the
displacement field y(x) in the presence of a finite
soliton density n, . This can be done as follows.
We shall first consider y(x) given by"

;(,) =,„11(«««(* "), (A1)

Averaging over x,-'s we obtain

n I,/c

(y(x + y) y(x)) = y', 1 ———coth—

where x,. are the positions of solitons, then we ob-
tain

&«(« ~ «) j("})=«l (II)* &(
« ')

x tanh ' . A2

and L is the length of the system.
Equation (AS) indicates that the dimerization

coherence length is given by $, = a(2n, ) ', which
is identical to the case of the Q' model discussed
by Krumhansl and Schrieffer. '

If these solitons are moving like the ideal Boltz-
mann gas, the space-time correlation of the
dimerization may be given by"

(y(x, t)y(0, 0)) = y', exp[ —2n, a '(y'+ v', t')' ']
(A5)

In the case of a single soliton (A6} is evaluated as
follows:

x+$I,(q) = — dx dye 'A'tanh tanh—
-L,/

2g
dy e"" 1 ——coth—

L

r2 g
2 s6(q} + —t' csch' —q$L 2

4 1

2m5q+ q~
L (Av)

The second term has the q
' singularity. In the

presence of a finite density of solitons we obtain

I./2
&(«} = « f d««'"&«(*+«) v(«))L

= A' Jf dy exp(tqy —2n~ '~y ~)

and vo = [(2/w)(T/m, )]&t' is the thermal velocity of
soliton with mass m, = 6m, .

We shall now look into a particular term in the
calculation of the optical-absorption spectra. We
shall consider the integral

I./2
l(q}= — dx f dye'"«(«+«}«(«). (A(}}

L -I

= y', exp(-2n, a '(y(), (AS)

where we made use of the relation
~ l./2 x+g x 2gdx tanh tanh —= 1 ——coth—

L L

(A4)

4n, a
q'+ (2n, a ')' '

In this way the q
' singularity in the single-

soliton term is eliminated when a finite concentra-
tion of solitons is considered.
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