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Neither local modes nor extended phonons precisely describe the excitations of anharmonic solids. A simple model

Hamiltonian presented here characterizes the transition from local oscillator to optical phonon which would take

place if one could continuously increase the phonon dispersion. The model is used to describe two types of
transitions: a phonon-localization transition which is the analog of the Mott transition for electrons, and a spectral

transition associated with the appearance of two-phonon bound states. In real materials, a sharp phonon-localization

transition is probably not achievable, but striking spectral effects may be observable for some systems which are

marginally able to produce two-phonon bound states.

I. INTRODUCTION

The harmonic approximation is usually taken as
a fundamental tenet of solid-state physics. Non-
interacting phonons are a consequence of the har-
monic approximation, and small deviations from
harmonicity can be treated perturbatively in terms
of phonon-phonon interactions. The limitations of
the harmonic approximation are much more ap-
parent in molecular physics than they are in solid-
state physics. Small variations in the spacing be-
tween molecular-vibrational-energy levels result
from anharmonicity, and although the deviations
from harmonicity may be small, they have impor-
tant consequences. For example, molecular-
vibration spectra change with the vibrational ex-
citation of the molecules, and absorption peaks
can exhibit saturation and power broadening. '
These phenomena are not commonly encountered
in solids where the absorption peaks correspond
to small-wave-vector-phonon energies even when
a large number of phonons have been excited.

The apparent success of the harmonic approxi-
mation in solids results from phonon dispersion.
If one views a solid as a collection of molecular
units, dispersion of the optical phonons results
from intermolecular coupling. When this coupling
dominates the anharmonicity, deviations from
harmonicity become difficult to observe.

The goal of this paper is to describe the hypo-
thetical transition from a collection of anharmonic
oscillators to a set of interacting phonons which
would occur if one could continuously increase the
phonon dispersion from zero until it dominates the
anharmonicity. Our basic conclusion is that one
should really think of two different transitions;
a "phonon-localization transition" which is anal-
ogous to the Mott transition for electrons, 3 and a
"spectral transition" associated with a change in

the character of the infrared absorption.
The first transition, phonon localization, is a

cooperative effect, and because of this it is pre-
dicted to occur only when the optical-phonon den-
sity is appreciable. In practice, one may only be
able to produce a sufficient phonon density to ob-
serve this transition in microscopic systems. We
see little prospect of finding real macroscopic
systems for which phonon localization would be
anything like a true phase transition.

The spectral transition is never a phase trans-
ition. Rather, it is a change in the character of
the elementary excitations which occurs as the
physical parameters of the system (-ratio of dis-
persion to anharmonicity) are changed. This
transition is closely related to the possibility of
forming two-phonon bound states. We associate
phonons with a linear combination of single vibra-
tional excitations on each molecule, and two-
phonon bound states with double vibrational exci-
tations of single molecules. Typical "molecular"
phenomena, such as saturation, can occur only if
the phonon dispersion is small enough compared
with the anharmonicity to permit the formation of
these bound states. The spectral transition coin-
cides with the appearance of the bound states.
Phonon dispersion which is near the critical trans-
ition value will lead to anomalous spectral fea-
tures.

Our investigation of anharmonic phonon systems
is based on a simple model Hamiltonian which is
developed in the following section and in Appendix
A. The model is constructed so that the ratio of
dispersion to anharmonicity is a free parameter.
By varying this parameter, we are able to de-
scribe the phonon-localization transition (Sec. III),
the appearance of two-phonon bound states (Sec.
IV and Appendix 8), and the spectral transition
(Sec. V).
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II. MODEL HAMILTONIAN

A simplified model of a system of coupled local
anharmonic oscillators is presented here. One
can think of each oscillator as corresponding to a
given vibrational mode of a single molecule in a
molecular crystal. Alternatively, the oscillators
may correspond to the set of degenerate stretching
modes in a single molecule, like the C-H bonds
in benzene. The most important simplification
(and limitation) of this model is that it considers
only one optical mode or phonon branch, and the
coupling to other optical modes and acoustic pho-
nons is ignored. One consequence of this is that
the mode or phonon-decay processes are ne-
glected. 4 '

The only important anharmonicity in the model
is assumed to be "intramolecular, " so the poten-
tial energy need only be expanded to second order
in the intermolecular coupling, but intramolecular
terms up to fourth order are included in the Ham-
iltonian. If x„and p„are the relevant normal co-
ordinate and conjugate momentum of the nth os-
cillator, then the classical Hamiltonian is

+ g D„.x„x.,

where m is the effective mass andÃ is the spring
constant of the oscillator, ys and y are anharmonic
coefficients, and the D„are the coefficients of
intermolecular coupling. Vfe assume that anhar-
monic and intermolecular effects are relatively
small. This assumption means

"phonon-conserving" and "phonon-nonconserving"
terms. The phonon-conserving part of the Hamil-
tonian, H, is essentially a Bose version of the
Hubbard model~ with attractive interactions.

H = ea„a„+ 4„a„a

(4)

The zero-order phonon energy e, "hopping" ma-
trix elements ~„,and phonon-phonon interaction
strength I', are determined from the correspond-
ing coefficients appearing in the classical Hamil-
tonian H, in Eq. (1). We will take the phonon-con-
serving Hamiltonian of Eq. (4) as our basic model.
In Appendix A it is shown that the terms left out
of this Hamiltonian are unimportant since they can
be largely eliminated through a similarity trans-
formation if the conditions of Eq. (2) are met. The
similarity transformation renormalizes the en-
ergies e, 6„, and I'.

The model Hamiltonian of Eq. (4) must be ap-
proached with caution. Formally, it is not well
defined if I' is positive since it then describes a
system of bosons with attractive interactions, and
the energy of the system can become arbitrarily
negative. This difficulty can be circumvented
when necessary by an appropriate restriction of
the allowed states of the system.

In many ways, the physics of systems described
by the model Hamiltonian [Eq. (4)j depends on only
one parameter; the relative size of I' compared
to 6„. If the A„are zero, the model reduces to
a set of anharmonic oscillators with energy levels

8,=/e —I'/(/ —l) . (5)

where x is a root-mean-square (rins) value of any
of the x„.

To lowest order, the classical Hamiltonian de-
scribes a set of harmonic oscillators, so it is
natural to quantize the Hamiltonian through the
substitution

(3)

Here a~(a„) corresponds to a "local" phonon crea-
tion (annihilation) operator. When x, and P„are
replaced by the appropriate creation and annihila-
tion operators, the resulting Hamiltonian has both

On the other hand, if I' is zero the Hamiltonian
can be diagonalized. For example, if N oscilla-
tors are distributed along a line with periodic
boundary conditioris, and 6 is nonzero only for
nearest-neighbor interactions, then the Hamilton-
ian can be written as

TV
g) =g (c+—sg (s}ccs(c))s'.s. ,

q

where W =46 is the phonon bandwidth, sgn(d) is
the sign of 6, and

N

t ~ Y -lq~ tQg=~ ~ 8 C)g
n~i

is the creation operator for a delocalized phonon
with crystal momentum Sq. Note that zone-center
phonon energy is shifted away from the "molecu-
lar" energy e by —,'Wsgn(h). The sign of 6 [sgn(a)]
will turn out to have a significant influence on the
behavior of the spectral transition discussed in
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Sec. V.
For many materials, the important parameters

I' and 8' which characterize this model can be ap-
proximated. Intramolecular anharmonicity I' can
be obtained from molecular spectra. Herzberg'P
has tabulated values of I' (cal.led ~,x, in his Table
39) for a great many diatomic molecules in units
of cm"' (= 1.23 x 10 4 eV = 1.44k~ degree). " Three
examples are

I'=117.9 cm ' for H»
I'=52.05 crn for HCl,

I"=11.67 cm' for C .
(8}

W/I'= 3'0 for hydrogen,

W/1 —= 1 for HCl,

W/I'—= 11 for diamond.

(10)

The parameters I" and 8' obtained for these three
examples are typical. Thus we feel that most or-
dinary semiconductors, like diamond, are too
weakly anharmonic to exhibit striking phonon-
localization effects like two-phonon bound states.
Some molecular solids like H2 which exhibit very
little phonon dispersion will clearly show molecu-
lar properties. The most interesting cases will
be molecular solids like HCl in which the phonon
dispersion and anharmonic effects are equally im-
portant.

There are other materials where this model
Hamiltonian might profitably be applied because
dispersion and anharmonicity are comparable.
The transition-metal carbides' and metal hydrides
and deuterides are interesting possibilities. For
example, the optical-mode frequencies in NbC
form a fairly narrow band (W = 80 cm '} and one
optical phonon cannot decay into two acoustic pho-
nons and conserve energy. Optical-phonon band-
widths seem to vary a great deal in metal hy-

The second important quantity is the phonon band-
width 8' which is determined from the values of

Estimates of S' come from theoretical cal-
culations and experimental evidence such as neu-
tron scattering and Davydov splitting. Optical-
phonon bandwidths for the solid forms of the ma-
terials sited above are

8'=—4 cm ' for solid molecular parahydrogen, '

W—= 50 cm' for solid HCl (Ref. 13),
W=—130 cm' for diamond, '

The width 8' in HCl is considerably larger than it
is in H2 because long-range electrostatic interac-
tions are small in hydrogen. '

In our model, the really significant measure of
anharmonicity is the ratio W/I',

drides and deuterides. In PdDp 63 lV 100 cm ',
but in NbDp 7„9' is probably less than 20 cm'. "
The anharmonicity parameter I' in these materials
may be quite large because of hydrogen's small
mass.

III. PHONON-LOCALIZATION TRANSITION

E ~ E()+(5H)0, (12)

where Ep is the free energy of a system described
by Ho, and(5H)0 denotes the thermodynamic aver-
age of 6H in the Hp system.

The two obvious choices for Hp correspond to
treating either the phonon hopping or the anhar-
monicity as a perturbation. In the former case,
corresponding to the local oscillator description,
we take the "local" part of H as H, :

6Qn gn —IQng„QnQn (13)

so

6H= b,„a~a
num

In this case, it is found that (58) 0
=0, and

F,0,/N = ——ln(Z) .1

(14)

(15)

Here [see Eq. (5)]

Z =g exp f- P fir —l (l —1)I']),
J=p

(16)

and P is the inverse temperature in units of
Boltzmann's constant. Formally, g does not exist

In general, exact eigenstates of the model Ham-
iltonian developed in the previous section will be
extremely complex. %'e would like to know wheth-
er the basic physics of this model is better de-
scribed in terms of phonons or local oscillators.
Here, we base our criterion for selecting between
these two limits on estimates of the free energy.
The true free energy of the system is, of course,
independent of the way we describe the system,
but the approximate free energy estimated from
the perturbation approach does depend on which
part of the Hamiltonian is chosen as the unper-
turbed Hamiltonian. Extended phonons are as-
sumed to be "stable" only if they yield a lower
approximate free energy than the local oscillators.

The Hamiltonian of our system can be separated
into two parts

H =H() + 6H,

with Hp and 6H being the unperturbed Hamiltonian
and the perturbation, respectively. Then, the
true free energy of the system has an upper
bound"
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(for positive I') because its power series diverges.
However, we restrict ouxselves to the case where
the average excitation of each local oscillator is
so limited that for all levels that are significantly
populated, p/(/ —1)I' «I. Then the system has an
appx'oximate partition function

2'= Q [1+/(/ —1)PI"
S=o

+ l/2(/ I )2p2p2 y, ~ ~ ]exp( p/g)

To order (pI') the local free energy obtained from
Z 18

'" =- in(I -e ') - 2l'n'
N P

-2PI'2n2{n+ l)(5n+ 1) l.

where the Bose factor

n=(e ' —1) '

I'-7 Q a„a„a„a„=—— M aq „aq.,aqaa . (22)
kl 'k2 ~e

If one requires that Ho be a single-particle Ham-
iltonian, minimization of the fxee energy is equiv-
alent to making a Hartree-Fock-like factorization
of the interaction term in the Hamiltonian. That
is, if (1,2, 3, 4) correspond to specific k vectors

a&a2a3a4 (aya4)pa2a, +(aea,),a4a4t t

+(a4 a4)0a2 a4+(a2 a4)0a4 a4 .

The only nonzero thermodynamic averages are
(a4a„)4. This means that in the zeroth order, the
interaction term in the Hamiltonian gives a mean-
field (MF) contribution with

a„a„a„a„-—4—~(at4, a4, ) gata, . (24)

I.et C be the number of optical phonons per oscil-
lator

gives the average number of phonons per oscilla-
tor assuming I and 6 are zero.

For the case corresponding to the phonon de-
scription, the anharmonicity is written as a pho-
non-phonon interaction and is treated perturba-
tively. %'e take Ho to be a mean-field approxima-
tion of H, that includes not only the harmonic part
of H but also the mean-field contribution from the
anharmonic terms in H. Then, 5H contains only
corrections to the mean-field approximation from
the anharmonic terms. This case is more clearly
described if we make the model a little more spe-
cific. 3o we assume a simple lattice of oscilla-
tors. The index n labels an oscillator at a lattice
point, R„, and the phonon-hopping parameters h„~
depend only on the relative separation (R„-R ).
If I' were zero, the Hamiltonian on the lattice
could be written simply in terms of extended pho-
non operators. [A simpler one-dimensional case
is given ln Egs. (6) and (V).j

(25)

Then the unperturbed Hamiltonian go 'in this case
becomes

H„r = Q (e, —4 C I')at a, .

The energy shift of each phonon (-4C I") is twice
what a naive guess would suggest. The free ener-
gy is obtained from E4/. (12). Since we have as-
sumed that PI" «1 and PA «1, we keep terms only
up to order (pI") and (ph) . We find

'" -PW' +2PI'[n{n+1)j', (27)

where n is still the phonon occupation number
given by E4/. (18), and

H(I" =0)= ge, at a, ,

~ fq, (R~ Rfft)g
5 fft

gq=- ~8 Q~ .ic 'Rg

n

(21)

is comparable to, but somewhat smaller than the
bandwidth parameter tabulated in Ec/. (9). Typical-
ly, W=W/3. Since n increases with temperature,
F» becomes larger than F&„at a sufficiently high

temperature, and the localized oscillator becomes
"stable". In other words, the localized-oscillator
description is more appropriate. The approxi-
mate phase boundary between localized oscillators
and delocalized phonons is obtained by letting

F„,=FM~, and the result is

The sum over q is restricted to the Brillouin
zone and N is the number of lattice points. For
1 WO, the anharmonic terms can also be written
in terms of the extended phonon operators

sinh[e/(keT*)]= I'/g', (29

where T* is the transition temperature. This
equation was used to construct the phase diagram
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FIG. 1. The phase diagram for the model Hamiltonian
showing the temperature ranges where local oscillators
and extended phonons minimize the free energy as
functions of the normalized phonon dispersion W/I'. In

practice, the transition between the two regions will
be continuous and no phase transition is expected.

shown in Fig. 1. As can be seen in this figure,
the hypothetical transition from anharmonic os-
cillators to interacting phonons occurs in our
model as W/I' increases from zero to a large
number. Since the phonon density is related to
the temperature, a transition from localized to
extended phonons also occurs if the temperature
is decreased and the ratio W/I' is held constant.
This behavior is in contrast to the metal-insulator
transition where increasing temperature generally
delocalizes electron states. '

The above phonon-localization transition corre-
sponds to a gradual change in the nature of the
vibrational excitations of the system and is not a
true phase transition. For 8' z I', the transition
appears at k~T* pe. A temperature high enough
to excite a significant number of phonons (k~T =e)
would be much higher than the temperature that
characterizes the interaction energy of the particles
(keTc =W or I ); the phonons become a hot fluid.
For very small W/I', Fig. 1 predicts a low trans-
ition temperature, but the mean-field approxima-
tions used here are inaccurate for the case of a
dilute gas of strongly interacting phonons. '

There is a practical reason why the phonon-
localization transition described here may be dif-
ficult to observe. It is simply not easy to put a
large number of phonons into a phonon band. Op-
tical-phonon lifetimes are generally not long
(10" sec is a typical number). This means that
one probably cannot excite a sufficiently large
number of phonons in a given optical band through
optical. pumping to observe the phonon-localization
transition. Thermal excitation of a large number

of optical phonons is not likely in molecular solids
because these materials have relatively low melt-
ing or dissociation temperatures T „and k~T„«e.
A large number of optical phonons can be thermal-

ly produced in semiconductors like diamond with a
high T„Fo.r such materials, however, I'/W is
small, and hence T* is still greater than T„. For
example, keT„-2e and W/I'=— 3.5 for diamond, so
that k~T~= 3e—and T*)T„. (Also, the diamond-to-
graphite transition becomes increasingly likely as
the temperature is raised. ) It is possible that a
gradual phonon localization could be observed in
some other material where k~T„& e, but we have
not yet been able to find a reasonable candidate.

Even though a true phonon-localization phase
transition is probably difficult to observe in mac-
roscopic systems such as solids, one can find
small systems in which localization effects have
been observed. The benzene molecule is a good
example. '9 The highest-frequency modes in

benzene correspond to stretching of the C-H
bonds. The model Hamiltonian can be applied to
this molecule if it is viewed simply as a set of six
coupled vibrational units with I'=57.6 cm"' (Ref.
17) and W —= 35 cm '." It is possible to highly ex-
cite the C-H bonds, for example, from v=0 to
v = 1-9, The measured excitation energies of
singly or doubly excited benzene correspond to
phonon frequencies if phonons are interpreted as
vibrational modes of the entire molecule. How-
ever, the energies of the higher excitations
(v =5 to 9) correspond more closely to the ener-
gies of an isolated anharmonic C-H bond. Thus
the vibrations in benzene appear to undergo a
transition from extended to localized modes as the
energy (or effective temperature) of the system
is increased. Physically, phonon localization is
associated with small transport coefficients. This
means that it will take a relat1vely long time for
the energy to diffuse away from a single highly
excited C -H bond in benzene.

Phonon-localization transitions can probably
also appear in molecular doped crystals, such as
pentacene in benzoic acid. Higher doping concen-
tration decreases the distance between impurity
molecules, increases the intermolecular coupling,
and may induce a dispersion in their coupled mo-
lecular vibration. Yet the impurity system may
still be small enough, and the corresponding pho-
non lifetime may be long enough, so that a phonon-
localization transition could occur.

IV. TWO-PHONON BOUND STATES

Excitations which we would now call two-phonon
bound states have been known for a long time.
For example, Gush et al. observed "double trans-
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Q g„ata'
I o), (30)

with g„=g „. Since the system is translationally
invariant, one should consider only those I&j&)

which are also eigenstates of the translation op-
erator, and then,

itions" in solid hydrogen in 1957. More recent-
ly, Cohen and Ruvalds interpreted an anomaly in
the two-phonon Raman spectrum of diamond in

terms of two-phonon bound states. This inter-
pretation stimulated a good deal of interest and
criticism. 26 29

Two-phonon bound states are of obvious interest
because they can be observed spectroscopically. '
In addition, we believe that these bound states are
closely related to the spectral transition, which
will be discussed in Sec. V. There we will argue
that systems which can support bound states are
sufficiently "molecular" to show effects normally
associated with the absorption spectrum of iso-
lated molecules.

Here, we consider bound states of the model
Hamiltonian for a one-dimensional lattice, and an
artificial three-dimensional system characterized
by a semicircular density of states. Much more
elaborate two-phonon bound-state calculations
have been performed by Bogani and others. 9'"'9""
Our presentation here may still be of interest be-
cause of its relative simplicity.

We first consider two phonons in the one-dimen-
sional lattice described by Egs. (6) and (7). For
this case, any two-phonon wave function can be
written as

the Im,). For example, the state Ig„) which de-
scribes two free phonons with wave vectors k& and

k2 is

i/2 g cos[(k& -kc}m]lm )
m-"f

(33)

if q=k(+k2.
We are interested in finding the bound-state en-

ergy and wave function. This is carried out in
Appendix B. In the derivation, we need to evaluate
(m,'IH Im, ) . The model Hamiltonian of Eq. (4) ap-
pears to have a simple form when its action on the
states Im, ) is considered:

H
I m, ) = 2e I m, ) + 26 cos(q/2) [ I

(m + 1),) +
I
(m- l),) )

2r6 Io,) . (34)

The above equation shows how the physics of two
interacting phonons is closely related to the phys-
ics of a single particle with hopping matrix ele-
ment 2s cos(q/2) subjected to a static "impurity
potential" of strength -2F at the origin. The two-
phonon system can be regarded as equivalent to a
single-particle system. The symmetry of the two-
phonon wave function means that the only physical-
ly significant states of the equivalent single-par-
ticle system are symmetric with respect to

Im, ) - I
-m, ). Two-phonon bound states are

equivalent to single-particle states which are bound
to the impurity. The bound-state energy for the
above one-dimensional system is found to be (see
Appendix B}

g„=exp[iq(n + m}/2]g(n m), — Ee= —2 {r2+ [2L cos(q/2)]2)' ~2 + 2e, (36)

Im, ) = Q e"'"' &~'ata~, Io) .
fl 1

(32}

where q is the center-of-mass wave vector of the
system and Iq I

—v. We introduce new basis states
Im, ) which simplify the notation

For large I", E~ approaches the energy of the
doubly excited anharmonic oscillator and for small
E', E~ approaches twice the minimum phonon en-
ergy. The bound-state wave function obtained from
H I&l&a) =&a I4)

Physically, Im, ) describes two-phonon excitations
separated by m sites with a total crystal momen-
tum Iq. Any two-phonon wave function with a wave
vector q can be written as a linear combination of

u/2

le.&=l, "I) Z ""'I~.&,

where

(36)

r = —sgn(L} ({r2+ [2b.cos(q/2}]2]' ~' —1 )/[ 2L cos(q/2)], (37)

The overlap of the two-phonon bound state I&1&e) with the wave function describing two free phonons Il(~)
is of particular interest. As we shall see later in Sec. V, the square of this matrix element ((ge Igz) I,
is proportional to the oscillator strength of exciting a two-phonon bound state from a single-phonon state.
Assuming that k& and k2, which determine

I &j&z), are small but not identical, we let

H =-,'jvI(tl „I &I,) I' = (r')({[r'+(2n)']'~'+ 2~p [r'+ (2~)']'")-' . (38)
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states out of ~fz) for the semicircular model is
also obtained in Appendix B:

R = (4I") [4I' —W sgn(h)]/[41'+ W sgn(S)]' . (4l)

When W is close to 4I", R can either be consider-
ably greater than or less than 1 depending on the
sign of h. Values of R as a function of W/1" for
the semicircular model are shown in Fig. 3. The
upper curve corresponds to negative 6 and the
lower curve corresponds to positive b, . Note the
logarithmic scale for R in this figure.

2
war

FIG. 2. Energy levels of the doubly excited model
Hamiltonian with a semicircular density of states (the
semicircular model) as functions of W/I'. The bound

states disappear for 8'/p greater than four.

The factor —,'N is chosen to normalize R to unity
for large I". Clearly R can be considerably en-
hanced or suppressed depending on the magnitude
of I" and the sign of b, .

Except for some quasi-one-dimensional systems
like polymers, ' it is somewhat unrealistic to con-
sider bound states of the one-dimensional model,
since any nonzero I' can lead to bound states.
Three-dimensional bound states appear only for
l greater than some minimum value. Exact cal-
culations of the properties of three-dimensional
bound states in a lattice require numerical work,
so for clarity we consider a fictitious system
called the "semicircular model" in which the
single-phonon energy levels form a semicircular
density of states, p(Z), of width W.

V. INFRARED ABSORPTION AND THE SPECTRAL
TRANSITION

Measurements of the infrared absorption spec-
trum provide an important probe of phonon sys-
tems. We will investigate the infrared absorption
of the model Hamiltonian of Sec. II, and show that
this absorption depends sensitively on W/I'. The
model exhibits a transition from a phononlike to a
moleculelike system as W/I' is decreased to the
point where two-phonon bound states can appear
(W/I'=4 for the semicircular model). We will
also show that when W/1" approaches this critical
value from below, saturation effects can either be
considerably enhanced or suppressed depending
on the sign of D.

As a first step we calculate the linear response
of the model Hamiltonian to an applied radiation

100

p(Z)=, {W'-[2(Z -~)]')'".2
(29)

10

We consider only the two-phonon bound state with
center-of-mass wave vector equal to zero, and
assume that a single q = 0 phonon has an energy
e, =e t W/2, with the sign of W/2 determined by
the sign of A.

Making these assumptions, one can establish the
properties of the bound states using the Green's-
function methods commonly employed for static
impurity problems33 (see Appendix B). We find
that a q =0 bound state can be formed only if
W & 4I', and the bound-state energy is

0. 1

W4r WE =2e- ——+-
4r (4O)

0.01
2

war

The two-phonon continuum (two free phonons) and
bound-state energy levels as a function of W/I'
(for the semicircular model) are shown in Fig. 2.
The normalized probability R for forming bound

FIG. 3. The normalized probabilities g of optically
creating two-phonon bound states, for the semicircular
model, as functions of W/1". . The upper curve corres-
ponds to negative 1 and the lower curve corresponds to
positive I'. Note the logarithmic scale.
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field. The perturbation of the Hamiltonian is
taken to be Q((d)dCO = 1.

x„Z n, t (42)

Here, e is the effective oscillator charge and

Z(n, f) is the electric field directed along x„at the
nth oscillator site at time t. The coordinate x„
can be written as (at+a„)[h/(2v'Km)j'~ using Eq.
(3). Strictly speaking, H' should be subjected to
the similarity transformation described in Sec. II
and Appendix A. Among other things, this trans-
formation would incorporate many-phonon pro-
cesses into the linear-response function. ' How-
ever, the similarity transformation yields a small
correction to the overall absorption and it will be
ignored here. The linear-response approach
taken here also neglects polariton effects. '4

The power absorbed by the model system is

P=— P„E n, I, (43)

n(&)~= g(/(mfa/ j}/
—]&m fa, f j) /2)

where the oscillator momentum is P„=(at -a„}
&i(kv'Km/2)'~' and angle brackets indicate a time
average. The linear response is, obtained by cal-
culating (p)/8 to first order in H'. Assuming
the system is initially in an eigenstate

~ j) of the
unperturbed Hamiltonian, and the electric field is
characterized by a wave vector q and a positive
frequency +, the normalized absorption coefficient
1s

There are many aspects of nonlinear response
to an applied field. ' The only nonlinearity con-
sidered here is the effect of the applied field on
the probabilities P&. Physically, we are inter-
ested in how the absorption of the system changes
as more and more phonons are created and the
P&'s are correspondingly altered. In two special
cases, the absorption coefficient can be easily
calculated from Eqs. (44) and (45). The first case
is the phonon limit, I'=0, where

&(~)= 5(~ -~,) . (47)

Here 5&, is the energy of a phonon with wave vec-
tor q. Since n(~) is independent of the P& in this
case, no saturation occurs and a(~} remains un-
changed. The absorption line is infinitely sharp
because no phonon decay or scattering processes
are contained in the model Hamiltonian when I' =0.

The second simple example is the molecular
limit where W =0. Then

n(~) = Q(P -P ()(m+1}5(~-(e —2mr)/K) .
m=Q

(48)

Here P is the probability of finding any oscillator
in its mth excited state if we assume that an oscil-
lator is either in its ground state or its first ex-
cited state. Then PD ——1 -C and P, =C, where C

[Eq. (25)j is the density of excited oscillators,
and a(~) becomes

X5(+ ~~m +jI)
a(~) =2C5(~ —(~ —2r)/n)

+ (1 —2C)5(+ —e/8) . (49)

Q(~) = Q Pja((d)~ ~ (45)

where P,. is the probability of finding the system
in the state

~
j). The following sum rule can be

easily derived from the definition of a(&).

(44)

with J, n(&u)d&u =1. Here a~ is the phonon creation
operator defined in Eq. (21), and m indexes the
eigenstates of II with energies I~ . The absorp-
tion coefficient a(~)~ consists of a positive part
-)(m ~ag j) (' which describes the photon-to-
phonon process and a negative part -((m ~a,

~ j) ['
which describes the phonon-to-photon process. At
zero temperature, the physical absorption is cor-
rectly given by Eq. (44) if

~ j) is taken to be the
ground state. In general, however, one should
average n(cv), over initial states. The actual ab-
sorption is proportional to

n((o) =5((u —((u, -4c r/5}), (5o)

In practice, C can be made nonzero by resonant
excitation with a strong beam at k~ -=~. Then o. (&g)

is the absorption spectrum observed by scanning
a weak probe beam around k~ -e and @co-(e —2r).
The peak at I& —=e decreases with increasing C as
a result of saturation, while the peak at N~—=e-2F
describes absorption due to excitation of popula-
tion in the first excited state to the next higher
excited state. In the real spectrum, the 5-function
peaks would of course be broadened to peaks with
finite widths.

When I and 8" are both nonzero, an exact cal-
culation of n(|d) is impossible. However, if I' is
not large compared with 8', the mean-field ap-
proximation described in Sec. III may be justified.
The absorption can be calculated after the inter-
action term in the Hamiltonian is factorized as
was done in Eq. (24), the result is
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and C is again the density of excited oscillators-
or phonons per oscillator. There is no satura-
tion and the only nonlinear effect to be observed
in the mean-field approximation corresponds to a
line shift to lower frequencies which occurs when
a large number of phonons are created. For ex-
ample, if I'= 50 cm ', a line shift of 2 cm ' would
occur if one could create one phonon for every 100
oscillators. One unrealistic feature of the mean-
field approximation is that the interacting phonons
appear to have infinite lifetimes. In fact, if W/I'
is not too small, Fermi's golden rule can give an
estimate of the actual lifetime and the correspond-
ing minimum linewidth, b~,

(51)

A second limitation of the mean-field approxi-
mation is that it "breaks down" when W/I' be-
comes small. This breakdown is signaled by the
appearance of two-phonon bound states. An alter-
native approach is necessary to capture the ef-
fects of these bound states on the absorption co-
efficient. In the isolated molecule limit (n-0),
we know that the most important absorption peaks
correspond to the transition from the lowest-en-
ergy state to the first excited molecular-vibra-
tional state, and from the first to the second ex-
cited level. When 6 is small but nonzero we ex-
pect the two peaks to persist, but in this case an
alternative description is that the first peak cor-
responds to the creation of an additional nearly-
free phonon in the system and the second peak
corresponds to the formation of a two-phonon

bound state. The bound state is the combination
of one phonon created by the photon and a second
phonon which is already present in the system.

The absorption spectrum of N anharmonic oscil-
lators with NC phonons cannot be easily calculated
because the phonons interact through their anhar-
monicity. We circumvent this many-body problem
by considering a smaller "reduced system" which
initially has only one phonon in 1/C sites. This
reduced system, which has the same phonon den-
sity as the original system, exhibits two absorp-
tion peaks. The first peak at S~ =a~ results from
one-photon excitation of a more or less free pho-
non at q=0 where eo=e+sgn(n)W/2 is the phonon
energy. The second peak at h& =E~ - eo is due to
one-photon excitation of the system from a one-
phonon state to a two-phonon bound state with E~
as the binding energy. 36 The probability that the
system can be excited into a two-phonon bound
state should be proportional to ((P~ (Pz& (', as it is
the square of the projection of the bound state on
the two-free-phonon state. Following the defini-
tion of R in Eg. (38) and the approximation that
the system initially has one phonon in N = 1/C

sites, we have

(52)

when C is small. The area under the secondary
peak is thus 2CR, and from the sum rule [Eq.
(46)] the area under the primary peak must be
(1 —2CR). Energy shifts and broadening of these
peaks will be of order CW instead of —4CF and
-CI' /W as was the case for large W/I' (Ref. 18)
[see Eqs. (50) and (51)]. For the moment, we ig-
nore the peak broadening and the small energy
shifts to obtain a simple expression for the ab-
sorption in the semicircular model for W/1" =4:

c.((o)=2CR5(~ —(Es —e )/oI')

+ (1 —2CR)5((u —eo/g) . (53)

Essentially the same absorption coefficient as is
presented here was obtained in the molecular
limit [Eq. (49)], except now the excited oscillator
concentration C is scaled by R, and the absorp-
tion peak frequencies correspond to a q =0 phonon
energy and the difference between the two-phonon
bound-state energy and a single q =0 phonon en-
ergy. The two expressions for the absorption
[Egs. (53) and (49)] become identical as W-0. As
in the molecular case, this c.(~) is the absorption
spectrum seen by the weak probe beam, while C
can be made nonzero by an intense pump beam at
capp 60/ff ~

We are, of course, interested in seeing how the
molecular character of the absorption disappears
as W approaches 4I'. The sign of 6 makes a big
difference in this transition. When b, is negative,
indicating that q =0 phonons lie at the bottom of
the band, increasing W/I' moves the energy of two

q =0 phonons and bound two-phonon states closer
together and makes the latter look more like the
former. This is ref l.ected by the two absorption
peaks in Eg. (53) approaching each other with the
bound-state peak" stealing" intensity from the pri-
mary peak as they merge. For positive 6, in-
creasing W/1' shifts the free and bound two-phonon
states further apart. Consequently, the absorp-
tion peaks separate more and the bound-state peak
gradually vanishes as W/1'-4. The peak positions
for both positive and negative ~ are shown as
functions of W/1 in Fig. 4. Note the different fre-
quency scales used for the two signs of h.

The absorption spectrum of Eg. (53) is unphys-
ical because the peaks are infinitely narrow and
the factor R diverges when 6 is negative. More
sensible results are obtained if we assume the
sharp peaks are actually Lorentzians with a half-
widthd. Physically, for negative 6, R corre-
sponds to the size of the two-phonon bound state
and this size appears to diverge as the binding en-
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FIG. 4. The frequencies of the primary (photon free phonon) and secondary (photon+ phonon two-phonon bound

state) peaks in the absorption spectrum of the semicircular model as functions of W/I'. The upper line describes the

primary peak and the lower curve describes the secondary peak in both cases. Note that the frequency scale on the

left corresponding to b, & 0 differs from the scale on the right where 4&0. The secondary peak disappears with the

bound state for 8'=4+.

ergy goes to zero. In fact, R cannot exceed the
average volume per phonon and still make sense.
This can be seen formally in Eq. (53). Since

l g„)
and lg~) are normalized, 2CR should be less than
one. The expressions for R in Eqs. (38) a'nd (41)
correspond to the large-N or small-C limits. The
corresponding expressions for larger C are diffi-
cult to obtain. Here we assume a simple inter-
polation formula for l(g~ l r/r~) l' which approaches
the exact result for small C and satisfies the upper
bound implied by Eq. (52),

1&a. I C.&
l'= 2CRI(1 + 2CR) (54)

This correction to I(gr lg~) l2 is at best only a
reasonable guess. Actually, when 2CR becomes
larger than one, the two-phonon bound state ap-
preciably overlaps other single-phonon states and
we are faced with truly unsoluble many-body ef-
fects. By using l(g~ lpga) l' as given by Eq. (54) we

have artificially limited the two-particle bound-
state size so that the many-body effects appear to
be small.

Practically speaking, the correction to 8 given
in Eq. (54) is probably unimportant and unneces-
sary. Physically achievable phonon concentrations
are usually small in macroscopic systems and it
is unlikely that any many-body effects beyond the
observation of two-phonon bound states will be de-
tectable. However, a clear graphical presentation
of the type of spectra one would expect from this
model necessitates picking a relatively large C so
that the secondary peak can be easily seen. The
series of absorption spectra shown in Fig. 5 are
obtained from Eq. (53) using the approximate

l(y. lq. &l' pq (54)]'up«ceof 2cR andthe 5-
function peaks are replaced by I.orentzians.

I.p

0.5—

6 O
W=O

6&0
w=o

pp

~ 0.5-X

X

0.0

3

0.0

0.5
w =4I'

0 -2 0 -6 -4 -2 0 +2
(boo-q)/I'

FIG. 5. The transition in the absorption spectrum
e(cu) from that characterizing local oscillators (top)
to that characterizing phonons (bottom) for the semi-
circular model. The series of spectra correspond to
(from top to bottom) 8'/(4l")=0, z, -', , and 1. Note
the different frequency scales for the spectra on the
left Q &0) and those on the right Q, & 0). The secondary
peak (if visible) lies at a lower frequency than the pri-
mary peak in each case. The arrow on the lower right
spectrum indicates the position of the secondary peak
as its intensity vanishes. Peaks in n(~) were given a
Lorentzian shape and a half-width d = 0.1& for I &0
and d= 0.3I" for 4 & 0. The phonon concentration C was
taken to be 0.03 for & & 0 and 0.3 for 4& 0. The some-
what unreasonable parameters were chosen purely for
the purpose of illustrating the spectral transition.
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Spectra on the left in Fig. 5 correspond to neg-
ative d and spectra on the right correspond to pos-
itive A. The spectra are shown for a sequence of
values of W/(4I') =0, —,', —,', and 1. The curves
show the system passing from the molecular limit
on top of the figure to the phonon limit at the bot-
tom. Note that for graphical clarity, we needed
different frequency scales for the different signs
of b, . We picked the phonon concentration C to be
0.03 for L&0 and C =0.3 for 6&0. The peak
half-widths d were chosen to be 0.1F for 6 & 0
and 0.3F for L& 0. The choices were again moti-
vated by a desire to show pictorially how the sec-
ondary peak grows for positive 6 and shrinks for
negative A. Note that for the case d & 0 and
W/(4I') = s, the secondary peak is actually larger
than the primary peak even though the phonon con-
centration is only 8%.

VI. DISCUSSION

Results presented here indicate that it is often
not appropriate to view the phonon versus local-
oscil.lator problem as a dichotomy. We showed in
Sec. III that the phonon-localization transition was
gradual, and in subsequent sections we showed
that systems which allow two-phonon bound states
can exhibit spectral properties characteristic of
both phonons and local. oscillators.

We are hoping that the model presented here can
be extended and applied to the point of giving de-

finitive comparisons with experiments. Some
modifications will clearly be necessary to make
these comparisons realistic. Many real materials
(like HC1) are not characterised by one oscillator
per unit cell. Dipole-dipole forces play an impor-
tant role in the interesting modes of molecular
crystals for which W =F and one should modify the
6's to incorporate the long-range coupling. For
other materials which might be described by
W =F, like the transition-metal carbides' and
metal hydrides, '6 one must consider all three
phonon polarizations.

The stimulated Raman effect" is a good example
of how theoretical results based on local oscilla-
tors can be very different from results obtained
from a theory which uses phonons as basis
states. 3 We feel that careful applications of mod-
els similar to the one presented here could help
resolve the sort of controversies which have ap-
peared in the theory of the stimulated Raman ef-
fect."
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APPENDIX A

The full Hamiltonian obtained by quantizing the classical Hamiltonian is the phonon-conserving Hamil-
tonian H given in Eg. (4) plus additional terms given by

h=gg (a„+a„) + g ""(a~a„+a„a„)-—g ata~a~a~+a„a„a„a„+4(a~ata~a„+ata„a„a„) . (AI)

We seek a transformed Hamiltonian H' given by

H'=cps(H+h)e gs

with S chosen so that

1[8,Ho]= -h,
where

Ho = g a~a„.

(A2)

(As)

The required transformation is

S=-—g d„(ata~ -a„a ) ——g atatat-a„a„a„+9(ataxia„-ata„a„)+9{a~-a„)

g ata„a„a„-a„a„a,a„+8{atatata„- ata„a„a„)+ 12(a~a~ —a„a„).
24m (A5)
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Note that S is small if & is large compared to 4,
g, and I', so it makes sense to consider approxi-
mations to H which are low order in S. To first
order in S, H' is identical to H given in Eq. (4).
To second order,

G(Z}„.= G (Z)„'.+ G(Z)0,(2r/[1+ 2rG(Z);, ])G(Z);. .
(as)

The bound state is obtained from the isolated
poles in G(g) which occur when

H2=H+i[S, (H-Ho+2h)], (A6) 1+2rG(z);, =o. (a6)

and H2 also has phonon-conserving and phonon-
nonconserving terms. The corrections to H are of
order AB/& where A and B are either a &, g, or
I'. Again we argue that the phonon-nonconserving
terms are relatively unimportant, and because
they are smaller than before they will be ignored.
If necessary these terms could be treated using
perturbation theory or another unitary transforma-
tion. All except one of the phonon-conserving
terms lead to a simple renormalization of the en-
ergies e, 4„, and F which appears in the model
Hamiltonian. The one additional phonon-conserv-
ing term which appears in &,' is a three-phonon
interaction of the form

Z aaaaaa
n

We ignore this three-particle interaction.

p(E) =—lim (Im[G(E+fs)„]),1.
m 6-o

a Green's function of the form

(a7)

c(z),', = ~ [z —(z' w')"'] (a6)

has the correct analytic structure, and yields the
desired density of states (of width 2W because two
phonons are involved}. A solution of 1+2I"G(Es)0~,
=0 gives

Except for the ignored constant 2&, solution of the
above equation gives Es of Eq. (36), when q =0.
The corresponding bound-state energy for the
semicircular model is obtained by modifying the
unperturbed Green's function. Since the density of
states p(E) is related to the Green's function
through

APPENDIX B
V ~4rE ==

l
—+—for I & W/4

2 &W 4r (a9)

G(z);, = 1/[z'- (4&)']"'. (a3)

The perturbed Green's function can be written in
terms of the free-particle Green's function

In order to obtain the bound-state energy E~ and
overlap probability R for the semicircular model,
we first use Green's functions to obtain the corre-
sponding quantities for the one-dimensional model.
A simple alteration of the Green's function then
yields the desired results for the semicircular
model. We consider only the case in which the
center-of-mass wave vector q is zero, and ignore
this subscript. If the energy 2& is also ignored,
Eq. (35) becomes

Hl~&=2~(l~+»+ l~- I&}-2rs lo). (a1)

The Green's function is defined as

( )„=& l(z- ) 'l (a2)

and the unperturbed Green's function [G(Z)0 ] is
defined analogously except that l" is taken to be
zero. The free-particle Green's function can be
obtained by writing ln& as a linear combination of
the plane-wave eigenstates of the Hamiltonian for
noninteracting particles, and for the one-dimen-
sional model

which is essentially the result of Eq. (41). The
apparent solution for smaller I' corresponds to
taking the wrong sign of the square root in Eq.
(aa).

The normalized probabilities R= 2H
i
&fr l 4s& l

can also be obtained from Green's functions. To
do this, let

z(e) (c, z= (alO)

One of the eigenstates of H is lgs&, so an expan-
sion of g(s) in terms of the eigenstates of H gives

g(s)= l&t, l4, &l'z E + ~ ~ ~ (a11)

where the ellipses indicate terms nonsingular as
z- E~.

Let g be a number much smaller than the differ-
ence between EJ, and all other eigenvalues of H.
Then

EJ +r}

lim g (E +i 6)dE = -i w
l

& ps
I
gr &

I
+ ~ ~ ~,

0 E~-v)
(a12)

G(z)..=G(z):.+G(z)'„.2«(z)...
from which it follows that

(a4)
where the ellipses stand for terms in which van-
ish with g. We can take the limit of small k, and

k2 in lg„&, and in this limit
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(B13)

In the limit of small q, only the singular paI t of
g(z) contributes to the integral of Eq. (B12), and

using Eg. (B15),

g(z) =~ Q G(~)„„.
rt 122

Writing &(s)„ in terms of G(z)„' [Eg. (B5)],

g(~)= +—, ; . (B14)2 2 1 2r
z-2e, & (z-2~,)' 1+21'G(z)',, '

We know that 1+2 I'6 (Es)',,= 0, so for z near &s,

or

-a
(B16)

When the values of Es, a, = W/2sgnh, and G(s),',
appropriate for the one-dimensional model are
substituted into the above expression for 8, Eq.
(39) is obtained. When G(z),0 is replaced by
G(z)00 and E~ is given by (B9), the value of A for
the semicircular model, Eq. (42), is obtained.
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