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Nonlinear theory of the photomagnetoelectric effect with a quadratic relationship between
carrier densities: Light intensity dependence
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A theory of the photomagnetoelectric (PME) effect in the presence of a recombination mechanism, which involves

a quadratic relationship between the carrier densities, is developed. Analytical expressions of PME short-circuit
current (I,«) and photoconductance (dG} are found by solving the nonlinear continuity equation, in the case in

which the light is strongly absorbed on the front surface of the sample. The power law of IpME versus the light
intensity is quadratic for high values of surface-recombination velocity and becomes linear for low values of this
parameter, Similarly, the photoconductance has a linear dependence on light intensity for high surface-

recombination velocities and a sublinear one for lower values of this last quantity. In all cases the IpMF vs 216
behavior shows a quadratic power law. Finally, the dependence of IpME and dG on the parameters of the
recombination model is discussed.

I. INTRODUCTION

The photomagnetoelectric (PME) effect has been
extensively studied by many authors. ' ' Various
simplifying assumptions have been made in most
cases in order to linearize the continuity equa-
tion. The carrier lifetimes and the ambipolar
diffusion coefficient are generally assumed con-
stants and the injection level is either very low
or very high. In these cases the continuity equa-
tion is linear, and analytical expressions of the
PME short-circuit current and photoconductance
have been found.

Some authors' ' explained experimental data in
the intermediate injection range by introducing
particular models correlated to recombination
and trapping processes acting in the investigated
material. In this and following papers we will
develop a more general theory of the PME effect
which will take into account the recombination
mechanism occurring in the material, without
introducing hypotheses which allow one to linearize
the continuity equation.

For any recombination model, functional rela-
tionships between the free-carrier concentrations
n and p, and among these and the carrier re-
combination rate I" can be calculated. These
relationships generally lead to a nonlinear con-
tinuity equation, which is often very difficult to
solve. Among the models more frequently used
for the analysis of photoconductivity measure-
ments, we have selected the case in which there
is a quadratic relationship between P and n. In
this particular case the nonlinear continuity equa-
tion can be solved and analytical expressions for

the PME short-circuit current and photoconductance
can also be obtained. In Sec. II, the theory for
the above-mentioned case is developed and in Sec.
III, the behavior of the Ip«and &G versus the
light intensity is discussed.

II. THEORY

A. Fundamental equations

The carrier transport through a semiconductor
in the presence of magnetic and electric fields is
described by the following continuity equations in
s teady-state conditions:

1.-E+—V J +g(x y z t) =0

-E ——V ~ J +g(x, y, s;t)=0,
q

where q is the electronic charge, S„and J are the
electron- and hole-current densities, respectively,
g(x, y, z; t) is the external pair generation rate.
In the small Hall angle case, the general expres-
sions of the current densities are

S„=a„E+qD„Vn p, J xgi,

J~=o E qD Vp+ p,~f, xg,

where O„and 0 are the electron and hole con-
ductivities, E and 5 the electric and magnetic
fields, D„and D~ the electron- and hole-diffusion
coefficients, and p,„and p,~ the electron and hole
mob ilities.

In the following we will assume (1) a semicon-
ductor slab infinite in both x and z directions,

4837 1981 The American Physical Society



4838 AUGELLI, VASANELLI, LEO, LEO, AND SOLIANI

D=D„p+n p+ bn,dp
(6)

x being the direction of the PME and photocon-
ductivity currents, y and z those of the incident
light and of the magnetic field, respectively; (2)
a steady-state condition. With these hypotheses,
we can write the y component of the electron
current density as

dnJ =qD—
dy

'

where D, the generalized diffusivity function, is
defined by:

riers, the rate equations for the steady state allow

one to obtain a relationship between p and n and
another one between the generation rate J" and p
and n, F =F(p, n). Generally, the relationship
between p and n is in implicit form and only in

some particular cases can it be solved so as to
express p as a function of n. Then, F can be
written as a function of n and therefore Eqs. (5)-
(7} give a differential equation whose solution is
the charge carrier distribution n(y). Generally,
this differential equation is nonlinear and very
hard to solve. In this paper, . we will deal with the

problem of the determination of the charge-
carrier distribituion in the case where

where n and p are the free-carrier concentra-
tions, and b is the electron-hole mobility ratio.

Since with our hypotheses & ~ Z„=dJ„/dy, the
continuity equation (1) can be rewritten as

p =An'

E=Cn .

(12)

(13}
1 dJ,-F+ — "'+g(x, y, s;f) =0.

dy
(7)

Furthermore, the following boundary conditions
must be imposed:

Q, +D =s, &n(0} at y =0,dn

dy 0
(8)

dn
Q, —D =s, &n(co) at y =w, (9)

where Q, and Q, are the generation rates on the
front and back surfaces, respectively, s, and s,
the corresponding surface recombination velocities,
~n is the excess carrier concentration, and zv the
sample thickness.

The solution of Eq. (7) under the boundary con-
ditions (8) and (9) gives the carrier distribution
in the sample. 'Then the short-circuit current
per unit width Ip«and the photoconductance per
unit width to length ratio ~G can be calculated by
the following expressions:

-Cn'+ 3AD„— = 0.d n dn

"dy An+b dy
(14)

Equation (14) cannot be solved analytically; how-

ever, if one considers two different ranges in
which n can vary, so that either An «b or A n
» b, two different analytical solutions can be found

found. In this paper we deal with the case An
«b. ' Thus, Eq. (14) becomes

'The physical meaning of the constants A and C,
in a simple model, is discussed in Appendix A.

These relationships have been widely used to
describe the photoconductivity behavior in many
experimental cases, ' both for insulators and semi-
conductors providing that the injection level is
high enough. In the following we will assume that
intermediate or high injection condition is verified,
i.e., ~n=n, ~p=p.

Taking into account Eq. (6}, the continuity equa-
tion (7) can be rewritten, through Eqs. (12) and

(13), as

I„= B(y.„+p, )f-J dy,
0

~G=q p„4n+ p, &p dy.
0

B. Nonlinear continuity equation

(10)
bC, dn ' d n

dy

Equation (15) can be readily linearized by putting

n(y) = [~(y}l" (16)

In doing so, we obtain:

In the following, we will specialize Eqs. (7)-(9)
to the case in which the light is absorbed at the
front surface of the sample. Then we will assume
the bulk recombination rateg(x, y, z;f) =0, the
surface generation rates Q, = 0 and Q, =Q = pl(1
—A), where g is the quantum efficiency, & the
photon current density, and R the ref lectivity.

If one assumes some model in order to describe
the recombination mechanism of the charge car-

d'gg j. —0,
y

(17)

where L*'=3AD„/2bC. Thus, the general solution
of Eq. (15) is easily found and is given by

n(y) =(c,e'& +c,e '~ *)'&' (18)

where c, and c, are integration constants to be
determined through the boundary conditions, Eqs.
(8) and (9). We must observe that the quantity
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I ~ plays the same role as the diffusion length in
the standard linear theory. In the next section
we will show that L ~ is closely related to the hole-
carrier diffusion length.

In what follows, we will use the following dimen-
sionless quantities:

Since in our model, ~n=n, &P =P, the photo-
conductance is given by [see Eqs. (11}, (12), and
(18)]

i w

&G = qw p,„n(Y}dy'

0

+ —„[C,(e —1)+C,(1 —e )]),
A

(24)

Also, it is convenient to introduce the quantity

QK

3' (20}

The analytical expression of the integral is given
in Appendix B.

III. DISCUSSION

The boundary conditions, Eqs. (8) and (9), can be
rewritten by using these quantities as

i Q dn i S,——+n = ——'n(0),
A S' dP~O A lV

dn i $2-n = — ' n(W).
Y=W

(21)

(22)

I „= qm)'B-(p„+ p ),[C,(e~- 1)+C,(e ~ —1)] .

(23}

The short-circuit PME current can be derived
from Eq. (10) and its analytical expression results:

Before we discuss the behavior of Ip«and ~G
as a function of the various parameters, it should
be pointed out that the electron lifetime 7„ is in-
versely proportional to the electron carrier con-
centration; in fact,

&n I

Moreover, the hole lifetime w~ is constant, being
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FIG. 1. The quantities IpMp/qB{t „+I p)so andAG/qp, „zo vs Q*. A. =10 cm, %=10, C=10 cm sec, S2=0. The
curves 1, 2, 3 are obtained assuming S~ =10, 10, 10, respectively.
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Then the hole diffusion length L~ is constant and
related to the quantity I *, introduced in Eq. (17),
by

I.,=42/2 I.*.
ln Fig. l, Ip~/qB(lj. „+p, )w' and &G/q p„so are

plotted as a function of the quantity Q~ related to
the light intensity by Eq. (20). The curves have
been computed for a case in which 4 = 10 "cm',
8'=10, S,=O, C=10' cm'sec ', and for different
values of S,. The investigated range of light inten-
sity has been selected so that the condition Ag
«b is always satisfied. As one can see, the mag-
nitude of I~«and &G increases as the front-sur-
face recombination velocity decreases.

The Ip«and ~G-vs-Q* curves, plotted on a log-
log scale, have slopes equal to 2 and 1, xespec-
tively, fox' high surface-recombinat:ion velocities.
Fox a lower S, value, there is a decrease in the
slope, down to 1 for the I~M curve and 0.5 for
QG

Moreover, if the pairs of Ip~ and ~G values,
deduced from each pair of curves in Fig. 1, are
plotted in a log-log plot (Fig. 2), a single straight
line is obtained. The slope of this line is 2, and

therefore it is clearly independent of S,. Dif-
ferent values of S, determine the region on the
line where the pairs of Ip~ and ~G values are
situated.
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FIG. 2. PME short-circuit current versus photocon-
ductance. The values of the parametexs are the same
as in Pig. l.
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FIG. 3. PME shortmircuit current and photoconductance versus Q*. C =10 cm sec ~, 8& =10, 82=0. Curve 1:

A=10 cm, S'=3.2. Curve 2: A =10 cm 8'=10. Curve 3: 4=10 ~ cm iV=32.
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Figure 3 shows the Ip«and &G vs Q* withe
as a parameter. The curves have been calculated
with Sy 10 S2 0 and C 10 cm sec In order
to analyze the Ip«and M behavior under the
same condition, it must be kept in mind that W

and 4 are related by the following expression:

W= co(3AD„/2bC) 'i'

Thus W assumes different values as A varies.
Two remarks can be made about the curves

shown in Fig. 3. The first is that the slopes of
both IpME and &G plots are unaffected by the mag-
nitude of A.; the second is that the magnitude of
both Ip«and ~G increases as A does. Applying
this result to the example reported in Appendix A,
one finds that Ip«and ~G values decrease as the
recombination center concentration inc reases.

Figure 4 is the plotted curves of I»~ and &G

vs Q* for three different values of the parameter
C. These curves have been computed assuming
A='10 "cm', $,=10, S,=0, and W changes with
C according to Eq. (25). As one can see, the I~„s
current is independent of C, as is evident from
Eq. (23), while &G decreases as C increases.

In conclusion, the theoretical analysis of the

Ip ME and &G behavior as a function of the light

intensity shows, as a peculiar feature, a quad-
ratic power law between Ip«and ~G in the range
in which P ~n and Ag«b.

This result disagrees with that reported in Ref.
5 obtained by assuming a similar model but a
constant electron recombination lifetime. The
dependence of I~M~(&G) on the light intensity is
generally quadratic (linear). For a low surface-
recombination velocity, the slope of the IpME vs-
Q~ curve, changes from superlinear to linear,
while that of the ~G-vs-Q* curve becomes 0.5.
The values of the parameter A affect the mag-
nitude of both Ip~ and ~G, while the parameter
C affects only the magnitude of &G.

ACKNOWLEDGMENT

This work was partially supported by the
Consiglio Nazionale delle Richerche, Italy, and

in part by the Istituto Nazionale di Fisica
Nucle are.

APPENDIX A

In this appendix, we report an application of our
model, as an example. Let us consider a situation
in which the recombination kinetics are controlled
by two levels, as shown in Fig. 5. Center 1 plays
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FIG. 4. PME short-circuit current and photoconductance versus Q». A =10 ~6 cm3, S~ =10, S2 =0. Curve 1: C =10 7

cm sec, IV=32. Curve 2: C=10 cm sec, %=10. Curve 3: C=10 cm sec, W=3.2. The IpMF curve is un-
affected by the parameter C.
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FIG. 5. Energy-level scheme, showing position, den-
sity, capture probability, and thermal-excitation prob-
ability of the centers.

1 pl 1

the role of recombination center, while level 2

is a hole-trapping center.
The rate equations for the steady state are

F =Pn(N, —n, )+P'n(N, -n, ),
O=P n(N, -n, ) - PP, +P, (N, -n, ),
O=Pn(N, —n, ) —PPn, ,

(Al)

(A2)

(A3)

10

n =P+(N, -n, )+(N, -n, ) (A4)

where n, and n, are the densities of the centers
occupied by electrons at E, and E„respectively,
P, =N e' v 2' ~ is the probability for thermal
excitation of holes from centers at E, to the
valence band, and the other symbols have the
standard meaning. The charge neutrality con-
dition

10

10
10 1012 1p14

I

1p16

(cm 'f

must also be taken into account. Let us discuss
the case in which level 2 lies under both the hole
Fermi level and the hole demarcation level, and
P' is much less than P. In the injection range
where pN, n«P, N„and 4(nP, pN+, )«P N'„2eon
can easily obtain the following relationship be-
tween the charge-carrier concentrations:

P=n /N, . (A5)

Comparison between Eqs. (A5) and (12) shows that
the constant A is equal to the inverse of the re-
combination-center concentration. The hypotheses
made imply that the injection range in which Eq.
(A5) is valid, is limited by two conditions:

I v eE2/k TN N
(A6)

N,

FIG. 6. p-vs-n plot. Curve 1:
cm, N& =10 cm . Curve 2:i5

cm

E2=0.1 eV, N2=10
E2 =0.4 eV, Ng = N2

With the previous assumptions, the recombination
rate I' is given by

F —Pn (Av)

The integral

APPENDIX B

Then in this case the constant C of Eq. (13) is
just the capture probability P. These relationships
are easily obtained for the insulating materials;
for semiconductors, Eqs. (A5) and (A7) are still
valid providing that Lhn»n0.

n«N, . g= n YdY,
0

(Bl)

Figure 6 shows two P-vs-n curves, calculated
for our model by Eq. (A4) with different values
of E, and N, . It is clearly shown that there is a
wide range of electron concentrations where Eq.
(A5) is suitable to describe the carrier densities
in agreement with the limiting conditions (A6).
Furthermore, the conditionAn «b used to solve
the nonlinear continuity equation is quite satisfied
because b generally ranges between 1 and 100.

n'(Y') = C, e "+C, e "= C ' cosh(Y+ 5),

where

C'=2v'C, C» ' ' =tanh6.' C,+C2

(B2)

Then, substituting (B2) in (81) and performing

which appears in Eq. (24), can be readily evaluated
by noting that
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the change of variable F=2x —6, we obtain the
expression (see Ref. 9, p. 115)

—W2 22(2„)-Z(2„)
sinh(~+ 6) sinh6

[eos222+2)l"' Va0222 I'

where E and E are the elliptic integrals of the
first and of the second kind, respectively,

1 —sinh(ii'+ 5)
82 = arccos

1 . (~ ~)

1-sinh6
arccos

y
~
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