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A self-consistent linear-combination-of-Gaussian-orbitals band-structure calculation for paramagnetic chromium
employing a local exchange approximation has been performed. The density of states, Fermi surface, and x-ray form
factors have been obtained and compared with available experimental data. New interpretations of some of the
neutron scattering data are made, with good agreement in general for all the data. The Compton profiles and the
optical conductivity have also been obtained using the full matrix element K dependence in Brillouin-zone
integrations. Comparison with experiment is made for both, and correlation with experiment is good if appropriate

angular averages or lifetime effects are included.

I. INTRODUCTION

The electronic structure of chromium has been
under intensive investigation for a number of
years, stimulated by the special magnetic struc-
ture which exists in the ground state at tempera-
tures below 312 K. A spin-density wave of wave-
length incommensurate with the observed x-ray
lattice structure exists either in the form of a
transverse or a longitudinal standing wave.

Theoretical models have been proposed and
band-structure calculations performed to explain
the structure of chromium. While Overhauser
first investigated the existence of spin-density
waves,' Lomer was the first to use Fermi-surface
models to explain antiferromagnetic order in the
ground state of chromium.? Employing energy

ronsiderations and the susceptibility function,
x(q), the possible formation of spin structures
may be related to topology of the Fermi surface
of a paramagnetic metal.**

In chromium, it is probable that X(q) takes on a
maximum near a value of q=(21/4)(0, 0,0.96),
where a is the lattice constant, as a consequence
of “nesting” between portions of the electron
“jack” at T and the hole octahedron at H in the
Brillouin zone (BZ). This well-known bit of Fer-
miology has been deduced from several experi-
ments, referenced below, but has been examined
only approximately in theoretical studies. The
special topological conditions which in general can
lead to singularities or maxima in X(q) have been
carefully analyzed for different Fermi-surface
geometries by Roth et al.> Topological effects
alone may not lead to proper predictions, since
matrix-element effects can be strong.® A detailed
numerical evaluation of X(q) is needed to make ac-
curate statements about the spin-density wave in
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chromium, but several theoretical papers lend
support to the nesting interpretation in chromium
without benefit of susceptibility studies.™*! Gupta
and Sinha performed a numerical calculation of
x(q), but the accuracy of their study is in doubt
because of lack of self-consistency in their aug-
mented-plane-wave (APW) energy-band calcula-
tion.® Numerous studies indicate that both self-
consistency and exchange have strong effects in
the band structure of noble and transition met-
als.®!1-15 This is made very clear in the case of
chromium by the Fermi-surface figures in Ref. 11.

The accuracy and speed of various methods of
energy-band theory have improved over the years
since the very time-consuming work of Gupta and
Sinha. More efficient methods of evaluating X(q)
are now available,'®'" and alternative theoretical ex-
pressions for X(q) have been derived.’*2 A new
evaluation of X(q) incorporating these develop-
ments is warranted.

One of the purposes of this calculation is to pro-
vide an accurate band structure for paramagnetic
chromium to serve as input into a calculation of
x(q). What is needed is a self-consistent band
structure including exchange which gives an accu-
rate account of available experimental data and is
also suitable for use in the calculation of X(q).

The linear-combination-of-Gaussian-orbitals
(LCGO) method employed here has been developed
over a period of years by these authors and others
and applied to a number of crystals.???¢ Of par-
ticular interest here are transition-metal energy-
band calculations which have been done with the
latest version of these computer codes and in
which it has been shown that an understanding of
the magnetic and electronic structure of 34 transi-
tion metals is possible. The important considera-
tions are self-consistency, accurate treatment of

4977 © 1981 The American Physical Society



4978 LAURENT, CALLAWAY, FRY, AND BRENER 23

crystal potentials, an appropriate choice of ex-
change potential, and a manageable calculational
procedure which provides wave functions in a con-
venient form for further applications. The LCGO
procedures used in earlier computations for
chromium,'®!! have been improved by the addition
of f orbitals to the basis, improved convergence
procedures for lattice sums and a more accurate
calculation of the Fourier transform of the ex-
change potential. This paper reports a calculation
for paramagnetic chromium which has the same
accuracy as recent LCGO studies of vanadium,®*
nickel,® and iron.

The self-consistent band structure reported here
is employed to determine x-ray form factors and
the Compton profile is computed and compared
with earlier theoretical results as well as with ex-
perimental values. A computation of the optical
conductivity is then presented, including the full
k dependence of momentum matrix elements.

A substantial body of data has been gathered for
chromium, usually in regard to an antiferromag-
netic state. This includes crystal-structure mea-
surements,?” magnetic-form-factor determina-
tions,?®% optical studies,* "% neutron scattering
studies of phonons,*-% Compton profiles,3** x-
ray form factors,*"* magnetic susceptibilities and
other magnetic field experiments,* %" and investi-
gation of the effects of alloying upon the properties
of chromium.3?* This list of references is not in-
tended to be complete, but should serve as a good
introduction to the literature in which additional
pertinent references may be found. Caution must
be observed in relating theoretical band structures
to measurements since some of the experiments
were done on multiple spin-density-wave crystals,
while the theoretical studies have been done most-
ly on an assumed paramagnetic structure. Never-
theless, it becomes clear below that a reasonable
correlation exists between experiment and theory
in its present form.

The remainder of this paper is organized as fol-
lows. The method of calculation is presented and
the band structure is given in Sec. II. The Fermi
surface is presented and interpreted in terms of
various experiments in Sec. III. Compton profiles
and x-ray form factors obtained from the band
structure are compared with experiment in Sec.
IV, and the optical conductivity is discussed in
Sec. V. Section VI contains concluding remarks.

II. BAND STRUCTURE

The technique of calculation used here is re-
viewed in Ref. 23, and is the same used in recent
work on transition metals.?*?*® The Gaussian-or-
bital basis consisted of 13 s-type, 10 p-type, 5 d-
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type, and 1 f-type orbitals. The s, p, and d orbit-
al exponents were obtained from the atomic wave
functions of Wachters,* and the f exponent was
assigned the value 0.9 (a.u.)2. The lattice constant
was taken to be 5.4456 a.u.

The initial charge density was a superposition of
neutral-atom charge densities generated from
Wachters’s wave functions®® with a configuration
3d°4s. Two different sets of calculations were
made: One employed the Kohn-Sham-Gaspar
(KSG) exchange potential®®; the other used an ex-
change correlation potential given by von Barth
and Hedin (VBH).?' The iterative cycle was re-
peated until the change in the leading Fourier co-
efficients of potential was less than 107 rydberg,
a total of 24 iterations in this case. During these
cycles the charge density was obtained from a 140-
point sampling in the irreducible wedge of the
body-centered-cubic Brillouin zone, which is &
the volume of the first BZ. The final band struc-
ture was generated at 506 points in the wedge.
This permitted accurate evaluation of the density
of states with the linear-analytic-tetrahedron
method.’

The band structures which resulted from these
calculations are quite similar. The main effect of
the use of the VBH exchange correlation is to shift
the entire band structure almost rigidly to lower
energies by about 0.15 Ry in comparison with those
obtained from the KSG potential. Secondarily,
there is an overall compression of the band struc-
ture by about 8 mRy.

The calculated (KSG) band structure is shown in
Fig. 1(a) along symmetry directions; representa-
tive energy differences are listed in Table I in
comparison with earlier calculations. Fig. 1(a)
resembels several of the earlier results for para-
magnetic chromium,®*? except that levels near the
Fermi energy at N appear to be very sensitive to
the form of potential as well as the exchange ap-
proximation. The calculations which can be most
closely compared to this work are shown in Table
1.5-8.10.11 1 Ref. 7 Asano and Yamashita applied
the Green’s-function method to the para- and anti-
ferromagnetic phases of chromium. Their self-
consistent calculation included an X@ exchange po-
tential with @ =1 and an additional correlation cor-
rection. A recent band-structure calculation for
a commensurate antiferromagnetic phase has been
reported by Skrivers? who employed the same VBH
exchange correlation potential used in this work.
In Ref. 6 Gupta and Sinha reported an augmented-
plane-wave (APW) band structure obtained with an
Xa exchange with @a=1. They did not iterate their
potential to self-consistency, and, unless they
made an inspired choice for their potential, com-
parison with the present results is not expected to
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FIG. 1. (a) Energy bands in chromium (KSG potential) along lines of high symmetry. (b) Comparison of the KSG
energy bands with angle-resolved photoemission data. The bands from N to H have been folded back over those from
T to N as an approximation to the antiferromagnetic bands. The solid curves are states of ¥ symmetry and the dashed
curves are states of G symmetry. Reference 53 is represented by X (75° angle) and o (15° angle).

be quantitative. Yasui et al.® employed a combina- The importance of improvements made in the
tion of tight-binding and orthogonalized-plane-wave LCGO method since the earlier calculation of Rath
(OPW) methods in self-consistent calculations for and Callaway'® can be seen by comparing their re-
two different Xa exchange parameters, @ =1.0 and sults directly in the table. It is thought that the
a=0.725. They found @ =0.725 gave the best additional variational freedom in this study ac-

Fermi-surface and spin-density wave parameters. counts for most of the differences. The s and p
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TABLE I. Selected energy differences (in Ry) for paramagnetic chromium.

Present Present

(VBH) (KSG) Ref. 11 Ref. 10 Ref. 7 Ref. 6 Ref. 8
Ep-T, 0.5599 0.5678 0.7143 0.536 0.5175 0.624 0.500
Ty~ Ty 0.6364 0.6454 0.8210 0.6102 0.5785 0.709 0.569
Typ~ Tyge 0.1440 0.1431 0.1715 0.1590 0.1332 0.136 0.145
Ty — Ty 0.4924 0.5022 0.6495 0.4513 0.4453 0.573 0.424
Hys—Hjyy 0.4801 0.4877 0.6620 0.4812 0.4848 0.523 0.467
Hys~ T 1.3201 1.3201 1.3723 1.2644 1.330 1.097
Hog— Ty 0.2387 0.2411 0.3166  0.2670  0.2341 0.238 0.298
Tyy~Hyy 0.3854 0.3897 0.5168 0.3730 0.3840 0.421 0.314
P3—Py 0.2719 0.2748 0.3813 0.2670 0.2505 0.300 0.227
Ny—Ny 0.1407 0.1444 0.2089 0.1234 0.1327 0.170 0.109
N3—Ny 0.5156 0.5235 0.7132 0.5302 0.5025 0.558 0.498
N;y—N(2) 0.0228 0.0226 0.0343 0.0211 0.0201 0.024 -0.011
Ny ~Ny -0.0224 -0.0314 -0.1876 0.0115 0.0531 -0.109 0.074
N3g—Ny 0.1219 0.1340 0.3303 0.1087 0.0498 0.215 0.069

basis was expanded and f orbitals were added. The
position of the p-type state, N;, was influenced the
most. Note, however, that this position is highly
dependent upon the exchange potential chosen (see
Table I), leading to more disagreement concern-
ing the relative positions of the states N,, Nj, and
N,.

The width of the occupied portion of the d bands,
measured by Ep — H,,, is 4.25 eV for the KSG
bands and 4.20 eV for the VBH bands. The corre-
sponding total occupied bandwidths (E, — I'}), 7.72
eV and 7.62 eV, are slightly larger than the width
of about 7 eV found by Johansson et al.%® using
angle-resolved photoemission. The total bandwidth
including unoccupied states as determined from the
H,.- H,, difference is 6.63 eV (KSG potential) and
6.53 eV (VBH). McAllister et al.5 estimated the
total d-band width to be 6.2 eV on the basis of x-
ray emission and appearance potential measure-
ments.

A recent calculation of the band structure of
chromium using a Hartree approximation yielded
much wider bands than those presented here.'* In
particular the d-band width and total occupied
bandwidth from that calculation are 9.0 eV and 9.7
eV, respectively, both unreasonably large values.

Angle-resolved photoemission results recently
became available for chormium® and agreed rea-
sonably well with the antiferromagnetic bands of
Asano and Yamashita. However, the final-state
energies used to interpret the electron-energy-
distribution curves were obtained from the same

Hartree calculation which produced the unreason-
able results mentioned earlier. Therefore, we
reinterpreted the curves using the usual procedure
of fitting a free-electron-like curve to the (KSG)
%, band which lies in the correct range of photon
energies. The results, shown in Fig. 1(b), are in
reasonable agreement with our bands and, inter-
estingly enough, are not very different from the
results using the Hartree bands. The bands along
the G axis (NH) were folded back over those along
the T axis (FN) as an approximation to the (com-
mensurate) antiferromagnetic bands since the per-
tinent photoemission data were obtained for the
antiferromagnetic state.

The density of states shown in Fig. 2 is very
similar to that obtained in Refs. 8 and 11 and vir-
tually identical to that of Rath and Callaway.!® A
quantity directly related to the density of states at
the Fermi energy, N(Ey), is the electronic specif-
ic heat. N(E;)=9.14 states/rydberg atom, (9.41
for the VBH potential) which yields a theoretical
value for the temperature coefficient of specific
heat for electrons of ¥=1.58 (1.62) mJ/mole K?.
Since measurement of this contribution to the
specific heat must be performed at low tempera-
ture where pure chromium is antiferromagnetic,
the experimental value®® 1.5 mJ/mole K?, should
not be compared directly with this result. In anti-
ferromagnetic chromium the gap induced in the
paramagnetic band structure may substantially
reduce N(E;) since large portions of the Fermi
surface may disappear. Asano and Yamashita esti-
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FIG. 2. Density of states of chromium.

mate a 29% reduction of N(E;), so assuming the
same reduction here, a ¥ value of 1.06 in J/

mole K? is obtained. Comparison with the experi-
mental value of 1.5 mJ/mole K? yields a phonon
enhancement factor of (1+X)=1.50. Alternatively,
one may compare with the paramagnetic specific
heat deduced by extrapolating data on paramagnetic
alloys of chromium®: 2.9 mJ/mole K. From this
number one gets (1+X)=1.83, which is larger than
the previous estimate. A previous calculation?*
for V gave 1+1=2.3.

III. FERMI SURFACE

The Fermi energy for the self-consistent energy
bands is £ =0.428 Ry, shown as a solid line in
Fig. 1(a). This energy falls just above the band
intersections along the A axis and below the Nj
level. The Fermi-surface shapes are shown in
Fig. 3. Numbering bands starting with the 4s T,
level as band one, the first two bands are com-
pletely filled, band three has hole surfaces at H
and N [Fig. 3(b)], band four is the electron “jack”
[Fig. 3(a)], and band five is a set of very small
electron “lenses” or “hats” (not shown). Cross
sections of all three portions of the Fermi surface
are shown in Figs. 4 and 5 which are (001) and
(011) cross sections passing through I'. This
Fermi surface is similar to that of Ref. 11, ex-
cept for appearance of holes at N which are a con- ( b )
sequence of the exchange potential employed here.
There is a remarkable resemblance to the model
proposed by Lomer! and sketched by Mattheis.

A comparison with various experimental data is

FIG. 3. Fermi surface of chromium. (a) Electron
“jack” ; (b) hole surfaces near H and N.

summarized in Table II. There is rather good transverse anomaly along the [001] direction
correspondence between the phonon anomalies seems to fit the extremum dimension of the elec-
seen by Muhlstein®-3® and the Fermi-surface nest- tron jack along the A axis better than the nesting

ings and extremal dimensions.” However, the along TN as Muhlstein proposed.
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FIG. 4. Fermi-surface cross section: (001) plane.

A. Spin-density wave vector

The spin-density wave is assumed to come from
nesting of the body of the electron jack with the
hole surface at H (see Table II). The phonon data
are not accurate enough or have enough resolution
to pick out a Kohn anomaly in the TN direction.
Possibly the magnon-phonon interaction is involved

:
;
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FIG. 5. Fermi-surface cross section: (011) plane.

in this direction to obscure this region. However,
it is certain that a spin-density wave does exist?-2°
with a wave vector corresponding to the TH nest-
ing. While comparison in Table II is good, a the-
oretical prediction based upon a full calculation of
the magnetic susceptibility X (¢), preferably fol-
lowed by a self-consistent band calculation includ-
ing the spin ordering to see if, indeed, the spin-

TABLE II. Fermi-surface dimensions compared with experimentally deduced values. The
phonon data were taken from Refs. 36—-38. The spin-density wave vector is found in Refs. 28
and 29. The de Haas-van Alphen data are from Ref. 47.

Fermi-
surface feature

Experiment

Theoretical value

TP extremum of
electron jack

TH extremum of
electron jack

Nesting of jack
body and hole at N

Nesting of jack
balls and holes at N
(TPH translation)

Nesting of jack
body and hole at H
(TPH translation)

Nesting of jack
body and holes at H
(TH translation)

Dimensions of hole at N
NH
NT
NP

Dimensions of ball at X
TH
ATH

Phonon anomaly
along TP

Phonon anomaly
along TH near H

Phonon anomaly
along TN

Phonon anomaly
near P

Phonon anomaly
along PH near H

Spin-density wave

dHvA

dHvA

Expt. Value KSG VBH
0.25(111) 0.27(111) 0.26(111)
0.85(001) 0.82(001) 0.83(001)
0.45(011) 0.42(011) 0.42(011)
0.54(111) 0.54(111) 0.54(111)
0.94(111) 0.98(111) 0.99(111)
0.96(001) 0.95(001) 0.96(001)
0.173 A1 0.186 A-!  0.185 A~!
0.234 0.304 0.310
0.268 0.316 0.324
0.26 A-! 0.30 A~! 0.30 A-1
0.25 0.30 0.30
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density wave is the ground-state configuration.
From Refs. 6 and 7 it is expected that such studies
would not alter the estimated values greatly.

B. de Hass-van Alphen data

The Fermi-surface cross-section areas quoted
in Table II were obtained from the de Haas-van
Alphen measurements of Graebner and Marcus.?’
In that work, the dimensions of ellipsoids at X
(electron balls) and at N (hole surfaces) were chos-
en to provide the best fit to observed dHvVA fre-
quencies. The quoted dimensions reproduced the
dHvA frequencies to within 10% for the balls at X
and 20% for the holes at N. Dimensions given in
Table II for the hole surfaces were deduced from
the figures in Ref. 47 since they were not quoted
there. A direct comparison of the areas calculated
from the theoretical band structure with the dHvA
data might remove some of the differences shown
in Table II. One could also attribute these differ-
ences to changes which occur in the Fermi surface
in the presence of the spin-density wave, but then
another argument would be needed to explain the
apparent good agreement with the other data. One
should also consider to what extent a local ex-
change approximation can be expected to produce
Fermi surfaces in agreement with experimental
values.5®

4983

IV. X-RAY FORM FACTORS AND COMPTON
PROFILE

Table III contains the x-ray form factors from
the self-consistent paramagnetic band structure
of chromium (KSG potential). Also included are
the values of Rath and Callaway'® and Wakoh and
Yamashita,'? along with various experimental re-
sults. The experimental and theoretical values
are in reasonable agreement, in view of the large
differences between the results of different experi-
mental groups (compare Refs. 41 and 42 with 43).

The LCGO wave functions have also been em-
ployed to compute the Compton profile, J;(q), for
paramagnetic chromium. Procedures discussed by
Rath et al.*® were used to determine the part of
J;(q) contributed by the band electrons (34 and 4s)
for three symmetry directions. These are given
in Table IV along with the directional average for
a range of ¢ values. The spherically averaged
profile is compared with the experimental results
of Paakkari, Manninen, and Berggren® in Fig. 6.
The contribution from the core electrons was cal-
culated by Weiss et al.% in the Hartree-Fock ap-
proximation. This has been subtracted from the
experimental data before plotting. Figure 7 dis-
plays the calculated anisotropy of the profile. The
experimental results are obtained from Weiss.*°
The experimental anisotropy is rather small, both
theoretical and experimental estimates may not be
too reliable.

TABLE III. X-ray form factors for paramagnetic chromium.

Wave vector

aK/2T Present Ref. 10 Ref. 12 Ref. 41 Ref. 42 Ref. 43

@,1,0) 16.29  16.27  16.32  15.88 15.78+0.20 16.30+0.12

@,0,0) 13.39  13.31 13.46  13.14+0.34 13.13%0.17

@,1,1) 11.66  11.60  11.56 11.23+0.34 11.47+0.15

@,2,0) 10.39  10.33  10.27 9.97+0.50 10.20+0.14

3,1,0) 9.40 9.36  8.94+0.30

@,2,2) 8.82 8.70  8.44+0.16

3,2,1) 8.27 8.20  7.75%0.10

“,0,0) 7.76 7.81  7.50+0.24

3,3,0) 7.54 7.510

@,1,1) 7.48 7.448 7.05+0.09

@,2,0) 7.23 6.72+0.15

3,3,2) 7.06 6.59+0.19

“,2,2) 6.84 6.41+0.12

@,3,1) 6.66

51,0 659 6.28+0.09

6,2,1) 6.33 5.96+0.11
3,3,0/4,1,1)  1.008  1.008 1.013+0.007
(4,4,2)/(6,0,0)  1.014 1.014+0.007
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TABLE IV. Calculated Compton-profile function J3 (g)
for the [1,0,0], [1,1,0], and [1,1,1] directions and the
spherical average.

q JI100 119 J1i11 Jav

0.0 2.103 2.277 2.574 2.304
0.1 2.104 2.268 2.536 2.290
0.2 2.052 2.207 2.360 2.202
0.3 2.003 2.139 2.134 2.099
0.4 1.968 2.033 1.916 1.984
0.5 1.899 1.880 1.755 1.853
0.6 1.799 1.724 1.623 1.720
0.7 1.701 1.591 1.510 1.602
0.8 1.547 1.472 1.427 1.482
0.9 1.417 1.357 1.340 1.370
1.0 1.286 1.232 1.258 1.254
1.2 0.997 0.984 0.904 0.967
1.4 0.745 0.713 0.645 0.705
1.6 0.611 0.555 0.630 0.590
1.8 0.425 0.449 0.482 0.450
2.0 0.359 0.372 0.374 0.369
2.5 0.276 0.263 0.248 0.263
3.0 0.143 0.159 0.188 0.162
3.5 0.111 0.104 0.096 0.104
4.0 0.066 0.068 0.063 0.066
4.5 0.044 0.046 0.044 0.045
5.0 0.031 0.030 0.031 0.030

V. OPTICAL CONDUCTIVITY

The optical conductivity of chromium has been
measured by Nestell and Christy®® and by Ganin
et al.®® A comparison between these experimental

results and various forms of the optical conduc-
tivity computed from this band structure are shown
in Fig. 8. Curve A was computed from the KSG
bands using the analytic tetrahedron method!® '’
and the full k dependence of the matrix elements
for interband transitions only. In the computa-
tions, contributions from various bands were not
separated in order to speed up the calculations

and simplify computer codes, so it is not possible
to make assignments of peaks to particular transi-
tions with much certainty. However, it is probable
that the 1.2-eV peak is a A;—~ Aj transition which
has a threshold of 1 eV. A peak has been observed
in thermoreflectance measurements near this en-
ergy.®* The peak near 1.9 eV is probably associ-
ated with A;—~ A, and T, ~ 5, transitions. Structure
in this range has also been reported in thermore-
flectance. The contributions to both the broad
main peak and the smaller one near 6.3 eV appear
to come from several regions of the Brillouin
zone.

The experimental curves, unfortunately, do not
reveal much structure. Presumably this is a re-
sult of lifetime broadening. In order to compare
with experiment, an empirical lifetime broaden-
ing of 0.5 eV and the intraband (Drude) contribu-
tions were included (curve B).** To obtain better
agreement, a self-energy correction®®® was also
included (curve C), with the parameter A chosen
so that the 6.3-eV theoretical peak coincided with
the 5.9-eV peak in the experimental data. This

T T T T T T T T T T T T T T T T T T
E’\{ —
d
2.0 N —
L]
- . -
JQ) 1.5 N _
.
.0 1
0.5 s -
- . .
\
L]
00 1 1 1 1 1 1 1 1 I 1 " 1 1 I T
0.0 0.5 1.0 1.5 2.0 2.5 3.0 35 4.0 4.5 5.0
Q(aw.)

FIG. 6. Spherically averaged Compton profile. The experimental points are from Ref. 39.
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Q(au.)

FIG. 7. Anisotropy of the Compton profile. The ex-
perimental points are from Ref. 40.

required A=0.1 the same as that found®® in the case
of iron (A\=-0.1) and close to the value for nickel
(A=-0.12). However, the calculated position of

the main peak remains somewhat too high even
with this adjustment. There also remain some dif-
ferences in the magnitudes of the peaks. Resolu-
tion of these differences may require more sophis-

ticated self-energy corrections or the adoption of
a nonlocal exchange potential.

V1. CONCLUSIONS

The LCGO method has been used to perform a
self-consistent calculation of the energy bands in
paramagnetic chromium using both the Kohn-Sham-
Gaspar and the von Barth—Hedin exchange poten-
tials. The Fermi-surface and x-ray form factors
were the same to within 2% and hence the Compton
profiles and optical conductivity were obtained for
the Kohn-Sham potential alone. Comparisons have
been made with experimental data. In general,
the agreement between theory and experiment is
fairly good in regard to Fermi-surface properties
(which are, however, not particularly sensitive to
details of the potential). There are still difficul-
ties in regard to x-ray form factors, which are
probably experimental. The Compton profile is
quite satisfactory. The comparison of theoretical
and experimental optical conductivities shows fea-
tures common to other transition metals, in par-
ticular large lifetime broadening at high energies
and an apparent compression (about 10%) of the d-
band states.

N
)
oo

o (E)(10"sec)
o T

40

E(eV)

FIG. 8. Optical conductivity of chromium. Curves: A, interband conductivity assuming sharp band states; B, in-
cluding a relaxation time %/7=0.5 eV and a free-electron (Drude) contribution; C, including a “self-energy” correction.

Reference 33 is represented by o, Ref. 35 by [.
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