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Fermi surface of lead under homogeneous strain

%.Joss

(Received 25 July 19SO)

The uniaxial stress and angular shear dependence of several extremal cross sections of the Fermi surface of the
simple metal lead were obtained by a simultaneous measurement of the oscillatory magnetostriction and the de
Haas-van Alphen torque. For six of the seven experimentally studied orbits all the uniaxial stress derivatives were
determined and their sum compares well with the directly measured hydrostatic pressure dependence of other
authors. The response of the Fermi surface to homogeneous strain is discussed in terms of volume-conser ving shears
(tetragonal or angular) and volume changes. A theoretical study of the Fermi surface and its strain dependence,
based on a local pseudopotential model, is presented. New values for the relevant pseudopotential matrix elements in
the absence of strain obtained from a fit to high-precision de Haas-van Alphen frequencies are given for de'erent
sizes [(4X4), (8 XS), (16/ 16)j of the secular matrix. The Fermi energy and its derivatives are computed by summing
over occupied states. Eight orthogonaHzed plane ~aves are required in the secular matrix in order to describe the
effect of a general homogeneous deformation on the Fermi surface. The strain response of ten carefully extremalized
orbits has been calculated, with the slopes of the form factor at the first two reciprocal-lattice vectors as the only free
parameters. Good agreement with our uniaxial stress data, as well with the hydrostatic pressure data of Anderson et
cl. is found, without invoking the spin-orbit interaction as an extra free parameter.

I. INTRODUCTION

The precise experimental information obtain-
able from zexo-pressure Fermi-surface studies
stimulated the development of various theoretical
models for the electronic band structure. For
simple metals a plane-wave representation of the
conduction-electx'oQ states 1Q combination With R

@weakly scattering pseudopotential has been 'suc-
cessful. ' ' An experimental investigation of the
effect of homogeneous strain on the Fermi surface
provides a critical test of the physics involved
in the description of the solid at zero pressure.
The strain introduces additional degrees of free-
dom, namely, lattice and potential parameters
entexing the band-structure calculation must be
allo@red to vaxy arith strain. In particular one
may hope to gain further 1nslgllt 1Qto the lntex'ac-
tion betvreen the conduction electrons and the lat-
tice ions, which is responsible for the shape of
the Fermi; surface. If the model arith stxain-de-
pendent parameters fails to account for the strain
experiments, then the zero-strain model is highly
questionable. Furthermore the study of the strain
dependence of the Fermi surface is of great inter-
est becRuse lt pl ovldes 1llfox'DlRt1on Rbout the
electronic energy band stxucture of solids under
strain. Such information is invaluable for the un-
derstanding of the strain dependence of RB prop-
erties in which the conduction electrons play Rn

important xole.
Of all. simple metals, lead is the one for which

the pressure dependence of the Fermi surface has
been the most intensively studied. Anderson et
gl.3 showed in their first investigation that the

pressure dependence of the Fermi surface is
strongly influenced by the stress dependence of
the pseudopotential form factor. In a subsequent
papex' ABderson &~+I, compax'ed their experi-
mental pressure derivatives to the predictions of
vax'ious Fermi-surface models. They pointed out
that although a local pseudopotential model in-
cluding spin-orbit interaction accounts for the
general topological features of the equilibrium
Fermi surface of lead, it fails to correctly px'6-
dict its pressure dependence. They had to as-
sume a nonlocal and volume-dependent p8eudo-
potential in order to reproduce their experimental
results. Unfortunately, once the bare pseudopo-
tential is allorved to vary vrith volume, the vrhole
concept loses its physical significance, so that
these author'8 results are not very meaningful.
According to Van Dyke, ' the 4-OPW (orthogonat-
ized-plane-wave) calculation using a local pseudo-
potential failed to reproduce the correct pressuxe
dependence because the number of plane a&aves
considered eras too small. Van Dyke obtained rea-
sonably good agreement arith the experimental
values of Anderson et gl.~ with a l,ocal pseudopo-
tential model involving 90 OP%'8. On the other
hand, a rough calculation by Sorbello and Gries-
sen' based on a simple local 4-OP% model neg-
lecting spin-orbit interaction, suggests that part
of the difficulty encountered by the above authors
in xeprodueing the experimental data is due to
their expressing the matrix elements Rnd Fermi
enexgy in so-called computational units, i.e.,
factoring out a term inversely pxoportional to
the lattice constant squared, vrhose dependence
upoIl px'essure &Rs Subsequently ignored. In order

1981 The American Physical Society



4914 W. JOSS

to settle the question we undertook a careful ex-
perimental and theoretical investigation of lead.

Our results are given in such a way as to allow
future workers to compute the response of the
Fermi surface of lead to an arbitrary strain. The
subsequent sections of the paper are arranged as
follows: In Sec. II we introduce our notation for
lattice deformation, discuss the experimental
method, and describe the equipment. Finally we
present the experimental results for various ex-
tremal cross sections of the Fermi surface of
lead. The formalism for calculating the strain
response is developed in Sec. III, which also con-
tains our computational results and the compari-
son between the experimental and calculated val-
ues for the strain dependence of extremal cross
sections. The conclusions are given in Sec. IV.

II. EXPERIMENTAL

A. Characterization of lattice strains and stresses

x' = (1+e„„)x+e„,y+ &„,z . (2.1)

It will prove convenient to express the state of
strain in terms of the associated dilation and six
volume- conserving shears. The uniform dilation
is given by

EQ/Q=e +6„+e„. (2.2)

A volume-conserving tetrggongl shear along the
x axis is the fol.lowing combination of the fraction-
al strains &, ,:

1
~xx 4~ ~yy ~~g = »g (2.3)

and is defined by the symbol y„.A volume-con-
serving angular shear in the x —y plane is given
by

(2.4)

Thus a positive angular shear y, , corresponds to
a reduction. in the angle between the i and j axes
of the real-space lattice. The strain components

Here we recall the notions of elasticity neces-
sary for the understanding of our discussion of the
strain dependence of the Fermi surface. We re-
strict ourselves to the case of cubic crystals. The
lattice strain is related to the applied stress
through the elastic compliance constants S,.&.

Given three orthogonal unit vectors x, y, z,
attached to the unstrained lattice, a uniform d

formation of the crystal. will transform them into
a new set of vectors x', y', z', of which x' is, for
example, given by

above defined E,&„,&„,y„,y,„,y are related

the matrix of elastic stiffness constants C,.~.

B. Measurement of the strain response

The response of the Fermi surface to uniaxial
strain can be determined either directly by apply-
ing an external stress to the sample or indirectly
from oscillatory magnetostriction or sound- vel-
ocity measurements. The first kind of experi-
ments bring with them the risk of damaging or ro-
tating the sample when applying the stress, while
the sound- velocity measurements only produce
products of strain derivatives, so that the second
of the three methods appears to be the most re-
liable. ' The uniaxial stress dependence of a Fer-
mi-surface cross section can be measured by
combining the amplitude of the oscillatory mag-
netostriction and the de Haas-van Alphen torque
as discussed in detail by Qriessen and Sorbello. '
Advantage is taken of the oscillatory behavior of
the thermodynamic potential' of an electron gas
in an external magnetic field II as a function of the
inverse of the latter. For an oscillatory strain
&, ,(H) measured parallel to the crystallographic
axis i, the corresponding stress dependence of an
extremal orbit of area A is given by the relation

d lnA &, , (H) d lnA

r(a) (2.5)

where 7. is the de Haas-van Alphen torque per
unit volume measured with an arbitrarily chosen
suspension axis. The angle P is measured in a
plane perpendicular to the suspension axis and
specifies the orientation of the sample with re-
spect to the magnetic field. The amplitudes of the
oscillatory .quantities are measured at the same
temperature, orientation, and magnetic field
strength, and the relative phase between c,, and
7. determines the sign of the stress dependence.
T and the d InA/dQ often vanish for a field applied
along a, symmetry axis whereas the quotient
T/(d InA/dQ) can be accurately extrapolated from
measurements of the two quantities as a function
of the magnetic field orientation. The main limit-
ation of the method arises from torque-induced
length changes, in particular in those cases where
the magnetostrictive length changes are small to
begin with. These spurious effects are easily de-
tected by measuring the amplitude of the oscil-
latory magnetostriction as a function of P in the
neighborhood of symmetry planes or axis. If A(P)
has an extremum in the chosen symmetry direc-
tion, then the relative length change must be a
symmetric function of ft) about that direction. Any
deviation from symmetry can be attributed to tor-
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(2.6)

Equation (2.5) is also valid for off-diagonal ele-
ments e,.&

[defined in Eq. (2.1)], and combining
it with Eq. (2.6) we obtain

d lnA nf/l d lnA
' da, , T dQ

(2.7)

For length changes measured in the [110]direc-
tion the left-hand side of Eq. (2.7) becomes

que effects.
The oscillatory relative length changes of the

sample dimension nl/l in an arbitrary crystallo-
graphic direction e (unit vector) is given by

)8) e ~ ~

t' '
dlnA 2 dlnA dlnA
dc«3 dy,, d lnQ

(2.15)

which follows from Eqs. (2.12) and (2.14). The de-
pendence of an extremal area upon stress can be
obtained from Eq. (2.15) with help of the identity

3

(2.16)

and using the definition of the elastic compliance
constant S,~. The result is

In terms of the response of the Fermi surface to
a uniform dilation and a volume-conserving shear,
the effect of a uniaxial strain on the extremal area
A is given by

1 dlnA dlnA dlnA
2 do'„„do„dT (2.8)

dlnA, dlnA g dlnA
do s » » dy

(2.17)

where use has been made of the identity

d lnA d lnA d lnA

doxy d~yx
(2.9)

Similarly for e parallel to the [111]direction we
get

d lnA d lnA d lnA d lnA
3 dp dr~g drg„G'r„y

C. Experimental equipment

Two different sample holders were used to mea-
sure simultaneously the oscillatory magnetostric-
tion and the de Haas-van Alphen torque by means
of a capacitance technique. The dilatorquemeter
I shown in Fig. 1 contains a dilatometer with an
adjustable capacitor gap. The gap can be exter-
nally set at any temperature, which guarantees
excellent sensitivity of the device irrespective of

It is therefore apparent that the method also gives
access to the angular shear dependence of extrem-
al orbits. The first term in Eq. (2.10) was ob-
tained from the relation

20 ' ~ ' ]b
10

8 1f

d I.nA g d lnA

dp ] do'] . (2.11)

The pressure derivative can in turn be related
to the volume derivative by

3h ~g gf

dlnA dlnA rc ~ dlnA
dp d lnQ 3 ~ ck ] ~

(2.12) C 4o

(2.13)

which follows from the definition of the tetragonal
shear dependence

dlnA dlnA 1 dlnA dlnA't

dy, d&„. 2 de» d&» j
(2.14)

where z, the isothermal compressibility, is equal
to 3(S»+2S») for the cubic metals considered.
The tetragonal shear derivatives are obtained
from the measured stress derivatives by means
of the relationship

dlnA ~ ~ dlnA 1 dlnA dlnA
~

FIG. 1. Schematic view of the dilatorquemeter. 1-
torquemeter with la —and 1b- fixed parts, 1c- thin
part acting as spring, 1d- moveable part, 18- rec-
tangular capacitor plates, 1f- spacer, 1g- calibrated
feedback coil. 2- worm drive with 2a- rotation shaft,
25- worm, 2c- worm wheel. 3- dilatometer with 3a-
fixed part, 35- moveable part, 3c- ring spring system
for a parallel displacement of part 3d- ring capacitor
plate, 3e- fixed ring capacitor, 3f- capacitor plate
holder with guard rings, 3g- gap adjustment system
consisting of a moveable wedge-shaped part, 3'- screw
cap, 4a- sample, 4b- mounting cap screwed on 3$. The
dilatorquemeter fits into a bore of about 4 cm in dia-
meter.
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the thermal expansion of the measured material.
The dilatometer 3, with the sample 4g inside is
mounted on the torquemetez 1 and can be rotated
about an axis perpendicular to the field by means
of the rod 2g and the worm drive 2b and 2c. The
moveable end of the torquemeter 1d is connected
to the fixed end la by a thin tongue lc (1 mm thick)
acting as a spring, and the whole piece is
machined out of a single block of material, with
great care taken to eliminate possible internal
tensions. The rectangular capacitor plates le
are isolated and glued on the parts 1b and 1d and

lapped together with the planes containing the
spacer 1f (typically. 0.05 mm thick). To prevent
some previously observed interactions between
the dilatometer and the torquemeter, the latter's
compliance was improved by an electronic feed-
back system. This system sends a compensating
current through the coil 1g, thereby compensat-
ing the de Haas-van Alphen torque with the torque
resulting from the action of the magnetic field on
the magnetic moment of this coil. This feedback
system now yields a sensitivity of 10 ' N m with a
torquemeter compliance of only 10 ' rad/Nm.
Following Brandli and Qriessen, "we fixed the
moveable part of the dilatometer 3b with two ring
springs 3c on'to the hollow cylindrical body 3a,
which produced a parallel displacement of the cap-
acitor plate 3d. One end of the sample 4a fits into
the mounting cap 4b, screwed on the moveable
part 3b. The other end pushes the plunger of the
gap adjustment system 3g. The plunger can be
moved with a wedge and a screw mounted in the
capacitor plate holder 3f. The gap will be adjusted
in the beginning of the experiment at liquid-helium
temperature and afterwards the turning rod 3g
will be disconnected. Best possible parallelism
of the two capacitor plates was achieved by lapping
simultaneously the capacitor plate 3d and the left
rim of the body 3a. During the lapping the spring
system was loaded so that in the equilibrium pos-
ition the capacitor plate 3d and the rim of 3g are
separated by a distance of 1 mm along the axis.
The capacitor plate 3e and the guard ring 3f were
al.so lapped together. After screwing the cap 3@

onto 3a, the capacitor plate holder 3f was pushed
with screws against the rim of 3a. In this way a
very good parallelism of the capacitor plates could
be achieved, so that small gaps of the order of
0.01 mm could be used for the measurements and
the resulting sensitivity was 5x 10 "for relative
length changes.

The sample holder I allows measurements only
of the response of extremal areas to a stress per-
pendicular to the applied magnetic field. For mea-
surements of the oscillatory magnetostriction in
an arbitrary direction with respect to the magnetic

field, a, second dilatorquemeter (II) similar to the

one described by Griessen et zl."was construc-
ted. The torque is again electronically compen-
sated by a feedback system and gives us a sensit-
ivity. of 10 ' Nm with a torque compliance of only
10 ' rad/N m. The sample is glued on a conical
polycrystalline support of the same material as
the sample. The upper face of the sample acts as
one of the capacitor plates of the dilatometer. For
samples with bigger thermal expansion than the
material of the dilatometer (i.e., lead), the cap-
acitor gap cannot be adjusted, and is given by the
difference in the thermal expansion of the two ma-
terials. To avoid any magnetic effects all the
parts including screws of the two dilatorquemet-
ers were machined from the beryllium- copper
alloy" which also has excellent mechanical prop-
erties. The dilatorquemeters were mounted on
an evacuable vessel filled with helium exchange
gas for thermal contact. Any traces of solid air
would hinder the free movements of the rotatable
parts.

The oscillatory magnetostriction and the de
Haas-van Alphen torque were measured through
a minicomputer-based data-acquisition system at
temperature between 4.2 and 1.3 K in magnetic
fields up to 10.5 T provided by a superconducting
solenoid with a homogeneity of 1 x 10 ' over a
volume of 1 cm'. The homogeneity was adjusted
by two compensating coils and checked over the
whole field range by moving a pickup coil with
constant velocity along the solenoid axis. The
field was once calibrated with NMR and periodic-
ally checked with the help of the de Haas-van
Alphen effect. Our measurement technique gives
accurate values for the amplitude of both effects,
but on the other hand, it does not permit any di-
rect frequency discrimination, in contrast to the
field modulation technique. To recover small
de Haas-van Alphen frequency components which
were buried in the side lobes of the Fourier
spectrum of much larger components, our data
were filtered using an equal-ripple finite-im-
pulse-response digital filter. " The first points
of the filtered output corresponding to the length
of the impulse response were discarded (typically
41 of the 256 or 81 of the 512 data points). The
cutoff frequency was chosen as far as possible
from the de Haas-van Alphen frequencies of in-
terest. The stress dependence is unaffected by
small errors in the amplitudes of the magneto-
striction and the torque caused by the filter.
Both signals are affected in the same way,
and to determine the stress dependence one uses
the quotient of the two amplitudes. Closely-lying
interfering frequencies were separated by a non-
linear fitting technique. "
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D. Experimental results

The Fermi surface of lead has been investigated
in detail by Anderson and Gold" using an impul-
sive-field de Haas-van Alphen technique. Their
results are in qualitative agreement with an emp-
ty-lattice second- and third-zone Fermi surface
based on four conduction electrons per atom. The
large closed second-zone hole surface schemat-
ically shown in Fig. 2 as well as the multiply con-
nected third-zone electron surface of [110]arms
shown in Fig. 3 should have smaller dimensions
than those predicted by the empty-lattice model.
The latter also predicts small electron pockets
in the fourth zone, centered at the zone corners

These pockets, which have never been ob-
served with the de Haas-van Alphen effects but
whose existence had already been suggested by
Tobin et al. 's" Shubnikov-de Haas experiment,
have recently been confirmed by Ivowi and Mack-
innon" in their study of quantum oscillations in
ultrasonic .absorption.

In Table I we present quantum oscillation fre-
quencies obtained by different methods in high-
symmetry directions. The listed de Haas-van
Alphen data are the most accurate ones available
to date. Qur own results were obtained from si-
multaneous measurements of the oscillatory mag-
netostriction and de Haas-van Alphen torque. In
all cases the observed frequencies of the two ef-
fectS were identical. Except for the )[100] and

)[111]orbits our values are in perfect agreement
with the field modulation de Haas-van Alphen re-
sults. For t'[110] we see the by-now well estab-
lished 42.5-cycle beat pattern. For )[100]and )[111],
which are both minimal, our results are probably
the more reliable ones since (i) they were mea-
sured simultaneously with v[100] or 8[111], for
which no discrepancy was observed, and (ii) their
angular dependence is weak which excludes errors
from misalignment.

As for the samples used in our work, they were
99.9999$ pure lead single crystals obtained from
Metals Research or home grown from the melt
in vacuum by the Czochralski technique. Unless
the crystals were carefully annealed, mounted,
and cooled, a spurious splitting of the f and v

branches was observed. The resulting beat pat-
terns in the oscillatory magnetostriction and in
the de Haas-van Alphen torque were strongly de-
pendent on the orientation of the magnetic field,
and in no way correlated. In contrast to this be-
havior our final samples displayed only two ( fre-
quencies in agreement with the results of Ander-
son et al.' For the v orbit the splitting, although
strongly reduced, could not be totally eliminated
even in the best samples. Our conclusion is that

Iooi]

FIG. 2. Second-zone hole sheet of the Fermi surface
of lead. The orbit $ is drawn for the magnetic fields
in the 1001], [1IO], and [1T1]direction.

it cannot be ascribed to the interference of two
adjacent frequencies, as suggested by Gold and
Schmor'0 and others. A possible interpretation
is that the effect is caused by the presence of
small microcrystallites, "the number of which
increases with each cooling cycle."

The crystals measured in dilatorquemeter I
were cylinders (P6 && 20 mm) with axes in the
[100] and [110]direction. The orientation was
accurate to within 2 . The oscillatory magneto-
strictive length change nfll was recorded along
the cyl.inder axis. The torque v. was measured
about the same direction, which is also the axis

[001]

FIG. 3. Third-zone electron sheet of the Fermi sur-
face of lead. The orbits p, $, and g are drawn for the
magnetic field in the f100] direction, f in the [110]
direction, and 8 and o. in the I111]direction.
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TABLE I. Quantum oscillation frequencies in lead. dHvA: de Haas-van Alphen effect.
UQO: Ultrasonic quantum oscillations, Ref. 17. SdH: Shubnikov-de Haas effect, Ref. 16.

Orbit
[H] Zone This work

Frequency (T)
dHvA UQ0 SdH

$ [100]
& [110]
g [111]
L [112]

g fll0]

f fill]
p [100]

(u [110]
$ [100]
8[ill]
y [100]
4[110]
|t [111]

4
4
3
3

3

3
3
2
2

1 806+2
1 764+2

5126+ 2

3 564+2
10 921+10
20 440+ 10
15 917+10
15472+ 10

1 807.2+ 0.4
1 764 y 6cd

2 237 + 0.05bd

5 124.5+0.2"

3 604 +20"
10950 + 30"
20436 +2'
15912 y 5+b &

15580 + 40b

565
440+10
445

1 833'
1 795
2 220
5 010
4 000+ 200
3 520

11000

440+ 20

300 ~20
1820+10

~ Reference 18.
b Reference 4.' Reference 19.
d Error bars, J. R. Anderson, private communication.

about which the dilatometer can be rotated. This
experiment only yields the response of extremal
areas to a stress perpendicular to the applied
magnetic field. These results were completed
by extended measurements on a crystal
(P5 x 4 mm) with [001] orientation. M/l was
measured along the [001] direction of the crystal
lattice. The torque was measured about the [010]
as well as about the [110]direction, which is in
this case the axis about which the dilatorquemeter
can be rotated. The amplitude of the relative
length changes as a function of magnetic field ori-
entation is shown in Fig. 4 for all observed orbits.
The quoted values correspond to averages over a
certain range of magnetic field strength
(g: 6.4-10.3 T; v, $: 7.3-8.0 T; 8, g: 9.1-10.3 T)
so as to optimize the signal. The angular depen-
dence dlnA/dQ was determined from the mea-
sured de Haas-van Alphen frequency with a typi-
cal accuracy of 2/o. The quantity r/(dlnA/dP) oc-
curring in the expression for the stress depen-
dence, and which for our experimental configura-
tions is the product of magnetization and magnetic
field, is displayed in Fig. 5 for the same ranges
of magnetic field strength. For a given orbit the
amplitudes in Figs. 4 and 5 show a similar angular
dependence. The torque amplitudes have cubic,
the length changes tetragonal, symmetry, and the
stress dependence d lnA/da», calculated with Eq.
(2.5) from the two-quantities is shown in Fig. 6.
Except for the second-zone g areas, which are on
a large sheet of the Fermi surface which deforms

40

30

O
20 4

10

I

[I10]

FIG. 4. Amplitude of magnetostrictive oscillations
in the [001] direction at 1.4 K as a function of magnetic
field orientation. The values quoted are averages over
optimum ranges of magnetic field intensity (see text)
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FIG. 5. de Haas-van Alphen torque normalized to
relative change in area with field orientation as a func-
tion of the latter. Data obtained at 1.4 K and for differ-
ent field ranges (see text).
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anisotropically under uniaxial stress, the stress
dependences of the smaller orbits are only weakly
dependent on the field orientation.

The stress dependences in high-symmetry di-
rections are summarized in Table II. The values
quoted are averages over several measurements

-20
0

0 0

[100] [IOI] [001] [I I I ] [110]

FIG. 6. Uniaxial stress dependence of extremal cross
sections of the Fermi surface of lead as a function of
field orientation, for magnetic fields in the (010) and

(1IO) planes.

TABLE II. Experimental stress and hydrostatic pressure derivatives of extremal cross-
sectional areas of the Fermi surface of lead.

Orbit
[H]

f [110]

[110]
f[ill]
p [100]

$ [100]

8[111]
g [100]
/ [110]

/ [ill]
f [1TO]
p [001]
$ [001],
g [110]

A (a.u. )

0.0483

0.0472
0;0598
0.1370

0.0953

0.2919
0.5464
0.4255

0.4136
0.0483
0.1370
0.0953
0.4255

«00 0010

0001

&001

«oo
0010~ 0001

«00
0010~ 0001

«00 ~ +010& +001

«00 0010

0001

«00 &010 O'001

«10
«10
«10
«1O

(10 bar )do'g )

-18 +4
32 +4
22 +4

-12 +2
5 +1

27.5+2
-13.5+ 1
-0.4+ 0.1

2.4+ 0.2
-7.1+0.4
-0.8+ 0.1

—16 +4
6 +1

—13 +1
—1.7+ 0.3

4 0+7 2.5+ 0.2

2.0 + 2.3
2.7 + 0.2
2.3 + 0.1

-0.5+ 2.3 0.0+ 0.3

1.2+ 0.2

2.3+0.5

1.2 + 0.1
2.4+ 0.4
2.9 + 0.2

2.4 + 0.2 2.1+0.2

(10 6 bar-')
dp

a b

~From uniaxial stress data (this work and Ref. 22).
" Direct measurements by Anderson et al. (Ref. 4).
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in different experimental configurations. Table
II also contains the result from the measurement
on the crystal with its axis in the [110)direction.
This geometry provides us with a nice consistency
check, since the two uniaxial stress dependences
appearing in the expression (2.8) are identical for
the orbits under consideration and furthermore,
the angular shear dependence of the v[001] and

/[001] areas vanishes. This has the consequence
that for the latter two orbits the following identity
has to be satisfied:

strained and one for the unstrained lattice. It is,
however, more accurate to calculate directly the
strain derivatives of the wave vector at each
point of the orbit for & =0." This is done by dif-
ferentiating the secular matrix M with respect to
x =&, E~ and V, =S(G,)v(~G, ~) analytically, and
using the Hellman-Feynman theorem" "to com-
pute the derivatives of the eigenvalues

(3.4)

d lnA, dlnA dlnA
do'j yp do'» d Oy&

(2.18)

which is indeed the case. Finally, according to
Eq. (2.11) the sum of our uniaxial stress depen-
dences should be equal to the measured hydrostat-
ic pressure derivatives. For all orbits this rela-
tion is satisfied within error bars, which is really
significant only in the case of the 8 [111], /[110],
/[111] orbits for which the errors in the pressure
derivatives calculated from the uniaxial stress
data are small.

Here ~4', ) is the eigenvector corresponding to the
eigenvalue at zero deformation. In order to re-
main on the A(k, x) =0 surface as the parameter
x varies, one imposes the condition that the total
derivative dA/dx must vanish, i.e. ,

(3.5)

The dependence of the cross-sectional area of
an orbit on the parameter x is determined by the
component normal to the line element ds, of the
projection of dk/dx in the plane of the orbit:

III. THEORETICAL

A. Formalism BA dk (VgA),
Bx „bi,dx i(vgA), i

(3 6)

In the pseudopotential approach, the secular ma-
trix at the Fermi energy E~ is given in atomic
units by

Sl(e) =((-,' [k- G,.(c)]'—E (e)]6d d

+ Vd, n, (e)) . (3.1)

The G, 's are reciprocal-lattice vectors, &

stands for the lattice strain, and V~.~. are pseudo-
potential matrix elements conveniently expressed
as

Vn. n =S(G& —G&)(k —G, ~v ~k —G&), (3.2)

where the structure factor S(G, —G&) depends only
on the geometry, and the form factor (k- G,

~

v
~

k
—G&) is a property of the individual ion, indepen-
dent of its lattice position. Since one is interested
only in the first few eigenvalues X of the infinite
secular matrix, M is folded down to a finite size
and the matrix elements are approximated by

Vn, d =S(G, —G,)v(jG, —GJ~), the so-called "on-
Fermi- sphere" approximation. '

The Fermi surface of a homogeneously strained
crystal is given by the locus of wave vectors k
which satisfy the implicit equation

A(k, E,(~), Vn n, (e), ~) = 0. (3.3)

The strain dependence of a given orbit on the Fer-
mi surface can, in principle, be obtained from
two separate solutions of Eq. (3.3), one for the

~ (V„-A)„~
i (V-A.), [

(3.7)

and (dk/dx)„, the variation of k parallel to the
field, is constant over the orbit if the latter is to
remain in a plane perpendicular to the field. With
help of Eq. (3.5) we finally find

BA BA/Bx

.mt ~(VgA). ~

(3.8)

To avoid uncertainties in the calculation of the
line integral, it is convenient to express Eq. (3.8)
in polar coordinates"'

Ba " &',(BA/Bx)
„

o (k, V„-A)
(3.9)

where k, = k (P) is the radius vector for a point
on the orbit and Q is the azimuthal angle. The
response of an extremal cross-sectional area to
a general strain & is given by the following total
derivative:

where (V„-A),is the component of the gradient
perpendicular to the magnetic field. For extremal
orbits the perpendicular component can be re-
placed by the full gradient in the numerator, since
the parallel components obey the extremality con-
dition
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ding BlnA ~ Bing dl.nV,
BE ~ ~lnV dc

8 lnA d lnE~ d lnQ

8 lnE~ d 1nQ de
{3.10)

where all partial derivatives of A can be calcu-
lated by means of Eq. (3.8) or (3.9). [In the empty
lattice case, the partial derivatives with respect
to the strain & and the Fermi energy E~ obtained
fro m Eg. {3.9) were found to be identical to within
0.01/~ with the exact analytical result. j

B. The unstrained Fermi surface

For the calculation of the Fermi surface we
use a secular matrix with a fixed number of plane
waves (4, 8, or 16 OPW, the corresponding recip-
rocal-lattice vectors are given in Ref. 25). This
is one possible choice of basis among many, none
of them being entirely satisfactory in all respects.
The fixed size of the matrix avoids discontinuities
on the Fermi surface in the irreducible part of the
Brillouin zone. Our choice of reciprocal-lattice
vectors achieves complete equivalence between
points on the Brillouin-zone surface which have
the same symmetry, e.g. , U(l, —,', —,') and K(-,', —,', 0),
but has the disadvantage that possibly not all mem-
bers of a degenerate set of plane waves are inclu-
ded in the secular equation. This can lead to un-

physical cusps in the band structure when the 0
vector crosses a high-symmetry axis, and to seri-
ous errors in computed properties which depend
eritieally on the symmetry of the wave functions.
More precisely, these effects are due to the as-
ymmetric treatment of matrix elements connect-
ing high-energy bands to those crossing the Fermi
level. The mixing of these high-energy states into
the ones on the Fermi surface is determined by
the ratio of the matrix element squared, divided by
the difference in kinetic energies, which is quite
large for lead." To reduce this asymmetry we
set the higher (lG,. —5&l)2k+) matrix elements
equal to zero. We also neglect the spin-orbit in-
teraction, which is important at the point 8' about
0.04 a.u. below the Fermi energy, where it opens

a gap between. the second and third band, but does
not dramatically effect the genexal topology of the
Fermi surface.

Qur zero-temperature lattice constant differs
by 0.3% from the one quoted by Anderson and

Gold, "Anderson et gE. ,
4 and Van Dyke, ' due to

the use by the first authors of too high a value
for the thermal expansion coefficient. Our. value
can be found in Table III together with other equil-
ibrium parameters for Pb at 0 K. The coeffic-
ients ~ixx = "(I~alii I) oooo = U(l Gooo I

)
mi energy E~ are treated as parameters in our
calculation and their optimum values are listed
in Table IV for three different sizes of the secular
matrix. They result from unweighted least-
squares fits to the area of eight extremal orbits
on the unstrained second- and third-zone surface.
The fits involved the derivatives of the areas with
respect to the parameters and for different initial
conditions always the same minimum was reached.
The coefficient g», is rel.atively constant as a
function of the size of the secular matrix and v»,
tends towards the value of the form factor at q
=

l Oooo l
given by Appapillai and Williams. " We

note that our 8-OP% coefficients p„,and v„,are
very similar to those of the local 4-GPW calcu-
lation with spin-orbit of Anderson et gl. '
(v„,=-0.047, oooo =-0.0285 a.u. ) and that Van

Dyke, ' using about 90 QPW's, found about the
same value for v», (=. -0.0511 a.u. ) but a much

bigger coefficient t,oo(=-0.0105 a.u. ). We rede-
termine the Fermi energy by summing over oc-
cupied states with the Gilat-Baubenheimer meth-
od." In all cases the metal is compensated as
required and the Fermi energy so obtained agrees
with that fitted within our numerical accuracy
(+0.0005 a.u. ), so that our calculation of the un-

strained Fermi surface effectively involves only
the two matrix elements as free parameters. The
total bandwidth E» =E„—Es (Es refers to the
bottom of the conduction band), increases with

respect to the free-electron vat. ue due to the open-
ing of a sizable gap between the first and the next
three bands (smallest energy gap 4 OPW: 0.061
a.u. , 8 OPW: 0.065 a.u. , 16 OPW: 0.069 a.u. ),

TABLE III. Equilibrium parameters for lead at 0 K.

Lattice constant (a.u.)
Volume per atom {a.u. )
Free-electron parameters (a.u.)
E lastic compliance constants
(10 bar )
Compressibility {10 6 bar )

a =9.2874 (4.915 A)
=200.27

&~y =0.352 27 A'Op =0.83937
Sf f 6.8153 S(2 =-3.0661 844 = 5.1493

=2.0495

'The room-temperature lattice constant (Ref. 27) is converted to 0 K with thermal-expansion

data (Ref. 28).
~Reference 29.
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TABLE IV. Form factors at the first two reciprocal-lattice vectors, Fermi energies E&,
occupied bandwidth E~a, and number of carriers per atom n& in band i for different sizes of
the secular matrix (energies in a.u.).

4 OPW 8 OPW 16 OPW

V111

V200
Ez~
E c

Era'
Era'
n2(holes)
n3(electrons)'
ng(electrons) '

-0.050 09
-0.03245

0.359 36
0.3598
0.3697
0.3553

-0.3750
0.3715
0.0034

-0.046 77
-0.026 51
0.352 00
0.3518
0.3695
0.3576

-0.3676
0.3645
0.0031

-0.050 05
-0.018 25

0.342 13.
0.3417
0.3762

-0.3675
0.3674
0.0000

-0.046 78
-0.01993
0.348 62

'Appapillai and Williams (Ref. 26).
"Fitted value.
Calculated by. summing over occupied states.
Second-order perturbation theory, see Refs. 25 and 30.

an effect which overwhelms the expected contrac-
tion arising from the increased density of states
at the Bragg planes.

For the &[110]orbits we have assumed that the
higher and dominant frequency (see Fig. 5 and Ta-
ble I) corresponds to the orbit centered at U, K in
agreement with Van Dyke' and Anderson et al. '
but in contrast to Anderson and Gold." For all
sizes of the secular matrix we find a second,
smaller, noncentral orbit t„,[110]. Its exact pos-
ition has been localized by extremalizing the area
with the help of Eq. (3.V).

For the 4-QPW calculation the root-mean-
square (rms) deviation for the eight fitted plus
the &„,[110]orbit is 2.0%. This is better than the
result of Anderson et al.4 for the local 4-OPW
model (rms deviation 2.6% including $ orbit). The
same quantity for the 8-OPW case is 3.0% where-
as for 16 OPW's it is 1.7%. Although the 4-CPW
treatment apparently leads to a better fit than the
8-QPW calculation, one must keep in'mind that
the shape of the Fermi surface, particularly in
the (110) plane through I', will show unphysical
cusps due to our neglect of matrix elements, as
important in size as the ones we have included.
The best fit with an rms deviation of 0.45% was
obtained by Van Dyke' with a local pseudopotential
using about 90 OPW's, and Anderson et al.~ using
a nonlocal model achieved 1.5%. The better agree-
ment is not surprising, because these authors
include spin-orbit coupling and use three adjust-
able parameters, compared to our two in the
local model. As the main objective of this work
is to compare the predictions of various band-
structure models for the strain response of the
Fermi surface, we have not tried to improve the
quality of our zero-pressure fit. This seems
justified because it has been found that in other

simple metals the quality of the zero-pressure
fit has relatively little influence on the values of
the strain derivatives. Therefore we restrict
ourselves to the minimum size of 8 OPW's, which
is required for a correct treatment of shear de-
formations. " For this case the calculated areas
together with their dependence on the fitting para. -
meters are given in Table V. As the number of
OPW's is varied, no systematic change is ob-
served for the derivatives with respect to the ma-
trix elements. The bare cyclotron masses nz,
= [I/(2v)](A/E„)(a lnA/alnE~) remain nearly con-
stant for most orbits when going from 4 to 16
OPW's. The results of our 8-OPW calculation
are listed in Table VI together with experimen-
tally determined cyclotron rkasses and the el.ec-
tron-phonon enhancement factor X = (m,'""/m,"")-1.
The latter is relatively constant for a given band,
and its value in the second zone (0.82) is much
smaller than in the third zone (1.40). A similar
trend has been found by Anderson et al.4 Both
I[110]orbits have about the same enhancement if
we use the recently published results of Ogawa and
Aoki, "which confirms the assignment of the big-
ger area to the central orbit.

Qur model predicts small electron pockets in
the fourth zone at the point W (see Table V),
whose extremal cross sections are between two
and three times too small compared to those ex-
perimentally found by Ivowi and Mackinnon. " In
the early calculations a special effort was made
to suppress these fourth-zone pockets which had
not yet been observed at the time. This was in
fact one of the reasons why Anderson and Gold"
introduced the spin-orbit coupling in their treat-
ment. However with a better optimization' the
fourth-zone pockets reappeared. In the nonlocal
treatment of the pseudopotential by these authors
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TABLE V. Experimental and calculated areas of some extremal orbits on the Fermi sur-
face of lead and their dependence on the matrix elements and the Fermi energy in the 8-OPW
case.

Orbit
[Hl

Center
(2x/a)

Expt.

Area
(a.u. )

Calc.

g'SlnA
BlnV)

l &Ca
C

[G111) '[G200)

E flop]
E flip]
E [ill]

g [110]a
[110]

/[ill] a

v [100]a
~ [110]
g [loo]'
8[111]a

@[100]a
q [110]a
/ [ill]a

W(0, -1/2, 1)
W(0, -1/2, 1)
W(0, -1/2, 1)
U(1/4, -1/4, 1)

(0.39, -0.11,1)
U (1/4, -1/4, 1)
W(l/2, 0, 1)
W'(1, 0, 1/2)
X(1,0, 0)
L (1/2, 1/2, 1/2)
r
r
1

0.0151
0 0118c
0.0» 9'
0.048 31d
o.o472b
0 05980
0.13698d
0 107c
0 0953b
O.291 9b

0.5463~
0.425 3d "~
O.413 6b

0.00646
0.004 09
0.004 59
0.050 19
0.045,3
0.060 30
0.134 54
0.0971
0.0983
0.2g64
0.5666
0.421 0
0.4001

-14.65
-13.48
-13,48
-0.314
-0.038
-0.266

0.266
-0.623

0.764
-O.ogg
-0.323
-0.229
-0.168

4.068
3.615
3.643

-0.271
-0.521
-0.304
-0.489
-0.329

0.044
0.168

-0.106
-0.087
-0.131

73.5
71.1
70.8
9.63

11.76
9.79
9.12

13.24
-7.73
-3.98
—3.39
-3.15

3y33

Used in the least-squares fit for the optimum matrix elements and the Fermi energy.
"This work.

Reference 17.
d Reference 19.' Reference 4.
f Reference 18.

as well as in Van Dyke's calculation the fourth
zone was empty again. The fourth-zone extremal
orbits are much more sensitive to the choice of
the matrix elements and the Fermi energy than
all the other orbits, as displayed in Table V. It
is therefore obvious that the correct dimension
of these pockets can only result if the fourth-zone
orbits are included in the fit for the optimum para-

meters. However, the data of Ivowi and Mackinnon
makes it hard to assign frequency branches (Fig.
7). The [lll] direction is the only direction of
magnetic field, where symmetry considerations
allow only one frequency for the fourth zone. The
inclusion of the I [111j orbit in the fit to the nine
extremal cross-sectional areas gives the follow-
ing set of optimum parameters: vyyy 0 0429

TABLE VI. Experimental and calculated bare cyclotron masses and electron-phonon en-
hancement factor of some de Haas-van Alphen extremal orbits in lead. dHvA: de Haas-van
Alphen effect. CR: cyclotron resonance.

Orbit
dHvA

me~t
C

mca &c
c (mexpt/meal c)

[110]
&„,hlo]
g hll]
p boo]
~ [llo]

flop]
fl 11]
flop]
[110]
f111]

0.539 +0.006
0.571+0.007
0.68 +0.02b

1.22 +0.01

0.89 +0.02
l.lg +p.plb

1.51 +0.03
1.10 +0.01"
1.12 ~p.plb

0.537 +0.001

O.69'
1.22'
1.42"'
0 93
1.20
1.58

1.120 + 0.002
1.14

0.219
p.241
0.267
0.555
0.581
0.344
0.534
0.869
0.599
0.603

1.45
1.37
1.55
1.20
1.44
1.59
1.23
0.74
0.87
0,86

a Reference 32.
Reference 21.' Reference 33.
Reference 34.' Reference 35.
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FIG. 7. Quantum oscillation frequencies ascribed to
electron pockets in the fourth zone of lead as a function
of field orientation, for magnetic fields in the (010) and

(1IO) planes. The data points were observed ultrason-
ically by Ivowi and Mackinnon (Ref. 17) and the solid
curves show the predicted frequencies of our 8-OPW
model; dashed curves: harmonic terms predicted from
fundamental curves. The labels on the curves refer
to the position of the relevant pocket in the Brillouin
zone.

C. Strain dependence of the form factor and of the Fermi
energy

The calculation of the homogeneous strain re-
sponse of the Fermi surface requires the evalua-
tion of the strain dependence of the Fermi energy
and the matrix elements [E(l. (3.10)]. For the ma-
trix elements we use the so-called "on-Fermi-
sphere" approximation, which implies locality of
the strain dependence of the form factor
v([G, —5, ~). For a monatomic Bravais lattice we
can write [v, = v(

I 0,
~ )]

d t/', dv, Bv d lnIG, ( Bv, d ink~
A Bi&) '

IP I
ck Blllk~

(3.11)

where P~ is the radius of the free-electron sphere.
For volume-conserving shears y is defined in

E(ls. (2.3) and (2.4), k~ is constant, and the above
equation reduces to

dv~ Bv d in(5, (

dP B 111@'
I P I

d')/
(3.12)

a.u. , v», .=0.0295 a.u. , E~=0.3530 a.u. . The rms
deviation for the nine areas increases to 5. 3/o and
the different bands now contain the following num-
ber of carriers per atom: n, (holes) =-0.3692,
n, (electrons) =0.3592, n, (electrons) =0.0100. The
frequency branches predicted by this model are
drawn in Fig. 7 together with the data points of
Ivowi and Mackinnon. The agreement between
theory and experiment is not particularly satis-
factory, but the trends for, and the number of,
frequency branches are correctly reproduced.
We have deliberately left out from the figure the
theoretical predictions of Ivowi and Mackinnon
which are obviously wrong. Better experimental
results for the fourth zone would present a really
good test for the necessity and the magnitude of a
spin-orbit parameter for the description of the un-
strained Fermi surface of lead.

For a pure volume change and for a cubic crystal
it becomes

dv 1 Bv Bv,

Ia]
(3.13)

since both kz and
~
G,

~

are proportional to f) '~ '.
The partial derivatives of the form factor with re-
spect to these arguments, computed at the first
two reciprocal-lattice vectors, are given in Ta-
ble VII. The slopes of the form factors
(av/a lnq) I, = In„,I and (av/a lnq) I, In I, the only
free parameters in our calculation of the strain
response of the Fermi surface, result from a
weighted least-squares fit to pll presently avail-
able stress and pressure data listed in Table II.
The partial derivatives [av(~ 6, [)/a ink~] were cal-
culated with the approximation' v(q, kz) =f(q)/

TABLE VII. Comparison of the fitted form factor derivatives Bv/Blnq, Bv/BlnA. &, and
dlnv/dlnO for different sizes of the secular matrix (in a..u.).

4 OPW 8 OPW 16 OPW AW

(»/a(nq) I,= Io, (

av(l G l)/aln)',

dlnv(I G,()/din&

Gppp

xiii
G2pp

G2pp

0.190 +0.020
0.173 +0.011

-0.1208
—0.0791

0.458
0,.966

0.167+0.015
0.146 +0.007

-0.1128
-0.0646

0.386
1.028

0.129+0.026
0.131+0.014

-0.1207
—0.0445

0.052
1.589

0.180
0.198

-0.1128
-'0 0486

0.476
2.495

Appapillai and Williams (Ref. 26).
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[Ag(q, k~)], where e(q, k~) is the Hartree dielec-
tric function. The corresponding quantities at
higher wave vector were set to zero, which is
consistent with our treatment of the unstrained
Fermi surface. Increasing the number of OPW's
from 8 to 16 brings no improvement to the qual-
ity of the fit, and the slopes at the first two recip-
rocal-lattice vectors are not very different from
those of the Appapillai and Williams" form factor,
but they do not tend towards the latter as the size
of the secular -matrix is increased. In view of the
fact that our fitting procedure places no con-
straints on the derivatives of the form factor
Bv/8 lnq, the agreement with Appapillai and Wil-
liams is satisfactory. Similar results have been
obtained for other simple metals, such as alumin-
um, "indium, zinc, and magnesium.

The Fermi energy only depends on the strain
through the accompanying volume change, and the
volume dependence is given by

dlnE~ 8 ln g~ ~ B lnE„dV,
d lnQ 8 l.nQ ~ 8 Vs Kit' ln

(3.14)

The different partial derivatives of the Fermi
energy appearing in the volume dependence of the
latter are listed in Table VIII. They are computed

by using the Hellman-Feyman theorem and sum-
ming over occupied states." The total volume de-
pendence of the width of the occupied part of the
conduction band is compared with the value found

by second-order perturbation theory. , In the latter
approach the change of the bottom of the band with
volume is included, and is in fact by far the dom-
inant contribution.

dlnA BlnA ~ BlnA
dy By V

~ 8 V, dy
S

(3.15)

where the first term on the right-hand side accounts
for the change in geometry associated with the shear
y. The dependence of the matrix elements on yis
given in Etl. (3.12). Note that for a tetragonal
shear din~6», ~/dy, . vanishes, and the only para-
meter entering our 8-OPW calculation of the
shear dependence is the derivative of the form
factor at q =

~
G», ~. The different contributions

to the tetragonal shear dependence of some ex-
tremal orbits are presented in Table IX. They
were calculated with (sv/slnq) ~, ~& ~

resulting
from the fit to all presently available pressure
and stress data. The final results agree within
error bars with the experimental data deduced
from the measured uniaxial stress dependence
by means of relation (2.13). The value of the
form-factor derivative determined to give the
best fit to the experimental tetragonal shear data
is

= 0.179 a.u.
811"4 q =] Choo

and is now in fair agreement with the Appapil. lai
and Williams" form-factor derivative of 0.198
a.u. at q = ~G,OO~. For each orbit the three deriv-
atives with respect to y„,y„and y, have been
computed independently-, and in all cases the
s lnA/sy, and d lnA/dy, add up to zero as they
should. Except for the t„,[110], v[100], and

D. Shear dependence of the Fermi surface

Shears, tetragonal or angular, are volume con-
serving by definition so that their effect on ex-
tremal areas reduces to

TABLE VIII. Partial derivatives of the Fermi energy with respect to the atomic volume Q

and the matrix elements V~ for different sizes of the secular matrix. The total derivatives of
the Fermi energy and the occupied bandwidth are computed with the slopes of the form factor
given in Table VII (in a.u.).

4 OPW 8 OPW 16 OPW

Bing/BlnQ

Q SlnE~/BV,
t&&s

-0.641

-0.461

-0.543

-0.664

0.141

-0.417

-0.704

1.308

-0.490

dlnEz/din Q

dlnE&&/dlnQ

dlnEz&/dlnQ'

-0.613

-0.596

-0.653

-0.655

-0.624

-0.645

-0.693

—0.631

' Second-order perturbation theory, see Hefs. 25 and 30.
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TABLE IX. Experimental and theoretical tetragonal shear dependence of the area of some
extremal orbits on the Fermi surface of lead. The theoretical values are calculated in the
8-OPW case with (8v/8lnq)(~ [e ~f given in Table VII, column 4 (fitted values). For the centers
of the orbits see Table V.

Orbit
BlnA dV2pp

BV2po dye

BlnA d Vo2o elnA d Vpp2

~Vo2o d'Yg ~Voo2 ding
Calc.

dlnA
dp $

Expt.

g [110]

[I10]

p [100] g

$ [100]

[100]

([110]

-3.045
-3.045

6.089
-3.867
-0.318

4.185
-2.882
-2.882

5.765
-3.257
1.629
1.629
2.050
2.050

-4.100
5.340

-2.670
-2.670

0.517
-0.259
-0.259

0.573
0.573

-1.147

-0.314
0.157
0.157

-0.103
0.052
0,052

-0.376
0.188
0.188

-0.005
0.003
0.003

-0.724
0.362
0.362

-0.615
0.307
0.307

-0.845
0.423
0.423

-0.218
0.109
0.109

0.157
-0.314

0.157
0.757

-1.514
0.757
0.188

-0.376
0.188
0.674

-1.348
0.674
0.362

-0.724
0.362

-0.215
0.430

-0.215
-0.065

0.131
-0.065

0.109
-0.218

0.109

0.436
0.436

-0.871
0.629
0.629

-1.259
0.463
0.463

-0.925
0.674
0.674

-1.348
0.183
0.183

-0.366
—0.215
-0.215

0.430
-0.065
-0.065

0.131
0.022
0.022

-0.044

-2.77
-2.77

5.53
-2.58
-1.15

3.73
-2.61
-2.61

5.22
-1.92

0.96
0.96
1.87
1.87

-3.74
4.30

-2.15
-2.15
-0.46

0.23
0.23
0.49
0.49

-0.97

-2.53 + 0.40
-2.53 + 0.40

5.06 + 0.81

-1.72 + 0.30
0.86+ 0.15
0.86+ 0.15

4.15+0.30
-2.07 ~ 0.15
-2.07 + 0.15

0.48 + 0.03
0.48+ 0.03

-0.96 + 0.06

/[100] orbit, the dominant contribution to
d in'/dy, . is seen to arise from the pure change
in geometry induced by- the shear. For the orbits
()[lll] and /[111] we find (dlnA/dy, .), „,,=0, as
expected from symmetry considerations. The in-
fluence of a tetragonal shear on the shape of the
Fermi surface of lead in different planes is il-
lustrated in Fig. 8.

For angular shear dln~Gaw~/dy, .
&

vanishes so
that the only dependence is on the form factor at
q = ~G„,~. The different contributions to the
shear dependence in Table X are calculated with
the fitted value of (sv/8 lnq) ~, n quoted in Ta-
ble VII. The two experimental values listed were
obtained with the help of Eq. (2.8) from two dif-
ferent measurements of the uniaxial stress depen-
dence with stress parallel to the [100]and [110]
crystallographic direction. The agreement be-
tween the calculated and measured angular shear
dependence is remarkable, given the size of the
experimental errors. The influence of angular
shears on the shape of the Fermi surface of lead
in a (lXO) and (001) plane is illustrated in Fig. 9.

W [oo~]

l Xll

X&

[100]

X

[Ioo]

[01']

FIG. 8. Response of the Fermi surface of lead to a
tetragonal shear y = 0.04. The unstrained Brillouin
zone is dashed and the deformed orbits are shadowed.
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TABLE X. Experimental and theoretical angular shear dependence of the area of some ex-
tremal orbits on the Fermi surface of lead. The theoretical values are calculated in the
8-OPW case wi'th (8v/81nq)1» (o f given in Table VII, column 4 (fitted values). y&& is measured
in radians. For the centers of the orbits see Table V.

eln& d&r

rica ~~~ d~v

G«f Gfff g Gfrf GTffqg QG
GfffyGfjf GfffyGff~caice EXpta

g f110] .

g~ f110]

p f100]
~ f110]

$ f100]
8[111]
4P«]
g [110]

X$

QZ, ZX

Xg

$Z, ZX

X3l '

$Z )ZX

X$,$Z, ZX

X$
gZ yZX

Xg, $Z, ZX

Xg, gZ s ZX

Xg s gZ a ZX

X$

gZ, ZX

X$,$Z, ZX

-1.622

-0.284

1.887

0.696

0.574

0.912

0.582

-0.270

0.948

1.324

0.002

-0.020a

-1.04
0.00
0.25
0.00

-0.86
0.00
0.00
1.62
0.00
0.00
1.14
0.00
1.62
0.00
0.46

-0.78 + 3.11

1.59+ 0.19

~ Vaj.ues listed for y~.

[001]

E. Volume dependence of the Fermi surface

The dependence of extremal areas on dilation is
given by

dlnA 2 ~ 81.nA 2
d lnQ 3 ~ a)n P, 3 d lnQ

"""""::::ii':'„;.'!Q [110]
8 lng 2 d 1nE~

8 lnE~ 3 d'lnO (3.16)

Vl. 'u~t."

which follows from Eq. (3.10) and the exact ex-
pression

81ng 2 8 ln& ~ 8 JnA
8lnQ 3 &lnE„~& )nV,

[100]

[110]

FIG. 9. Angular shear dependence of the Fermi
surface of lead in the (1T0) and (001) planes. The un-
strained Brillouin zone is dashed and the shadowed
orbits correspond to an angular shear y~=3'.

(3.1 I)

which is best derived from Sorbello and Gries-
sen's' scaling relation for A. Eiluation (3.1V)
couples all partial derivatives of A used for the
description of the strain response of the Fermi
surface and provides us with a nice consistency
check. In all cases this relation was satisfied
to better than 1part 1Q j.O . The first terIQ on the r1ght-
hand side of Eq. (3.16) is the free-electron result, the
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other two are the deviations from it, and the dif-
ferent contributions for some extremal areas are
summarized in Table XI. They were calculated
from the volume derivatives of V, Jyp V2ppp and E~
using the slopes of the form factor at the first
reciprocal-lattice vectors obtained from the fit
to gl/ presently available experimental pressure
and stress data. The final results are compared
to the dilation response calculated from the hy-
drostatic pressure values of Anderson et gl. ' us-
ing Eq. (2.12). Except for the f, [110]and /[110]
orbits the experimental and calculated dilation de-
pendences agree within errors. This is signifi-
cantly better than the results of all the previous
model calculations (Fig. 10), except those of An-
derson et gl. ,~ who used a nonlocal pseudopotential
with a core radius dependerit on the lattice para-
meter, and spin- orbit interaction. With these
partly unphysical refinements they reached an ab-
solute rms deviation between theory and experi-
ment of 0.11, which is only slightly better than
our value of 0.14 obtained with a model. for the
strain response which not only explains pressure
but also uniaxial stress data with the same set of
two parameters. The influence of dilation on the
shape of the Fermi surface of lead in the (010)
and (110) planes, calculated with our fitted val-
ues, is illustrated in Fig. 11. The interested
reader may consult Table 7.2 of Fawcett et gl. '
for a summary of the theoretical predictions for
the dilation dependence which have appeared in
the literature. We do not understand why the local
pseudopotential calculation of Anderson et gl. '
failed to reproduce the experimental results. It
is also not clear to us why Van Dyke's' calculation
produces such an exaggerated pressure dependence
of the $ [100] and /[100] orbits. Anderson et gf. ' "

neglect the change in lattice constant with pres-
sure in their form-factor derivatives so that,
compared to our Eq. (3.16), their expression omits
the term -,'(Z, s In&/s InV, ). Furthermore they
assume a free-electron behavior for the Fermi
energy. Whereas the latter assumption at most
produces a ten percent contribution to the dilation
dependence (Table XI), the importance of the
omitted term is obvious from Table V, where its
value is seen to vary between +0.54 for the )[100]
orbit and -0.63 for the &@[110]orbit. It is this
term which is responsible for the deviation from
free-electron behavior and not the fact that the
pseudopotential model has not reached. convergence
due to the use of a small number of plane waves
as asserted by Van Dyke. This has been explicitly
tested by repeating our calculation for 4 and 16
OPW's.

IV. CONCLUSIONS

We have presented in this paper a detailed in-
vestigation of the effect of a homogeneous strain
on the Fermi surface of lead. The combined os-
cillatory magnetostriction and de Haas-van Alphen
torque method was used to measure the uniaxial
stress dependence of extremal cross sections of
the Fermi surface. For the first time the method
was also applied to obtain angular shear dependen-
ces and has proved to be effective. From our com-
plete uniaxial stress data we have determined the
tetragonal shear and dilation dependence of the
area of several extremal orbits in high-symmetry
planes on the Fermi surface. Our results for the
dilation dependence are in good agreement with
the values of Anderson et gl. ,4 which were ob-
tained directly using hydrostatic pressure.

TABLE XI. Experimental and theoretical volume dependence of the area of some extremal
orbits on the Fermi surface of lead. The theoretical values are calculated in the 8-OPW case
with dlxe~/dlnQ given in Table VII, column 4 (fitted values) and dlnEz/dlnQ given in Table
VIII, column 4. For the orbit centers see Table V

Orbit
[H]

elnA 2 din V~

BlnV, 3 dlnQ

Gee(G~~~J
'

Gp{'G200)

BlnA 2 d 1nE p
BlnEz 3 dlnQ

Calc.

dlnA
din&

0[ 0]
[110]

g [111]
v [100]

~~ [110]
$ [100]
8 [111]
@[100].

g [110]
g [111]

-0.331
-0.040
-0.280

0.238
-0.656

0.805
-0.104
-0.340
-0.241
-0.177

-0.460
-0.883
-0.515
-0.829
-0.557

0.075
0.285

-0.179
-0.147
-0.221

0.114
0.139
0.116
0.108
0.157

-0.091
-0.047
-0.040
-0.037
-0.039

-1.34
-1.45
-1.35
-1.15
-1.72

0.12
-0.53
-1.23
-1.09
-1.10

-1.22 + 0.10

-1.32 + 0.10
-1.12 + 0.05

0.00+ 0.15
-0.59 + 0.05
-1.17 + 0.20
-1.41 + 0.10
1.02 + 0.10

~ Experimental values, IIlef. 4.
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