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We present a very simple scheme for calculating the Green’s function of a semi-infinite surface system described
within a localized orbital basis. By generating a series of matching conditions for the Green’s function we can
calculate its matrix elements much faster than any method currently available. We present the formalism for a
specific class of systems and include a simple example to illustrate the use of the technique.

I. INTRODUCTION

In a previous paper® (hereafter referred to as I),
we introduced a simple and efficient scheme for
calculating the surface-energy bands, wave func-
tions and decay lengths for semi-infinite surface
systems. These systems were described by Ham-
iltonians based on localized-orbital representa-
tions. The essential idea was to generate match-
ing conditions for the wave function using the
transfer-matrix approach.?® The transfer matrix
was defined so that it directly linked the wave
function on pairs of neighboring layer orbitals.
The eigenvalues and eigenfunctions of this trans-
fer matrix provided all the information necessary
to calculate the electronic structure of the system.

In this paper we introduce the appropriate ex-
tensions needed in order to calculate the matrix
elements of the Green’s function within this ap-
proach. This scheme, in fact, allows one to ob-
tain these matrix elements much faster than any
other technique currently available. At present,
there are two very popular Green’s-function
methods®*! used in surface calculations that are
roughly equivalent in computational time. The
“Slater-Koster” method®® obtains the surface
Green’s function from a knowledge of the bulk
Green’s function. It has the disadvantage of re-
quiring time-consuming integrations over a large
number of I?L’s in order to get accurate results.
The “effective-field” method®! obtains the sur-
face Green’s function using a continued-fraction
approach, where

Gf)o(E) - [E - Hoo - qu)(E)]"l (1)
and
&(E)=[E - Hyy - Hyy ® (E)|H, @)

Zero labels the surface layer and @ is called an
effective field or sometimes a “transfer matrix”
(not to be confused with the transfer matrix T de-
fined in I and in this paper). The disadvantage of
this approach is that ¢ needs to be calculated self-
consistently in general, and this involves many

iterations (~50) for convergence. The approach
that is presented here enables one to calculate &,
and hence the Green’s function, directly, from a
simple diagonalization of the transfer matrix 7.

The format of this paper is as follows. In Sec.
II we discuss the basic formalism, restricting
ourselves to a specific class of surface systems,
the extension to more general systems being
straightforward. In Sec. III we present a simple
model to illustrate the use of this method and
choose the same model system as in I. In Sec. IV
we present rigorous arguments which justify cer-
tain assumptions made in Sec. II. Finally in Sec.
V we show how the results of the previous sec-
tions, and the method described in I, can be uni-
fied.

What emerges then, from the results of I and
this paper, is a very efficient general scheme for
calculating the elementary excitations at surfaces,
where one can directly obtain the projected band
structure, wave functions, surface bands, decay
lengths, and Green’s-function matrix elements
from the eigenanalysis of one simple transfer ma-
trix T

II. FORMALISM

We begin by considering a bulk crystal. We may
think of it as an infinite stack of principal layers.
As in I, a principal layer is defined as the small-
est group of neighboring atomic layers such that
only nearest-neighbor interactions between prin-
cipal layers exist. The schematic representation
of this system for each E“ is shown in Fig. 1. We
have assumed here that there are only two types
of inequivalent principal layers in the system.
(The generalization to many inequivalent principal
layers is straightforward and follows arguments
similar to those presented in I.) If there are u
layer orbitals in each principal layer, the Bloch
state of any orbital ¢, in any principle layer ! is
given by

b= = Lot Mo, LR, @)

I Ry
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FIG. 1. For each E,,, a crystal can be represented as
an infinite one-dimensional chain of principal layers
(I). The circles and squares represent two types of
principal layers whose self-interaction matrices are
given by Hy, and H,;, respectively. The double and sin-
gle lines represent the interaction matrices between
principal layers.

Nt

where ¢=1,2,..., 1 and -ﬁ" is a lattice vector.
The matrix elements of the Green’s function are
then given by

[Gn'(kII:E)]aB‘<¢1 a(k )'E* | ‘nb;' 3(ku)>
“)
where E*=E +i6. We now choose the zeroth prin-
ciple layer as a reference so that the set of ma-
trix elements {G, ,; - <1<} will satisfy the fol-
lowing equations:

(E*—Hoo) Goo"Hme"HIzGio:l (5)
with

-

R,)
(6)

[GW’ ]: T"[G”], W]
Gzn+1, 4] Go, 0
[ Gar,0 J = T‘"[G°' °], ®)
Gzﬁ—l, [o] GI, [¢]

with
T(EH ,E)= [Hai ("~ Hoo) ~Hy HIZJ
1 0
[H;; (& - Hy,) -H Hsl] o)
b
1 0

[Hu'(l,{ll)]a8= Z: eii" ﬁ" (¢a(l16)lﬂl¢8(lly
Ry

and

X

where the G,;’s and H,,’s are { X u matrices and
Eq. (9) defines the transfer matrix T. This trans-
fer matrix is slightly different from the one de-
fined in I in that the E* are now complex. This is
discussed in more detail in Sec. IV. An immediate
practical consequence of this, however, is that
half the eigenvalues of T (K, , E*) have modulus less
than 1 and half have modulus greater than 1. This
is true even for energies in the bulk allowed re-
gion.

Consider now &,4(k,,E*), B=1,2,. .3 21 to be
the 2p.- normahzed eigenvectors of T(k, , E*) with
respective eigenvalues AB(k“ , E*). Let us assume
that |As|<1 when 1<B8< p and |A;|>1 for p+1<8
< 2u. In order for the Green’s function to satisfy
(7) and (8) and remain normalizable, one must only
retain the eigenvalues |>xﬁ|< 1 when T is diagonal-
ized in (7) and only retain |As|>1 in (8). This im-
plies that (€ G, o) and (GGZ" ° ) can be expanded in

terms of the &’s with 1< B< pand p+1spBs2pu,
respectively. In particular, we may write

[Gm] - [3271 } (10)
Gyo $1%A

and
[Goo}=[s4?z} 11)
Gio S3¢2
with
(sl)oc‘r = (601 .ér) ’
(Sz)ar = (Got ° Ev) ’ (12)

(Ss)ar = (; .Enu) ’
Sday =T, *e,.,),

where v=1,2,..., 4, andﬁa and?a, a=1,2,...,4
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are 2p-dimensional column vectors with compo-
nents given by (1,); =9, ; and (v,);=5,,, ;. The
L X u matrices g and g, represent the unknown
expansion coefficients. From (10) and (11) these
matrices are related by

#.=51S1 ¢, (13)
Substituting (10), (11), and (13) into (5) we obtain

# = [(E’ - oo) S, - H, S, - Hfzsssglsx]-l (14)
or

Goo=[(E* - Hy)) — Hy,S, 87! = Hy, S, S3' ™. (15)

Equation (15) is isomorphic to the equation one ob-
tains for G, in the effective-field method,**!
namely,

Goo=[(E* - Hyp) - Hyy &, - Hy, @,]7 . (16)

Thus one immediately identifies the effective fields
o, (k,,E)=S5,(k,,E)S (k,, E) amn
and
&,(k,,E')=S,(k,, E)S;*(k, , EY) . (18)

Therefore one is now able to calculate the fields
directly by diagonalizing the transfer matrix T
rather than performing many iterations as in (2).

The surface Green’s function is now obtained at
once from

Go =[(E" - Hyy) - H,, S, 57T (19)
or
G;g = [(E’ - Hoo) - H;z 83821]-1 ’ (20)

depending on which surface one is interested in.
The local density of states is then given in general
by

. 1 P
n,(k“,E)=-; Im[tr G, (k, , E)]. (1)

III. AN EXAMPLE

Let us consider, as in I, a semi-infinite two-
dimensional honeycomb lattice as shown in Fig.
2(a). We assume there is an s orbital on each
atom and that they interact only through first-
neighbor (V, =-1.0) and second-neighbor (V,=-0.1)
interactions. It is also assumed that the s orbitals
are orthonormal.

Since the atoms interact through second neigh-
bors, each principal layer must contain two atomic
layers. This is shown schematically in Fig. 2(b).
Note that there is only one inequivalent principal
layer for the system in this example. Therefore
the matrix elements of the Hamiltonian between
principal layers must have Hy,=H,, and H, =H,,.
The transfer matrix of Eq. (9) then becomes

4@»’0‘»‘0«

FIG. 2. A semi-infinite two-dimensional honeycomb
lattice represented as (a) a system of atoms (black dots)
with nearest-neighbor interactions Vi (thick solid lines)
and second-neighbor interactions V, (thin solid lines).
The atoms along the surface are spaced a distance a
apart. (b) A chain of principal layers (I) for each wave
vector k in the surface Brillouin zone. Each principal.
layer (represented as a rectangle) contains two atomic
layers as shown.

Bulk

e [Ha & o ‘HB{H51] 2 (22)
1 0
with
Hoo=[ Valn+m®) V,(1+1) ] (23)
Vi(L+n%) V,n+n%)
and
Hy = [Vzu a0 ] | »
Vi V,(1+n)

where n=e*? and a is the lattice constant of the
surface line.

The Green’s function at any (k, E*) can now be
calculated directly by diagonalizing T(k, E*). As
noted earlier the eigenvalues of T' will have the
property that two will have modulus less than 1 and
two greater than 1. For example, in Table I we
list the modulus of these eigenvalues at 2 =0 for a
series of energies with 6=0.01. We note that in
certain regions of energy there are two eigenval-
ues with modulus very close to 1. These moduli
actually approach 1 as 6—~0 as can be seen in the
second panel of Table I where 6=10"% These re-
gions of energy define the allowed bulk solutions
as in L.

I we label the two elgenvectors of T with modu-
lus less than 1 by em1 and em2 and the other two by
eaS, eaq, we have from (12)
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TABLE I. The moduli of the eigenvalues {7\,} of the transfer matrix at 2=0 are listed for two values of the imaginary
part of the energy 6 and a series of energies.

6=0.01 6=0.0001
E INE+0)] INME+8)] [ M(E+40)| [N (E+55)| IA(E+i0)]  [A(E+48)]  INgE+id)|  [N(E+46)]
—-4.0 7262.3125 5.4799 0.1821 0.0001 7262.3125 5.4774 0.1828 0.0001
-3.8  6990.3125 3.3631 0.2975 0.0001 6990.3125 3.3619 0.2977 0.0001
-3.6 6721.9766 1.2077 0.8290 0.0001 6721.9727 1.0062 0.996 2 0.0001
-3.4  6457.3165 1.0324 0.9695 0.0001 6457.3125 1.0016 1.00053 0.0001
-3.2  6196.3594 1.0239 0.9780 0.0001 6196.3555 1.00124 1.00078 0.0001
-3.0 5939.1289 1.0198 0.9811 0.0002 5939.1250 1.0007 1.0003 0.0002
-2.8 5685.6406 1.0178 0.9831 0.0002 5685.6328 1.0006 1.0003 0.0002
-2.6 5435.9023 1.0165 0.9843 0.0002 5435.9023 1.0005 1.0002 0.0002
-2.4 5189.9727 1.0160 0.9853 0.0002 5189.9727 1.0005 1.0002 0.0002
-2.2  4947.8516 1.0156 0.9858 0.0002 49478516 1.0008 1.0005 0.0002
—2.0  4709.5742 1.0148 0.9854 0.0002 4709.5703 1.0003 1.0000 0.0002
-1.8  4475.1562 1.0149 0.9854 0.0002 44175,1523 1.0002 0.9999 0.0002
-1.6 4244.6328 1.0153 0.9850 0.0002 42446250 1.0001 0.9999 0.0002
-1.4 4018.0313 1.0150 0.9839 0.0002 4018.0210 1.0000 0.9996 0.0002
-1.2 3795.3696 1.0178 0.9820 0.0003 3795.3589 0.9998 0.999 4 0.0002
-1.0 3576.6851 1.0230 0.9772 0.0003 3576.6743 1.0002 0.9992 0.0003
-0.8 3362.0034 1.1381 0.8785 0.0003 3361.9922 1.0169 0.9830 0.0003
-0.6 3151.3623 2.1865 0.4572 0.0003 3151.3516 2.1860 0.4573 0.0003
—0.4 2944.7891 2.8701 0.3483 0.0003 2944.1773 2.8697 0.3484 0.0003
—0.2  3742.3140 3.3999 0.2941 0.0004 2742.3018 3.3996 0.2941 0.0003
0.0 2543.9687 3.7748 0.2649 0.0004 2543,9557 3.7745 0.2649 0.0004
0.2  2349.7840 3.9731 0.2516 0.0004 2349.7700 3.9740 0.2516 0.0004
0.4 2159.,7847 3.9731 0.2517 0.0005 2159.7705 3.9728 0.2517 0.0005
0.6 1973.9981 3.7458 0.2670 0.0005 1973.9829 3.7455 0.2670 0.0005
0.8 1792.4399 3.2668 0.3061 0.0006 1792.4233 3.2666 0.3062 0.0006
1.0 1615.1157 2.4984 0.4003 0.0006 1615.0986 2.4976 0.400 4 0.0006
1.2 1442.0156 1.1714 0.8547 0.0007 1441.9961 1.0088 0.9932 0.0007
1.4 1273.1001 1.0323 0.9677 0.0008 1273.0786 0.9999 0.9942 0.0008
1.6 1108.2764 1.0298 0.9708 0.0009 1108.2519 1.0001 0.999 6 0.0009
1.8 947.3667 1.0329 0.9691 0.0011 947.3384 1.0007 1.0000 0.0011
2.0 790.0112 1.0392 0.9622 0.0012 789.9775 1.0006 0.9998 0.0012
2.2 635.4756 1.0580 0.9455 0.0015 635.4311 1.0005 0.9994 0.0015
2.4 482.0601 1.4750 0.6757 0.0020 481,9956 1.0716 0.9298 0.0020
2.6 324.6887 13.3688 0.0742 0.0030 324.5581 13.3638 0.0742 0.003
2.8 123.0060 78.0861 0.0123 0.0081 100.2062 95.8268 0.0104 0.0103
3.0 134.4801 126.7525 0.0080 0.0074 130.5884  130.5115 0.0077 0.0077
Cas,s Cap (25) Goolk, E*) =[(E* = Hog) = 2 Hy, S, 7] . (29)

3
’
[ apt 6“2'4] The corresponding local densities of states ob-
tained from (21) are shown in Fig. 3 for a series
Sy= [Cot Capt (26) of energies and surface k points. We note that the
2 ’
€a,,z2 density of states at 2 =0 defines band edges which
are consistent with the allowed bulk solutions in
€y, 3 Table I.  The thin solid lines in the E-vs-% plane
[ . ]’ help define the projected band structure. We also
4 note that at z- 27/3a the gap becomes zero. At
k=m/a the off-diagonal elements of the self-inter-

S,= [e“s'1 e°‘4v1] . (28) action (H,,) of the principal layers vanish so that
e

Ao,

Qg

27

(14,

the system decouples completely into pairs of
atomic layers and the transfer matrix loses mean-
Substitution of (25)—(28) into (15) gives the bulk ing. The density of states is then given simply by

Green’s function. Actually in this example two delta functions at E=-2V,+ V.
H,,S, S = H},S,S7* so that The Green’s function for the surface system is

g,2 ea4, 2
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FIG. 3. Local densities of states of a principal layer
in the bulk honeycomb lattice as a function of energy
and as a function of & parallel to the layer. Each prin-
cipal layer contains two atomic layers as in the semi-
infinite case of Fig. 2. The thin solid curves in the
energy—wave-vector plane define the projected band
structure.

given by Eq. (19). The corresponding local densi-
ties of states for the zeroth principal layer (Fig.
2) are shown in Fig. 4. We note, as in I, that a
surface-state band appears for £ 227/3a. This
state becomes very localized at the surface princi-
pal layer as k=~ n/a. In fact, this state is entirely
localized on the surface atomic layer at k=7/a.

In this case the delta functions at £=-0.8 and 1.2
are bulklike peaks arising from the second atomic
layer. We also note that for & < &n/a there are
relatively strong in-band resonances in the local
densities of states. The resonances lie roughly in
the middle of the two bands occurring respectively
above and below zero energy. These results are
similar to those obtained by Foo et al.'® using a
honeycomb lattice with three sp2-like orbitals per
site and nearest-neighbor interactions.

IV. ANALYTICAL PROPERTIES OF G AND T

The basic strategy in Sec. II was to first intro-
duce a small imaginary part into the energy, which
separated the eigenvalues {xi} of the transfer ma-
trix into two halves with |x|<1 and [r[>1. One
then proceeded to construct the bulk Green’s func-
tion by assuming G, , and G, decay as n ~ o, and
thus choosing each column of the matrices [c ]

1

DOS

4l

&
a - L Ll

7 ENERGY

aly

Lo WOROW

-4 2 0 2 'a&

FIG. 4. Local densities of states for the zeroth prin-
cipal layer of the surface system shown in Fig. 2 as a
function of energy and wave vector k2 in the surface
Brillouin zone. A bona fide surface-state band appears
for k 2 2m/3a near the zero of energy.

and [000] to be a linear combination of eigenvectors
of T with |A|>1 and |x|>1, respectively. The
combination coefficients were then determined by
requiring Eq. (5) to be satisfied. Once the bulk
Green’s function was obtained, one easily identi-
fied the quantities corresponding to the effective
fields and surface Green’s function.

In this scheme, however, there are two impor-
tant points that need to be completely justified.
The first point is that we need to prove the
G,o(k, , E*) and G,o(k,, E*) decay as n—~«. The
second point is that in order for Eq. (5) to deter-
mine the combination coefficients uniquely, the
eigenvalues of T must be divided evenly into
groups with |h|< 1 and Ix]> 1. We need to prove
that this will always be the case as long as an
imaginary part has been introduced into the ener-
gy.

To prove the first point, consider the Lehmann
representation of the bulk Green’s function,

o, £)= 2 T ! "I?E: (k)k“l,

80)

where the |¥,(k,k,)) and E,(%,k, ) are eigensolu-
tions of the bulk crystal.

I we take matrix elements of Eq. (30) with the
basis functions spanning the principal layers as in
(3) and (4) we get

[G2m1,1 szl., 0] = Z Z eikrm [(II\I’M(E»(\IIu(E)Il) (II‘I’M(E))(‘I’u(E)|O)] (31)
G Camod * * E-BB)(olw,(R))w, (0|1 O], @)X, K]0



5002 D. H. LEE AND J. D. JOANNOPOULOS 23

Goniy,i Gany o] a ff/a 1

n+ 1, n+l, - dk eitne . (32)
7 J_, E* _ H(e'*9)

[ Gy Gano /a

where, for the system shown in Fig. 1, H(e**) is given by
H(ei*) = [ H, Hy, “‘e{kale] . 33)
Hy +e '™H], Hy,

Now let us make a standard change of variable from % to w=e** in (32). This gives

[Gzrul, 1 G2n+1 0] 1 f dw wn-l 1 — __1__ d n-1 a'dj [E _H(w)] (3 4)
lwl=1

=35m0 EoHw) 21 K, Y Qet[F —H@w)]

2mi

: Gzn, 1 Gm, 0
where adj(X) is the classical adjoint of the matrix X and X ~'=adj(X)/det(X). By using the identity
A .
det[ B]: det(CAC™'D ~CB), (35)
C D
where A, B,C,D are u X i submatrices, one can easily show that
det]w - T(E)] ==L det[E* — HW)], (36)
det(Hm H, )
where T(E*) is for the system shown in Fig. 1 and thus given by
T(E*) = [H—l A(E* — Hoo)H73(E - H,,) ~ HHy, —HGH(E" - Hy)H}} 01] (37
;Z(E - Hll) ‘HiéHSI
Substituting (36) back into (34) we get
Ganyr Com0) o 1 _ (=1 w1 @ adj[E* - H(w)]
=57 detl, Ay S YY" defu-TE)] (38)
Gzn,1 Gm,o

Similarly we have

Goi 1 Gomn,o 1 (1) f g W adj[E* -H(l/w)]

L B dw w" : 39

[ G G ] 2mi det(Hy Hy,)* Juy, N det[w - T (E")] 39
2,1 27,0

Since w* adj[E* - H(w)] and w* adj[E* — H(1/w)] contain only positive powers of w we may expand them as
follows:

2u
w* adj[E* - H(w)]= Y w*D,(E"), 40)
k=0
o adj[E* = H1/)]= 3> oDy, (B9, (a1)
k=0

ok
Dk(E’) Em

_o{w“ad:i[E‘ - H(w)]}. 42)

Therefore for »n = 1 we have

[?t (E’r)]mk
G n+l, 1 G n+1, 0 (-1) u.i
[ : o } T, ) 4 ZD (& ),,:4?,0 x EDTT [N, ) =, (B°)] (43)
Gzn,1 Gzn,o : i
and
Gami,1 Gane,o (=1)++ % D, ,(E*) Z [A-I(E*)]n’k (44)
[Gzﬁ,1 Gzﬁ,o ] etZH H, )* 2u-k 151151 K-I(E*)H [7\'1(E*) k"l(E*)]
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From (43) and (44) we can see that G, , and G; o
should decay as n—~ <,

Let us now turn to the second point. Consider
the function

F(w,z) = det(w=-T(2)), (45)

where T'(z) is given by (37) with E* replaced by a
general complex number z. From (37) it is obvi-
ous that & is an analytic polynomial in both w and
z. Since the coefficient of the term with highest
power in w is unity, we may write ¥ as

24
F(w,2)=]] [©-2,(2)] (46)
i=1l

where the analyticity of & implies continuity in the
x,(z). We now show in the following argument that
the A;(z) must satisfy |x,(z)|#1 for z not real.
Since H(w=¢) is a Hermitian matrix, its eigen-
values are real and therefore det[z — H(w=¢%)]

#0 for z not real. This implies from (36) that
F(e*, z) cannot equal zero for z not real. Thus
we conclude that all the {,(z)} must have the
property

I (2)]#1 @7)

for z off the real axis. We now proceed to show
that the set {\,(E)} can be divided equally into two
sets with moduli greater and less than 1, respec-
tively. We can easily prove, using arguments
similar to those in I that

Tk, ,2z)=S(k,)T7(-k , ,z)S"M(Kk, ) (48)
and
Tk, ,2)=S(k,)T*(k, ,2%)s(k, ), (49)
where
S(k )= [ 0 ~Hsi (ks ")] . (50)
HE (&) 0

K z is on the real axis (z=E), Eq. (49) implies
that the set {},(E)} is equal to the set {\}(E)}.
Thus there are always equal numbers of X, (E) with
modulus greater and less than one. Moreover, if
E lies outside the bulk allowed energy region all
the ,(E) have modulus greater or less than one.

Since {1, (z)} are continuous and satisfy (47) we
must also have an equal number of A,(z) with mod-
ulus greater or less than unity for z off the real
axis. The proof proceeds by reductio ad absurd-
um. Suppose for some z there are rnot equal num-
ber of A;(z) inside and outside the unit circle.
Then we can consider a path connecting this point
to another on the real axis outside the bulk allowed
energy region. Somewhere along this path eigen-
values 2, (z) must “jump” across the unit circle.

This contradicts the continuity of X, (z) and the
analytic nature of &.

V. CONSTRUCTION OF A UNIFIED SCHEME

The present method re11es on the eigenanalysis
of the transfer matrix T(k, ,E*) with E*= E +46.
The method described in I relies on T(kIl ,E)
where E is purely real. Nevertheless, the two
schemes can be unified completely in two ways.
The first entails forcing E in I to have a very
small imaginary part 6. The projected band struc-
ture, wave function, surface bands, and decay
lengths can then be obtained using the same equa-
tions as in I with negligible error of the order 0.
We note that 0 can be chosen as small as one
wishes without serious instabilities.

The second is more elegant. It involves setting
E* equal to E in the present method. This is ex-
act, as long as we correctly identify which eigen-
values {1k, , E)} of T(k,, E) with modulus equal
to 1 analytically continue to {,(k, , E*)} with mod-
ulus less than 1. In what follows we discuss this
in more detail and illustrate how to construct this
“selection procedure” and determine the effective
fields for real energies.

For any real energy E outside the bulk continum,
the eigenvalues {\,(k, , E)} of the transfer matrix
are always evenly divided into two groups, with
modulus greater and less than one. The Green’s
function is therefore uniquely defined through Eqgs.
(10) and (11). A problem arises, however, when
E lies inside the bulk continum. In this case there
are always an even number of \’s corresponding
to Bloch phase factors ei*¢ which have modulus
egual to one. These \’s correspond to different
Riemann sheets which cross at a branch cut for
this range of energies. In order to identify the \’s
associated with the appropriate Riemann sheet we
construct the following selection procedure.

We introduce a small imaginary part ¢0 into the
energy and examine what happens when we take
the limit 6~ 0. From what we learned in Sec. IV,
none of the {)\i (E +145)} can have modulus 1, and the
wave vectors k(E +40) are now complex. Expanding
the function k(E +46) around E, we get

ikE+idla _ ,ik(E)ay=6a(d3r/3E) (51)

e

I we let A=X;+i\g, the 8k/8E =23l 8),/8E and the
modulus of ¢i*®*i® jg

| = |pikE+ib)a| _ ,~abAR (), / 3E)
NE) | = e 2 gmidmm (5p)

From (52) we can see that only the A (E) with

A7 8),/9E > 0 can analytically continue to the A(E*)
mth |AM(E")|<1. Therefore, these A(E)’s with mod-
ulus 1 correspond to the appropriate Riemann
sheet for the Green’s function in (34). This selec-
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tion procedure only requires knowledge of Az (E)
and 81,(E)/9E at the real energy E.

We can calculate 9,/9E exactly using the trans-
fer matrix T by

2 E) - (500 7ew), (53)

where E()\) is the corresponding eigenvector with
eigenvalue X, and 87/3E is given by

T [HBiné(E - Hy,) +H (B - Hoo)Hy3
9E

—brlfzﬂ*]
H, 0
(54)

Therefore

a;sg—;ﬁ %E) (e(x) e(x)) (55)

Equation (55) is easily evaluated since it only re-
quires knowledge of the transfer matrix T(kIl ,E)
and its eigensolutions at real E. The sign of (55)
then identifies with X’s with ]h(k" ,E)| =1 should
be used in (12), (17), and (18) with E*=E real.

The effective fields &,(k, E) and ‘I’z(ku ,E) are
therefore now evaluated, exactly, at real energies.
One should, however, retain a very small imagi-
nary part 6 in the E* [shown explicitly in (19) and
(20)] for the surface Green’s function, in order to
account for possible states (described by poles)
existing outside the branch cuts of the bulk contin-
uum.
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