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Simple scheme for surface-band calculations. II.The Green's function
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We present a very simple scheme for calculating the Green's function of a semi-infinite surface system described

within a localized orbital basis. By generating a series of matching conditions for the Green's function we can

calculate its matrix elements much faster than any method currently available. We present the formalism for a
specific class of systems and include a simple example to illustrate the use of the technique.

I. INTRODUCTION

In a previous paper' (hereafter referred to as I),
we introduced a simple and efficient scheme for
calculating the surface-energy bands, wave func-
tions and decay lengths for semi-infinite surface
systems. These systems were described by Ham-
iltonians based on localized-orbital representa-
tions. The essential idea was to generate match-
ing conditions for the wave function using the
transfer-matrix approach. ' ' The transfer matrix
was defined so that it directly linked the wave
function on pairs of neighboring layer orbitals.
The eigenvalues and eigenfunctions of this trans-
fer matrix provided all the information necessary
to calculate the electronic structure of the system.

In this paper we introduce the appropriate ex-
tensions needed in order to calculate the matrix
elements of the Green's function within this ap-
proach. This scheme, in fact, allows one to ob-
tain these matrix elements much faster than any
other technique currently available. At pr esent,
there are two very popular Green's-function
methods' "used in surface calculations that are
roughly equivalent in computational time. The
"Slater-Koster" method' ' obtains the surface
Green's function from a knowledge of the bulk
Green's function. It has the disadvantage of re-
quiring time-consuming integrations over a large
number of k, 's in order to get accurate results.
The "effective-field" method' "obtains the sur-
face Green's function using a continued-fraction
approach, where

G;,(E) = [E—H„-H„e (E)] '

and

e(E)=[E H„H„e(E)] 'H;, . -

Zero labels the surface layer and 4 is called an
effective field or sometimes a "transfer matrix"
(not to be confused with the transfer matrix T de-
fined in I and in this paper). The disadvantage of
this approach is that 4 needs to be calculated self-
consistently in general, and this involves many

iterations (-50) for convergence. The approach
that is presented here enables one to calculate 4,
and hence the Green's function, directly, from a
simple diagonalization of the transfer matrix T.

The format of this paper is as follows. In Sec.
II we discuss the basic formalism, restricting
ourselves to a specific class of surface systems,
the extension to more general systems being
straightforward. In Sec. III we present a simple
model to illustrate the use of this method and
choose the same model system as in I. In Sec. IV
we present rigorous arguments which justify cer-
tain assumptions made in Sec. II. Finally in Sec.
V we show how the results of the previous sec-
tions, and the method described in I, can be uni-
fied.

What emerges then, from the results of I and
this paper, is a very efficient general scheme for
calculating the elementary excitations at surfaces,
where one can directly obtain the projected band
structure, wave functions, surface bands, decay
lengths, and Green's-function matrix elements
from the eigenanalysis of one simple transfer ma-
trix T.

II. FORMALISM

We begin by considering a bulk crystal. We may
think of it as an infinite stack of principal layers.
As in I, a principal layer is defined as the small-
est group of neighboring atomic layers such that
only nearest-neighbor interactions between prin-
cipal layers exist. The schematic representation
of this system for each k][ is shown in Fig. 1. We
have assumed here that there are only two types
of inequivalent principal layers in the system.
(The generalization to many inequivalent principal
layers is straightforward and follows arguments
similar to those presented in I.) If there are p
layer orbitals in each principal layer, the Bloch
state of any orbital p in any principle layer l is
given by

(kp)= — Q e"~i (t y (l, R~~),
II
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FIG. 1. For each k~, a crystal can be represented as
an infinite one-dimensional chain of principal layers
(l). The circles and squares represent two types of
principal layers whose self-interaction matrices are
given by Hpp and H~~, respectively. The double and sin-
gle lines represent the interaction matrices between
principal layers. G1o S

00~ &Sl~l &

(1O)

where the G„'s and H», 's are p x p, matrices and

Eq. (9) defines the transfer matrix T. This trans-
fer matrix is slightly different from the one de-
fined in I in that the E' are now complex. This is
discussed in more detail in Sec. IV. An immediate
practical consequence of this, however, is that
half the eigenvalues of T(k,(,E') have modulus less
than 1 and half have modulus greater than 1. This
is true even for energies in the bulk allowed re-
gion.

Consider now 58(K)(, E'}, p =1, 2, . .. , 2i1 to be
the 2p, -normalized eigenvectors of T(k(( E ) with
respective eigenvalues A2(k), , E"). Let us assume
that l)(., l&1 when 1 ~ p ~ p and lX0l&1 for i11+~P
~ 2p, . In order for the Green's function to satisfy
(7) and (8} and remain normalizable, one must only
retain the eigenvalues

l &0 l
& 1 when T is diagonal-

ized in (7) and only retain
l X0l&1 in (8). This im-

plies that ( o
' 0) and (o,22 0 ) can be expanded in

2

terms of the e0's with 1 ~ P ~ p, a()d i1 + 1 ~ P ~ 2)1,
respectively. In particular, we may write

where 0' = 1, 2, . . . , p, and RII is a lattice vector.
The matrix elements of the Green's function are
then given by

and

r
pp I S4$2

&G10 i ).S3$2 ~

with

00} 00 01 10 12 10 (6)

where E'=8+i&. We now choose the zeroth prin-
ciple layer as a reference so that the set of ma-
trix elements (G0 „-~& f & ~f will satisfy the fol-
lowing equations:

(S,) „= (v ~ e„),
(S.).„= (u. ~ e„),
(S,) „= (v„ e„,„),
(S,) „= (u ~ e„,„),

(12)

with where y=1, 2, . .., p. , and u and v, &=1,2, . . . , p
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are 2p, -dimensional column vectors with compo-
nents given by (u ),. = &, , and (v ),. = &„„,. The
p. & p matrices p, andy, represent the unknown
expansion coefficients. From (10) and (11) these
matrices are related by

j. kl ~ (i3

Substituting (10), (11), and (18) into (5) we obtain

P~ = [(E' -H~) S1 —H018, —H12S3S01S1] 1 (14)

or

00 [(~ 00) 01S2 1 12 S3 +a ]

a)
a

JL J1

Equation (15) is isomorphic to the equation one ob-
tains for ~pp in the effective-field method, ~"
namely,

GOO= [(E' -HOO) -H01C'1 - H12 C'2]
'

Thus one immediately identifies the effective fields

e, (k„E)=S,(k, E)S (k„E)
and

42(k1, E') =83(k 3, E')S (ak3, E') .

FIG. 2. A semi-infinite two-dimensional honeycomb
lattice represented as (a) a system of atoms (black dots)
with nearest-neighbor interactions Vg (thick solid lines)
and second-neighbor interactions V2 (thin solid lines).
The atoms along the surface are spaced a distance a
apart. (b) A chain of principal layers (l) for each wave
vector k in the surface Brillouin zone. Each principal.
layer (represented as a rectangle) contains two atomic
layers as shown.

Therefore one is now able to calculate the fields
directly by diagonalizing the transfer matrix T
rather than performing many iterations as in (2).

The surface Green's function is now obtained at
once from

~oo = [(E' - Hoo) - H01S2Si'] ' with

( E+) Hol (E HOO) H01K01

1 0
(22)

or

G00 = [(E' - Ho. ) —H12 SOS'] ', (20)
'V2(n+n¹) V, (i+a)

pp

V, (1 + q¹) V2(1i+ 3i¹).
(23)

depending on which surface one is interested in.
The local density of states is then given in general
by

n, (k, E)== lm[trG„(k3 E )].

and

V2(1+ 1)) 0
p1

V V (1+q).
(24)

III. AN EXAMPLE

Let us consider, as in I, a semi-infinite two-
dimensional honeycomb lattice as shown in Fig.
2(a). We assume there is an s orbital on each
atom and that they interact only through first-
neighbor (V, =-1.0) and second-neighbor (V, =-0.1)
interactions. It is also assumed that the s orbitals
are orthonor mal.

Since the atoms interact through second neigh-
bors, each principal layer must contain two atomic
layers. This is shown schematically in Fig. 2(b).
Note that there is only one inequivalent principal
layer for the system in this example. Therefore
the matrix elements of the Hamiltonian between
principal layers must have &pp &yy and &py

The transfer matrix of Eq. (9) then becomes

where &= e'~' and a is the lattice constant of the
surface line.

The Green's function at any (k, E') can now be
calculated directly by diagonalizing T(k, E'). As
noted earlier the eigenvalues of T will have the
property that two will have modulus less than 1 and
two greater than 1. For example, in Table I we
list the modulus of these eigenvalues at k =0 for a
series of energies with &=0.01. We note that in
certain regions of energy there are two eigenval-
ues with modulus very close to 1. These moduli
actually approach 1 as &-0 as can be seen in the
second panel of Table I where &=10 ~. These re-
gions of energy define the allowed bulk solutions
as in I.

If we label the two eigenvectors of T with modu-
lus less than 1 by e and e, and the other two by

e,,e, we have from (12)
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TABLE I. The moduli of the eigenvalues {&&)of the transfer matrix at k =0 are listed for two values of the imaginary
part of the energy 6 and a series of energies.

6 =0.01
l~, (E+ id)l lx, (E+id)l I q(E+ is) I li, (E+id) I

& = 0.0001
l~, (E+ i(')

I l~, (E+ ~d) I l), (E+ id) I I~)(E+ id) I

—4.0
-3.8
-3.6
-3.4
—3.2
-3.0
-2.8
-2.6
-2.4

2 y2

—20
-1.8
-1.6
-1.4
-1.2
-1.0
-0.8
-0.6
-0.4
-0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0

7262.3125
6990.3125
6721.9766
6457.3165
6196.3594
5939 .1289
5685.6406
5435.9023
5189.9727
4947.8516
4709.5742
4475.1562
4244.6328
4018.0313
3795.3696
3576.6851
3362.0034
3151.3623
2944.7891
3742.3140
2543.9687
2349.7840
2159.7847
1973.9981
1792.4399
1615.1157
1442.0156
1273.1001
1108.2764
947.3667
790.0112
635.4756
482.0601
324.6887
123.0060
134.4801

5.4799
3.3631
1.2077
1.0324
1.0239
1.0198
1.0178
1.0165
1.0160
1.0156
1.0148
1.0149
1.0153
1.0150
1.0178
1.0230
1.1381
2.1865
2.8701
3.3999
3.7748
3.9731
3.9731
3.7458
3.2668
2.4984
1.1714
1.0323
1.0298
1.0329
1.0392
1.0580
1.4750

13.3688
78.0861

126.7525

0.1821
0.2975
0.8290
0.9695
0.9780
0.9811
0.9831
0.9843
0.9853
0.9858
0.9854
0.9854
0.9850
0.9839
0.9820
0.9772
0.8785
0.4572
0.3483
0.2941
0.2649
0.2516
0.2517
0.2670
0.3061
0.4003
0.8547
0.9677
0.9708
0.9691
0.9622
0.9455
0.6757
0.0742
0.0123
0.0080

0.0001
0.0001
0.0001
0.0001
0.0001
0.0002
0.0002
0.0002
0.0002
0.0002
0.0002
0.0002
0.0002
0.0002
0.0003
0.0003
0.0003
0.0003
0.0003
0.0004
0.0004
0.0004
0.0005
0.0005
0.0006
0.0006
0.0007
0.0008
0.0009
0.0011
0.0012
0.0015
0.0020
0.0030
0.0081
0.0074

7262.3125
6990.3125
6721.9727
6457.3125
6196.3555
5939.1250
5685.6328
5435.9023
5189 .9727
4947.8516
4709.5703
4475.1523
4244.6250
4018.0210
3795.3589
3576.6743
3361.9922
3151.3516
2944.1773
2742.3018
2543.9557
2349.7700
2159.7705
1973.9829
1792.4233
1615.0986
1441.9961
1273.0786
1108.2519
947.3384
789.9775
635.4311
481.9956
324.5581
100.2062
130.5884

5.477 4
3.361 9
1.006 2

1.001 6
1.001 24
1.000 7
1.000 6
1.000 5
1.000 5
1.000 8
1.000 3
1.000 2
1.000 1
1.000 0
0.999 8
1.000 2
1.0169
2.186 0
2.869 7
3.399 6
3.7745
3.974 0
3.972 8
3.745 5
3.266 6
2.497 6
1.008 8
0.9999
1.000 1
1.000 7
1.000 6
1.000 5
1.071 6

13.363 8
95.826 8

130.5115

0.182 8
0.297 7
0.996 2
1.000 53
1.000 78
1.000 3
1.000 3
1.000 2
1.000 2
1.000 5
1.000 0
0.999 9
0.999 9
0.999 6
0.999 4
0.999 2
0.983 0
0.457 3
0.348 4
0.294 1
0.2649
0.251 6
0.251 7
0.267 0
0.306 2
0.400 4
0.993 2

0.994 2

0.999 6
1.000 0
0.999 8
0.9994
0.929 8
0.0742
0.0104
0.007 7

0.0001
0.0001
0.0001
0.0001
0.0001
0.0002
0.0002
0.0002
0.0002
0.0002
0.0002
0.0002
0.0002
0.0002
0.0002
0.0003
0.0003
0.0003
0.0003
0.0003
0.0004
0.0004
0.0005
0.0005
0.0006
0.0006
0.0007
0.0008
0.0009
0.0011
0.0012
0.0015
0.0020
0.003
0.0103
0.0077

e eS1 (25) G„(k,E")=f(Z a„) 2a„S,S ]-'. (29)

01t 4 @2v 4~e e

2

, 2e

CS2v 1

e
(M2 2~

e e33 43
2

e eQ3s4 Q4s4 ~

e, e
~4 3

f)(3s 2 O4v 2 ie e

Substitution of (25)-(28) into (15) gives the bulk
Green's function. Actually in this example
HD, S2S1 -H01S3S41 so that

(25)

(27)

The corresponding local densities of states ob-
tained from (21) are shown in Pig. 2 for a series
of energies and surface k points. We note that the
density of states at k =0 defines band edges which
are consistent with the allowed bulk solutions in
Table I. The thin solid lines in the E-vs-k plane
help define the projected band structure. We also
note that at k- 2s/Sa the gap becomes zero. At
k =v/a the off-diagonal elements of the self-inter-
action (H„) of the principal layers vanish so that
the system decouples completely into pairs of
atomic layers and the transfer matrix loses mean-
ing. The density of states is then given simply by
two delta functions at E= -2V'2+ V, .

The Green's function. for the surface system is
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FIG. 3. Local densities of states of a principal layer
in the bulk honeycomb lattice as a function of energy
and as a function of k parallel to the layer. Each prin-
cipal layer contains two atomic layers as in the semi-
infinite case of Fig. 2. The thin solid curves in the
energy-wave-vector plane define the projected band
structure.

given by Eq. (19). The corresponding local densi-
ties of states for the zeroth principal layer (Fig.
2) are shown in Fig. 4. We note, as in I, that a
surface-state band appears for )'«a'2v/3a. This
state becomes very localized at the surface princi-
pal layer as k- 2/a. In fact, this state is entirely
localized on the surface atomic layer at )« =2/a.
In this case the delta functions at E=-0.8 and 1.2
are bulklike peaks arising from the second atomic
layer. We also note that for i'« ~ -',m/a there are
relatively strong in-band resonances in the local
densities of states. The resonances lie roughly in
the middle of the two bands occurring respectively
above and below zero energy. These results are
similar to those obtained by Foo et al xo using
honeycomb lattice with three sP'-like orbitals per
site and nearest-neighbor interactions.

IV. ANALYTICAL PROPERTIES OF 6 AND T

The basic strategy in Sec. II was to first intro-
duce a small imaginary part into the energy, which
separated the eigenvalues fA.,}of the transfer ma-
trix irito two halves with

I
x I& 1 and

I
A.

I
& 1. One

then proceeded to eonstruet the bulk Green, 's func-
tion by assuming 6„,and „, decay as n —~, and
thus choosing each column of the matrices [o',J

FIG. 4. Local densities of states for the zeroth prin-
cipal layer of the surface system shown in Fig. 2 as a
function of energy and wave vector k in the surface
Br illouin zone. A bona fide surface-state band appears
for k R2g/3g near the zero of energy.

and [~no') to be a linear combination of eigenvectors
of r with IXI&1 atld

I
Xl&1, respectively. The

combination coefficients were then determined by
requiring Eq. (5) to be satisfied. Once the bulk
Green's function was obtained, one easily identi-
fied the quantities corresponding to the effective
fields and surface Green's function.

In this scheme, however, there are two impor-
tant points that need to be completely justified.
The first point is that we need to prove the
G„,(k«, E ) and G„(k««, E') decay asn-~. The
second point is that in order for Eq. (5) to deter-
mine the combination coefficients uniquely, the
eigenvalues of T must be divided evenly into
groups with

I
~I~ 1 a""

I
~l&1. We need to prove

that this will always be the ease as long as an
imaginary part has been introduced into the ener-
gy.

To prove the first point, consider the Lehmann
representation of the bulk Green's function,

g g ie, (u, k«)&(e, (f, k,~)i

« i E' —E,(I«, k«)

(3o)

where the
I
4', (k, k«)& and E,(I«, k«) are eigensolu-

tions of the bulk crystal.
If we take matrix elements of Eq. (30) with the

basis functions spanning the principal layers as in
(3) and (4) we get

'G,„„,G,„...' ~ g e'~ '(ll+„(k)&(e„(k)II& (Ile„(k)&(e„(k)lo&

.G, G, . ' E-E k .(ol+, (k)&(e.(k)ll& (ole. (k)&(e„(k)lo&.
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Q ~ &/a
2n+1, 1 2n+1, o dy ~~a

2n, 1 2n, 0 '~

(32)

where, for the system shown in Fig. 1, H(e'~) is given by

H( el kn)

.H„+e H„

H+ +e l %AH

P

H00

(33)

Now let us make a standard change of variable from k to &a=e'~ in (32). This gives

G G
2112 f f 1 E H(R) 211i ~/ J 1 det[E H(ld)]|"-~,0-

where adj(X') is the classical adjoint of the matrix X and X '—= adj(X)/det(X). py using the identity

A 9
det = det(CAC 1D —CB),.C D

where &, S,C, D are p && p submatrices, one can easily show that

det[0& —T (E')] =
H H

det[E' —H(&u)],
(-~)'

det H„H1,

where T(E') is for the system shown in Fig. 1 and thus given by

(34)

(36)

01 ( 00) 12 ( 11) 01 12

H11(E H„)

Substituting (36) back into (34) we get

-H01 (E' —H00)H1PI01

H12H01

G,„,, G,„,; 1, ( 1)" „,&0'adj[E' H(&u)]

21li det(H„H„) („), det[ld —T(E')]
2n, l 2n, 0 ~

Similarly we have

1 (-1)" „,&" adj[E' -H(1/&)]
211i det(H H )P ~„L, det[&u —T '(E')]

2n ~ 0

(39)

Since 01" adj[E' -H(01)] and 0l" adj[E' -H(1/0l)] contain only positive powers of 0l we may expand them as
follows:

(0" adj[E'- H(0l)] = Q ldkDk(E'), (4O)

0l" adi[E' H(1/0l)] = Q '0l,D„„( 'E), (41)

ek
D, (E')=, f00"adj[E' —H(0l)]) . (42)

Therefore for n ~ 1 we have

p 2P [y (E+)]n+k

det(H„H„) + ', .„„,X, (E')+[X,.(E')-Z, (E')]
& ~2n, 1 2n, o &

(43)

2p

2n+1, 1 2ll+1, 0 ( 1) Y D (E+) Q [ l ( )]—
d t(H H 2g

G Q ( 01 12) k 0 =!llk I&
A. (E') Z[ [1 (E') —A. (E')]2n, 1 2n, 0

Pl

(44)
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From (43) and (44} we can see that G„, and G„- o

should decay as n- 0.
Let us now turn to the second point. Consider

the function

6:(~,z) -=det((u- r(z)), (45)

where T(z) is given by (37) with E' replaced by a
general complex number z. From (37) it is obvi-
ous that F is an analytic polynomial in both (d and
g. Since the coefficient of the term with highest
power in ~ is unity, we may write F as

~(, )=@[ -~,(.)] (46)

where the analyticity of 5 implies continuity in the
X,.(z). We now show in the following argument that
the A, (z) must satisfy !A, , (z)! a" I for z not real.
Since H(~ = e' ) is a Hermitian matrix, its eigen-
values are real and therefore detjz —H(v = e'~)]
& 0 for z not real. This implies from (36) that
6:(e', z) cannot equal zero for z not real. Thus
we conclude that all the (X, (z)] must have the
property

!X,(z)!~1 (47)

0
S(kg) =

~H, (& (k,~)

-H, ,'(k g)
'

(50)

If z is on the real axis (z =E), Eq. (49) implies
that the set (&,.(E)}is equal to the set (X~ '(E)).
Thus there are always equal numbers of X,.(E) with
modulus greater and less than one. Moreover, if
E lies outside the bulk allowed energy region all
the A, (E) have modulus greater or less than one.

Since {&,(z}]are continuous and satisfy (47) we
must also have an equal number of X, (z) with mod-
ulus greater or less than unity for z off the real
axis. The proof proceeds by reductio ad absurd-
um. Suppose for some g there are not equal num-
ber of X,.(z) inside and outside the unit circle.
Then we can consider a path connecting this point
to another on the real axis outside the bulk allowed
energy region. Somewhere along this path eigen-
values X,. (z) must "jump" across the unit circle.

for s off the real axis. We now proceed to show
that the set (X,.(E)) can be divided equally into two
sets with moduli greater and less than 1, respec-
tively. We can easily prove, using arguments
similar to those in I that

r-'(k, , z)=S(k )r'(-k, ,z)S'(k )

and

T '(k„,z) = S(k~, )T'(k~, , z*)s-'(k~, ),
where

This contradicts the continuity of &,. (z) and the
analytic nature of P.

V. CONSTRUCTION OF A UNIFIED SCHEME

The present method relies on the eigenanalysis
of the transfer matrix T(k„,E') with E'—= E+i6.
The method described in I relies on T(k~~, E)
where E is purely real. Nevertheless, the two
schemes can be unified completely in two ways.
The first entails forcing E in I to have a very
small imaginary part &. The projected band struc-
ture, wave function, surface bands, and decay
lengths can then be obtained using the same equa-
tions as in I with negligible error of the order ~.
We note that & can be chosen as small as one
wishes without serious instabilities.

The second is more elegant. It involves setting
E' equal to E in the present method. This is ex-
act, as long as we correctly identify which eigen-
values (X,.(k~~ E)]' of T(k~~ E) with modulus equal
to 1 analytically continue to {X,. (k~~ E )) with mod-
ulus less than 1. In what follows we discuss this
in more detail and illustrate how to construct this
"selection procedure" and determine the effective
fields for real energies.

For any real energy E outside the bulk continum,
the eigenvalues (X, (k~~, E)j of the transfer matrix
are always evenly divided into two groups, with
modulus greater and less than one. The Green's
function is therefore uniquely defined through Eqs.
(10) and (11). A problem arises, however, when
E lies inside the bulk continum. In this case there
are always an even number of X's corresponding
to Bloch phase factors e'~' which have modulus
equal to one. These X's correspond to different
Riemann sheets which cross at a branch cut for
this range of energies. In order to identify the ~'s
associated with the appropriate Hiemann sheet we
construct the following selection procedure.

We introduce a small imaginary part i& into the
energy and examine what happens when we take
the limit ~- 0. From w'hat we learned in Sec. IV,
none of the (X,.(E+i&)] can have modulus 1, and the
wave vectors 0(E+i&) are now complex. Expanding
the function k(E+i5) around E, we get

i&(&+i6)tf ei&(&)ae-6'�(&It/ && )

If we let X=Xz+iX„, the &0/&E=kz'&A&/&E and the
modulus of ei is

(52)

From (52) we can see that only the A. (E) with
X„' &a~/sE ~ 0 can analytically continue to the &(E')
with !X(E')!&1. Therefore, these X(E)'s with mod-
ulus 1 correspond to the appropriate Biemann
sheet for the Green's function in (34). This selec-
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tion procedure only requires knowledge of X„(E)
and ex~(E)/eE at the real energy E.

We can calculate &X&/sE exactly using the trans-
fer matrix T by

where e(X) is the corresponding eigenvector with
eigenvalue X, and &T/&E is given by

8T HOCH~~~~(E -Hu) +Ho~~(E —H~o)H~2 -HO~H~~jj~~

H~~ 0

SE XsE

Equation (55) is easily evaluated since it only re-
quires knowledge of the transfer matrix T(k„,E)
and its eigensolutions at real E. The sign of (55)
then identifies with A, 's with ~X(k„,E)

~

=1 should
be used in (12), (1V), and (18) with E'= E reaL
The effective fields C, (k(( E) and 42(k(( E) ale
therefoxe now evaluated, exactly, at real energies.
One should, however, retain a very small imagi-
nary part 5 in the E [shown explicitly ln (19) and

(20)j for the surface Green's function, in order to
account for possible states (described by poles)
existing outside the branch cuts of the bulk contin-
uum
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