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A simple, eAicient scheme for calculating the electronic structure of a surface is presented. The scheme is

applicable to any general Hamiltonian that can be described within a localized-orbital basis. The method is much
faster than the current techniques available. The basic concept is that of wave-function matching through a transfer
matrix. The eigensolutions of this matrix then provide all the information concerning the projected band structure,
surface-state energies, orbital character, and decay lengths. A rather detailed discussion of the formalism is

presented for a general surface system. A comprehensive and illustrative example is also presented for readers who

are interested in using the scheme but not in the details of the theory.

I. INTRODUCTION

During the past decade there have been many
methods developed for calculating surface states
with Hamiltonians based on localized orbital rep-
resentations. ' Three very successful. techniques
include the "slab method, "' ' the "effective-field
method, "6 and the "Slater-Koster method. "
The first approximates the surface system as a
slab and generally requires rather large matrix
diagonalization. The latter two treat the semi-
infinite surface system and involve Green's-func-
tion formalisms. They are rather time consum-
ing, involving self-consistent continued-fraction
expansions and bulk Green's-function calcula-
tions, respectively.

In this paper we introduce a simple and effi-
cient scheme that complements these methods
for calculating surface band structures. It gives
the projected band structure of the bulk crystal
and the dispersion curves, character, and decay
lengths ot surface states. The method is con-
ceptually simple and not very time consuming.
Test calculations" on identical surface systems
with the aforementioned techniques indicate that
our scheme is, in fact, faster by about an order
of magnitude.

The essential idea of our method is rather
trivial: Generate wave-function matching condi-
tions to solve for the eigenstates of the system.
This can be done very effectively using transfer-
matrix techniques. The transfer-matrix approach'
has been used successfully with various Hamil-
tonians involving plane-wave-like basis func-
tions. '~" With these Hamiltonians the transfer-
matrix links (though a partial integration of the
SchrMinger equation) the wave function and its
derivative across any region. The problem
simplifies considerably, however, for localized-
orbital Hamiltonians. One can now define a trans-

fer matrix that directly links the wave function on
pairs of neighboring layer orbitals. The, eigen-
values and eigenvectors of this transfer matrix
then provide all the information necessary to cal-
culate the electronic structure of the system.

The format of this paper is as follows: In Sec.
II we discuss the basic formalism of our method.
This is done for a general surface system and is
rather detailed. It includes a discussion of the
bulk crystal, the ideal surface, the relaxed sur-
face, and the reconstructed surface. For the
reader who is not interested in the specific de-
tails of the general formalism we have included
a self-contained sample calculation in Sec. III.
This provides a step-by-step example, illus-
trating the use of the method. Finally in Sec. IV
we make some concluding remarks.

II. FORMALISM

A. Bulk crystal

Consider a three-dimensional crystal. We wish
to think of it as an infinite stack of principal
layers. A principal layer is defined as the small-
est group of atomic layers such that only nearest-
neighbor interactions between principal layers
exist. The periodicity parallel to the layers fur-
ther reduces the system to that of noninteracting
one-dimensional chains. (There is one chain for
each wave vector k„along the layer. ) This is
shown schematically in Fig. 1(a), where the cir-
cles, triangles, squares, etc. , represent inequiv-
alent principal layers. The interactions between
neighboring principal layers are also, in general,
different. The principal layers can form ape~iodic
array of "superlayers. "" This is shown in Fig.
1(b). Let us now assume there are p, "layer or-
bitals" in each principal layer and nz principal
layers in each superlayer. The Bloch state of
any orbital (II}, in any principal layer L, in any

4988 1981 The American Physical Society



SIMPLE SCHRME FOR SURFACE-BAND CALCULATIONS. I 4989

kI g

(b)
k„

(4a)l+2, l

1 0
Bulk

t

2 0

Bulk

(4b)
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FIG. 1. Schematic representation of (a) an ideal bulk

crystal as an infinite one-dimensional chain for each

k() The circles, triangles, squares, etc ., are different
principal layers. The indices E and L are for principal
layers and superlayers, respectively. (b) An ideal bulk

cyrstal in terms of superlayers shown as circles.

superlayer L is given by

y. ..(f„)= g e&" ' y„(l-, f, R„),
N„R

where + =1, ... , p, , l =1, .. ., m, and R, is a lat-
tice vector. The total wave function for the sys-
tem is then

4'(f„,E)= Q [C~~(k, E)] P~, (f„). (2
L, l, e

The Schrodinger equation can then be written as'

C~ C~
l+2 tI, L l+1

l+2, l

C„, C,

and

CLyl
1 tI y1» Ii

1 m-1
c~

CI,+1
tL+1, I

2& m

CI+1
1

CL

CLm-1

CL+1

(sb)

(sc)

where the C~~ are column vectors of length p, . The
transfer matrices t, ', , are given by the following
expressions. The "intrasuperlayer" transfer
matrix is

where the matrix element of the Hamiltonian be-
tween states g~, (f„) and g~, &(f„) is given by

[H~~ pm(f, )],~

O' '
'I

~ L1tl1t H y L2tl2t RI( e 5

From Eqs. (4) we can construct a composite trans-
fer matrix T, which links two adjacent principal
layers in one superlayer to the two corresponding
principal layers in the adjacent superlayer, for
example,

CI+1 CI.
TIyl, g t (6)

CI +1 . CI
1 ~Sl1

where

T = (t~" ~t~" ~) 1 t ). ~ ~
s3

N'ow in a crystal we must have H 1 2=H 1+ I2+
l1e l2 l» l2

therefore T~„~=T~~ ~, = ~ ~ ~ -=T and

C2 T~ C2

C& C,'
Substituting (2) and (8) into Eq. (2) we get

j ll Col%
(k E) Q I Q Iu~. Tz. II i.r,

I~ ~ &(n~& IIE i3 Co&I

~ C2+ +eT
4g, .o

1

, c
+0, &~ ' g~, g l, (9)

where Q and v&, p =1, .. . , p, are 2p, -dimensional
column vectors with components given by (~),
=6&, and (v&), =5&,. Thus 4'(f„, E) is determined

completely from a knowledge of the C' vector on

neighboring principal layers 1 and 2."
The composite transfer matrix T is the key

quantity of the present scheme. It contains the
information about the bulk projected band struc-
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ture, the eigenenergies of surface states, their
character, and decay lengths. The rest of this
section is devoted to extracting this information
from T.

The composite transfer matrix T has a very gen-
eral and interesting property. It can be easily
proved from Eqs. (4) and (7) that

trix T with eigenvalues ]((). Then it follows from
(9) that

fx)(f ((E)) =Q AN X (]). , k,), E),

-+2', l (10)

OO tS tg

x(x., u,„,(()= Px: F, 11(;;,a )(,.„,I~- =l e-"3 l =3

-a"
1~ 2

This implies that if X is an eigenvalue of T then' is also an eigenvalue of T.
Consider now e~(k„E), P =1,.. . , 2p to be the

2p-normalized eigenvectors of the tx ansfer ma-

+(us "a )Xs, s+(vs. 's )0

(e, .e,)" (e, F) ~ ~ ~ (e, e~)

0 0

(]r ae ).~ a((m' sF) aas(e se )

(e, ~ K, ) ~ .~ (e, .e„) ~ ~ ~ (e, ~ e~)

(e .e,) ~ ~ ~ (e -e ) ~ ~ ~ (e e )

fn Eq. (11) only the o('s 'with
~

]).„(E)( =1 are in
eluded in. the summation because the C, and C,
are chosen to give A =0 when ~](.

~

01. This
guarantees an extended and normalizable solution.

The projected band structure is therefore ob-
tained by diagonalizing T(k, , E) for a given k„and

t

a set of energies S. The allowed bulk solutions
are then obtained if there exists at least one at

such that ~AO(E)~ =1. This procedure allows for
an accurate determination of the projected band
edges without the need for diagonalizing the bulk
Hamiltonian at many k, 's.

8. The ideal surface

%'e define an ideal surface as a sudden truncation of an otherwise perfect crystal. It can be represented
schematically by a semi-infinite chain as shown in Fig. 2(a). For simpbcity, we have assumed that the
surface is in the j.st principal layer of the 0th superlayer. Proceeding as before we can write the total
wave function for the surface system +,(k, ; E) as

u(x» x)= F 2 I Q I(us'& ]I(.- .) x . .sI+ (us'x; )xs .s+(vs'x )'4. .sl . (14)

In terms of the eigensolutions of T we again obtain

~,(k„,E)= g ~„~.(]., k„,E),

x)O 1
x(x., X„,x)= Q x.' Q u, ] [(ss, s. Xu„s + (sX, a.)X.,.ss (v, ().)X. ., sI.I' =0 g=l n= ( 1=3
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the A ' s can be determined by substituting (18)
into (IV). This gives
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If Z is within the bulk region, then (19}gives the
coefficient A for the resonant or extended states
in the system. If E is in the gap then there are
only p values of I g l

&
l
and Eq. (19) must be con-

ditionally satisfied. That is, a solution exists
only if

det[(Z, a,",)S, -a,",S,]=O,

FIG. 2. Schematic representation of (a) an ideal semi-
infinite crystal, where the surface termination occurs
at the 1st principal layer of the 0th superlayer. (b) A
relaxed surface, where the relaxed principal layer is
represented as a diamond and the triple line indicates
a relaxed interlayer coupling. (c) A reconstructed sur-
face for each k„shown as a system of coupled unrecon-
structed ideal chains with wave vector k~, +0. The inter-
chain coupling is only through the 1st principal layer.

In order to obtain physically meaningful and norm-
alizable solutions, we must restrict the summa-
tion in (15) so that l)., l

1.
The Schrodinger equation at the surface is given

by
where

1
I la(k„, z,) l.,„

where

[S,(k„,z)],=[v, ~ e (k, E)],
[S,(k„Z}].,= [u. e, (k,„Z].

This equation then determines the bona fide sur-
face states of the system. The allowed surface-
state energies can then be substituted back into
Eg. (19) to solve for A, ' s, and the A 's can in
turn be substituted into Eq. (13) to get the orbital
character. The decay length of any surface state
with energy E, (in units of superlayer spacing) can
be obtained from

Since l~l. ™~(l~.
l

. ~ ~ I~. l). (23)

C. The relaxed surface

For a relaxed surface the symmetry remains unchanged and is the same as in the ideal case. The sys-
tem therefore can again be represented as a semi-infinite one-dimensional chain as shown in Fig. 2(b}.
The only difference is that now the 0th superlayer is not equivalent to all others. In terms of the transfer
matrix this means

~1 ~1,0 2, 1 3g2 2 ~

The total wave function 4', „(k„,E) is now given by
N C- 1 1

+8.~(k~»z}= Z Zl Q us'T2 ' ] [tr'r 2x .. 4z~a +l uN'Ta x l&z„2 e+ v~'T.~ x l&r. ,xsl
S=l /=I L tlat 1=3 1: ( I i ' '

Z I ' ' j

(24)

In terms of the eigensolutions of 72 we can write

+, ,(k,„z)= g A. q, „(x,),
a, )&fg~4 1
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where
OO n

u. „(e,) = Q e„*et fl u, lie, , , e, 'g, „, ~ (ue e )eu„e+, ( , e, )s. . .}L =1 /=1 n=3 l=3

m ~u

fl[el", , ee„g, „, ~ (ue e e„)y. . +eave r e„)p. .eI.
g =1 n=3 =3

(26)

0- 1-
C2 C2

1
co

1 1
C1

(27)

we obtain

(28)

Since this wave function is determined through the
vector C' it is convenient to transfer the surface
boundary condition (17) into the 1st superlayer.
Using

I

This can be simplified, however, in the case
where the surface states of the unreconstructed
system are very localized. Now the coupling be-
tween a surface state at k, + G and a bulk con-
tinuum state at k„+ 6' is very small. Thus the
eigenstates of the reconstructed system can be
divided into those which derive purely from gap
states and those which derive purely from bulk
continuum states. Since our main interest is in

the behavior of surface states under surface re-
construction we may write

1-
C2 2 a

t3' i)tll» 1 ~P
' e~

and (28) becomes

Now, from (25) and (26) we have

(28)

+, „c(ki,E) = Q Cg +,"(k„+G), (33)
C, e

where +;(k„+G) is the n'" gap state of the k„+ G
chain, and 4', „c(k,E) is the total wave function of
the reconstructed system. Substitution of (33) into
the Schrodinger equation for the reconstructed
system then gives the required secular equation.

[( H" (E-H"))T '] P A-. —' =0.
~, l) I=1 ~P

~ e„

(30)

The condition for allowed surface states is then
given by

III. AN EXAMPLE

In this section we are going to illustrate the use
of the techniques described in this paper by cal-
culating the surface properties of a simple and in-

det[(E, „-H",) T S, H,",T S,]=0.
The solutions of Eq. (31) can again be substituted
into (30) to determine A„' s and the orbital charac-
ter. The decay length of any surface state with

energy E, , is again obtained from (22) and (23).

(b& k g I

D. The reconstructed surface

(k„E)= Q Cy(E')@,(k„+G,E') (32)

When a surface undergoes reconstruction, the
surface unit cell is enlarged. Consequently, the
1st Brillouin zone of the surface becomes smaller.
Thus each k„chain in the new zone must be coup-
led to all other k + G chains in the old zone.
(Here G represents a reciprocal-lattice vector of
the reconstructed surface. ) This is shown schem-
atically in Fig. 2(c). As a result of this coupling
the eigenstate of the reconstructed system char-
acterized by k, will be a linear combination of all
the eigenstates of the unreconstructed k, + G
chains. Therefore

unit ce 2

,

Bulk Bulk

FIG. 3. (a) Semi-infinite two-dimensional honeycomb
lattice with the surface line indicated by dangling bonds.
The unit cell for this semi-infinite system is also
shown. The atoms interact through Vi and V2. (b)
Schematic representation of the honeycomb lattice as a
one-dimensional chain, where the circles are atomic
layers, and the squares principal layers. l and L are
principal and superlayer indices, respectively.
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structive system. Consider a semi-infinite two-
dimensional honeycomb lattice as shown in Fig.
3(a). For simplicity we assume there is. only one
s-like orbital on each atom. Vfe further assume
there are only 1st neighbor (V,) and 2nd neighbor
(V,) interactions between the atoms. The 8-like
orbitals are taken to be orthonormal.

In what follows we will set up the transfer ma-
trix g, obtain the projected band structure, cal-
culate the surface bands, and find the wave func-
tions and decay lengths of the surface states.

A. The transfer matrix

To set up the transfer matrix we must first
identify the principle layers which only interact
through nearest neighbors. Since the atoms inter-
act through 2nd neighbors, each principle layex
must contain two atomic layers as shown in Fig.
3. %'e may now define superlayers which will
contain two equivalent principle layers" as shown
in Fig. 3(b). This is useful since the transfer ma-
trix g couples adjacent superlayers.

There are two s-like orbitals in the unit cell of
each principle layer. Therefore the Bloch-state
basis function for the Eth principle layer of the
I.th superlayer is given by a two-component vec-
tor:

(y) &i ann

S,(L, l, nu)

s,(1., f, ns)

The total wave function is then given by

e(a, E) = g [c', (A, E)II, , (k)]

where the coefficients C~ are two-component col-
umn vectors, The transfer matrix T(k, E) is de-
fined from

(35)

Co

=T'(u, E) (36)

where g is a 4x4 matrix. The components of T
are obtained from the matrix elements of the Ham-
iltonian between principal layers. Thus

T(O, E) =

' a (E ff,)H (-E a,) II -If,' -a(E --ff,)If If,' '

a (E -a) (37)

where IIO is the interaction of a principal layer
with itself and 8 is the interaction between ad-
jacent principal layers. They are given by

V,(t)+q*) V,(1+ I))
Ho=

V,(1+q*) V,(I)+I)*)

V,(1+I)) 0

I

ation for several k points we obtain the projected
band structure shown in Fig. 4(a). We are now in
a position to search for the surface states in the
gRps,

C. Surface bands

The allowed energies of surface states for a
glvell k RI'8 obtained fl'0111 (3) by sRtlsfylllg

V, V(1+q) det[(E, -If,)S, -Z, S, j = 0, (40)

where q = 8'~' and a is the lattice constant in the
surface line.

B. The projected band structure

TABLE I. The eigenvalues of T for several energies
.at )) =o.o. Note that II, I =I&,l

' and l&zl =IIII '.

I&, (&)l I) (E)I I& (&)I I& (E)I

The projected band structure can immediately
be obtained from a knowledge of the eigenvalues
of T(k, E) As shown i.n (10) the eigenvalues will
alwRys fall ill'to two gl'oups: tile set [X) Rlld

(X* '} . A bulk solution will be allowed at ()t, E)
if any I x()i, E)l =1.

As an example, in Table I we have listed the
modulus of the eigenvalues of 7 at k=0 for a ser-
ies of energies. Ne have chosen V, = —l.0 and

V, = -0.1. Notice a gap is clearly visible within
0.8 Rnd 1-2 Note Rlso thRt 1n this reg1on two

I )tl &1 R «wo I~I » performing a»mil» oper-

1.5
1.4
1.3
1.2
1.1
1.0

-0.6
-0.7
-0.8
-0.9
-1.0

1 y 1

1190.1611
1273.0781
1357.0171
1441.9956
1528.0203
1615.0960
3151.3489
3256.1641
3361.9915
3468.8291
3576.6724
3685.5160

1.0
1.0
1.0
1.0
1.9667
2.4975
2.1858
1.7605
1.0
1.0
1.0
1.0

1.0
1.0
1.0
1.0
0.5087
0.4005
0.4574
0.5670
1.0
1.0
1.0
1.0

0.000 84
0.000 79
0.000 74
0.000 69
0.000 65
0.000 62
0.000 32
0.000 31
0.000 30
0.000 29
0.000 28
0.000 27
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(I) 4 (b) In Table II we list various values of the deter-
minant in (40) for a series of gap energies at
j'p=0, s/2g, and -s/tt. We noticethat no surface
state can be identified at 0 =0 and s/2a. Near v/+,
however, we obtain a surface state where the tdet (

=0 at E,=0.2. Performing a similar search for
many A points, we obtain the surface band shown
in 4(b)."

Note at 0 = s/s the outer atomic surface layer is
decoupled from the rest of the system. Conse-
quently, the transfer matrix is not defined. The
energy of the surface state is then given exactly
by E, = V2(q+ q*) = 0.2.

D. %ave function and decay length

From (35) and (36) we can write

FIG. 4. |a) Projected band structure of the system
shown in Fig. 3, where the energy is plotted in units of
IVtI. (b) A band of surface states is found for k 22m/ss
for energies near 0.2.

where

ee e8 ea es
3 3 1 1

81= e 8

e ea 8 e2 e2

Here e, , e,", . .. , e," and e„e„.. . , e, are the
components of the u and p eigenvectors of 7
which have [ &„I

& 1 and (
A.qI & l.

(41)

0 =0.0
IdetI

4 =7t./2a
Idet I

k -~/a
IdetI

1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

-0.1
—0.2
-0.3
-0.4
-0.5
-0.6
-0.7

1.222 22
1.61147
1.955 60
2.267 96
2.549 99
2.799 85
3.014 87
3.192 13
3.329 25
3.424 38
8.476 30
3.484 32
3.448 12
3.36734
3.241 33
3.06828
2.843 61
2.556 61
2.175 67

0.682 19
1.043 06
1.305 26
1.460 35

.1.562 81
1.592 11
1.539 04
1.890 10

0.022 97
0.021 43
0.01908
0.01692
0.01442
0.01179
0.009 03
0.006 14
0.003 17
0.000 00
0.003 24
0.006 20
0.010 15
0.018 70
0.017 50
0.021 80
0.02497
0.028 86
0.032 66

TABLE II. The deterIninant in Eq. (40) as calculated
for several. energies at k =0.0, m/2a, and 0.99m/a.

(43)

where the four coefficients A.„are given by (13).
Note, however, that in (43) two of the A„'s with

I
A.„I)1 must be identically zero for a meaningful

solution. This leaves the other two A. 's to be
determined by (19) and (21) with

A,
[(z, -rf, )s, -If,s,] „

The C', and C', are then obtained by inverting (13).
In Table III ere show the normalized orbital

character of several surface states at (k, Z, ),

(44)

TABLE III. The energy, character, and decay length
(in units of superlayer spacing) for various surface
states. Charge-density projections are given in the
character column, vrhere E„stands for the nth atomic
layer in the Eth principal layer,

Character

12 2i 22 Decay length

0.720
0.765
0.810
0.855
0.900
0.945

0.273
0.258
0.284
0.220
0.210
0.208

0.565
0.633
0.749
0.834
0.910
0.971

0.004
0.003
0.008
0.002
0.001
0.000

0.428
0.862
0.248
0.164
0.089
0.029

0.003
0.002
0.001
0.000
0.000
0.000

3.16
1.55
0.95
0.68
0.43
0.28

(42)

where C, and C', represents four unknowns to be
determined. In terms of the eigensolutions of T'

we obtain

(
e(k, z, )= g g I(y, „|),,}
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where (40) is satisfied. The decay length (in units
of superlayer spacing) of each surface state is also
listed. These are obtained directly from the eigen-
values of T(k, E, ) with maximum modulus less
than 1 as in (22) and (23).

We note that the surface states are primarily
localized on the 1st atomic layer of each principal
layer. This is a consequence of F, being near the
self-energy of an atomic layer [i.e., V,(q+q*)j.
For a one-dimensional system of atomic layers
the nodal structure of the state near this energy
is of the form (+, 0, —,0, +, . . . ) with a wavelength
close to the superlayer spacing. Note, in addition,
that as 0- m/a the surface state is approaching
complete localization on the surface layer as dis-
cussed earlier.

Surfaces
nth-neighbor interactions
1st 2nd 3rd

bcc (100)
fcc (100)

2N 4N

fcc (111) 2N 2N

Diamond (111)
Diamond (100)

2N 4N 6N

Diamond (110) 4N 8N 8N

TABLE IV. The size of the transfer matrix T for
various representative elemental surfaces using N basis
orbitals per atom and up to 3rd neighbor interactions. .

IV. CONCLUSION

We have presented a simple and efficient
scheme for calculating surface band structures
with Hamiltonians described within localized or-
bital basis functions. The specific advantages of
this technique are the following.

(1) It is conceptually simple, avoiding Green's
functions and placing the bulk solid and a surface-
terminated solid on an equal footing. This is par-
ticularly appeal, ing from a pedagogical point of
view.

(2) It saves a considerable amount of computa-
tional effort as compared to techniques presently
available. The matrices that need to be diagonal-
ized are smaller than those in slab calculations.
This difference in size overcompensates the lar-
ger number of diagonalizations needed in this
scheme. Moreover, time-consuming calculations
of bulk Green's functions or effective fields are
avoided. An example of typical matrix sizes of 7
for a few representative low-index surfaces is
given in Table IV.

(3) It is accurate in the sense that no approxi-

mations have been made in constructing the quan-
tities required in the main formalism. The Sla-
ter-Koster method, for example, requires know-
ledge of the bulk Green's function which is obtained
by integrating over a finite grid of %~'s.

(4) Once the T matrix is obtained for a given
solid it need not be calculated again for studying
surface relaxations, reconstructions, or inter-
faces between surface systems. In this sense it
is as efficient as the Slater-Koster scheme or the
effective-field approach.

(5) The decay lengths and orbital character of
the surface states are direct by-products of the
method.
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