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In this paper we use the techniques of the scattering formalism for localization to discuss a real wire of finite cross

section. The paper derives the phenomenon of localization in such a wire and suggests a heuristic extension to higher

dimensionality.

I. INTRODUCTION

In a previous paper' I have discussed and evalu-
ated the Landauer formula for quantum conduc-
tance of a one-dimensional chain of random scat-
terers, and in another2 discussed how the Landau-
er formula in terms of a scattering forma1. ism may
be related to the Thouless formula in terms of
boundary-condition sensitivity.

In the first paper we indicated that a correspond-
ing general formula for the conductance of a real
wire of finite cross section could be derived sim-
ilarly, and that formula is repeated here. Az'bel
has given similar results. s These results are
actually virtually identical. to formulas for the tun-
neling conductance of a barrier which are well.

known in the literature.
In this paper I will try to show how to make a

scaling theory whereby the conductance of a long
wire may be derived in terms of the statistics of
its component parts and the phenomenon of locali-
zation thereby demonstrated for this more realis-
tic model. In a final section of the paper, I will
heuristically extend the results to higher dimen-
sionality, confirming the conjectures of previous
work.

II. CONDUCTANCE FORMULA IN THE
MULTICHANNEL CASE

The preceding paper in this series gave an ex-
pression for the conductance of a multichannel
system with elastic scattering only. (This is a
valid model of a conducting wire at zero temper-
ature. )

Here t and z are the transmission and ref1.ection
matrices on the energy shell in channel variables.
As stated in Ref. 1, in the limit of a very large
number of channels n, t I/8n and therefore

In this case we can forget the denominators and

write

Let us define g as we did in the previous paper by

e2

g-= Tr(ttt)

The definition of a channel, of course, varies
depending on the physical mode1. we envision, and
is never very definitive but also never a serious
proble. For a good metal, we define a channel

a ktransverse which belongs to any k near the
Fermi surface. Those channels with no Fermi-
level. density in them will simply have no trans-
mission t. This definition, and the question of
what kind of medium is "outside" the scatterer, is
al.most physically irrelevant. We think for definite-
ness of a piece of impure metal sandwiched into a
perfect crystalline wire, and recognize that any
scattering due to mismatch mill, of course, be a
part of the contact resistance and legitimately in-
cluded. In essence, the channels are defined as
allowed states at the Fermi level in the highly
conducting "contacts" through which we supply the
current to our resistive wire. As for the concept
of "reservoir" in statistical mechanics, the details
are unimportant.

One is at first tempted to diagonalize y ~ or t ~

in channel variables e and P, which can in fact be
done in the case where H fie1ds are absent and the
scattering matrix is symmetric: 5=5, so also y

is. We note that

z may be diagonalized by a pseudounitary trans-
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formation r„=UrU, with U unitary, and then t by
a transformation on the ongoing channels. This
temptation must be avoided. The correct channels
to use are the natural ones for the perfect reservoir
system attached to the resistive sample, i.e. ,
channels where the incoming velocity v„=5E,/5p„
is a diagonal operator. This is because the can-
cellation of density of states and velocity factors
which is responsible for the simple form of (1)
does not work in any other representation. That is,
Eq. (1) is to be thought of as multiplied by a factor

and there is no reason at al.l why the averages of
these factors over a wide variety of channels
should be each others' inverse if they are not di-
agonal. That it is not appropriate to diagonalize
can also be seen by a second way of deriving (1),
which is by assuming a given flow of current 0 and

calculating the momentum lost to the sample which
must be proportional to V. Agai. n, the calculation
must be done in eigenstates of p, to make sense.

The formula as given is clearly valid for a set
of conducting wires of diff erent resistance in paral-
lel, which is not true of the one proposed by
Az'bel. ' ' But, in the only case either of us con-
sider very seriously, where R =1, there is no

real difference. Our later work can be used to
show that the differences among the various form-
ulas come in only in order n

We have shown in another paper' that for a truly
one-dimensional chain our definition of conduc-
tance (which clearly can be extended in itself to
any number of dimensions) can be related at least
to that of Thouless, in terms of the effect of bound-

ary conditions on energy levels, which itself was
related by Thouless to the Kubo formula. ' But our
definition is more fundamental than that of Kubo,
does not involve eigenstates of an artificial Hamil-
tonian or boundary conditions, and above all ap-
plies naturally to finite systems where Kubo's
formula is ambiguous and Thouless' is not precise.
Since finite systems such as tunnel junctions and
small bits of wire are real and do exhibit finite
resistance, it can be physically incorrect to use a
formula depending on a large volume limit like
Kubo's, or that of conventional transport theory
for that matter. Among other properties, to
specify densities and spacings of eigenstates one
needs the scattering matrix as a function of energy
S(E), while our formula is on energy shell only.

III. SCALING

As we did for a single channel, we wil. l start
from a microscopic scale at which we assume t

f2
Op

FIG. 1. Schematic representation of composition of
two scatterers to increase scale by a factor 2.

to be a member of some given probability distri-
bution P(f); and to add "black boxes" in series
(see Fig. 1) with the o. channels of box ~t feeding
into the p channels of t2. The probability distri-
bution of the resultant conductance 6 is determined
by the composition law

1t=f~, t2. (3)
1 ~re

The key assumption (very easily satisfied in the
multichannel case) is complete phase randomness
between matrix elements (t, ) ~ and (f,) ~, etc.
This is surely correct for lengths past the mean
free path l which is in this case always very much
shorter than the localization length L, (in general,
L, =I n since

~

t~' is of order 1/e at l).
We also assume a second kind of randomness: a

random mixing of channels involving no correla-
tion between the eigenchannels of t, and t„so
that any channel o. couples randomly to each chan-
nel P. This is the assumption of essential one-
dimensionality. It states that there is no "trans-
verse" localization, i.e. , transverse dimensions
are small compared to localization lengths.

Although we are free to redefine by unitary
transformations four sets of channels (incoming
and outgoing for scatterers 1 and 2), use of this
freedom to diagonalize 8, t, or r is not very phy-
sically meaningful. In any case the various fac-
tors of (3) cannot be simultaneously diagonalized
as far as we can see; and, if they could be, the
eigenvalues would have an obscure relationship to
conductance because of the requirement of trans-
forming to natural channels for the input and out-
put problems.

It is meaningful, however, to discuss the eigen-
values of one factor of (3), namely

I= 1

r1r2

This matrix describes the multiple backscattering
problem between scatterers 1 and 2, internally to
the compound sample. Because in the limit of
large n,

~
r,

~

and ~r, ~
are both of order 1 —1/n,

this scattering is repeated ~ times before the
particle gets transmitted or reflected. Thus this
is the sensitive, crucial part of the problem, and
without treating it properly, it is not even possible to
understand classical Ohm's law behavior. The
other thing about M is that, unlike t or r, it is
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a matrix both of whose indices refer to the same
set of channels: ingoing from the left into scatter-
er 2. Thus it is appropriate to try to diagonalize
it by a unitay'y transformation.

In order to understand the properties of M, we
will have to study the large-n limit. Unitarity of
the S matrix gives us

tion. ) In fact, we may achieve a slightly greater
accuracy by defining g, and g2 appropriate to each
eigenvalue A, by

(1),(2)
t(1), (2)

g

and then

or

1=~~'+ tP (1) + (2) 1/2
gfIf 1 C x gx

n
(7b)

(rr') ..=I —(ff')..=I —g I f., I
',

(5b)

Now that we understand the eigenvalues of N and
thus of M, we may compute g from Eqs. (2) and

(3):

g= Trtt~,

Now in the large-n limit, in order for the con-
ductance to be finite on the scale where localiza-
tion is relevant, we must have, by (2),

Z I &.2I' =g/.

(1) (2) (2) S (1)g= ~~t M t„'t,'M, t„,'.
aaXX'

Now, again, the phases of M„and M~, and of the
various t's are totally incoherent, so that to an
order more accurate than n ' ', we can assume

or

f 2-1/n.
g t(1) 2 t(2) 2 M 2

and then this is by (7) equal to

(s)

Thus, since the phases in (5b) are surely ran-
dom, (5b) is -I/n2~2, and so by (5a) rrt =1: r is
unitary to lowest order in I/n. We may make r
unitary to high accuracy by multiplying it by
I/gl -g/n since the fluctuations in +~2It~ I' will
also be of relative order I/~n.

In order to study M consider the matrix

N = y,'y'2

of which it is a function. Multiplying by the fac-
tors just mentioned,

2
(1) (2)

1~ (, ) (,) 1

n ~ " ~ 1+ ]N }
—2|N )cos6}

=1 g(1)g(2)

n'~~ (1 —[N„l ) +2I Nl(1 —cos82) '

and we will recognize that aside from small fluc-
tuations, this is by (7) equal to

(1) (2)
g)t

[(g Pg )/2] + 2'(1 —cose )
'

is, as we have just shown, the product of unitary
matrices and approximately unitary to order 1/n2~2.

Thus we can diagonalize it to this order or better,
and its eigenvalues are

Nq

[[I—(g,/n)][I —(g./n)]]'" [1 —(g, +g.)in]"'

(7a)
Thus the amplitudes of the N~ are fixed and close

to unity; the phases, however, are arbitrary,
since the phases of z2 and x, are completely un-
correlated. Thus, the eigenvalues N„are random-
ly arrayed with density n/2v in angle around a cir-
cle of radius ((~2,„)'~2=—1 —(g, +g2)/2n. (It is not
necessarily true that the eigenvalue spacing is
random, but this does not appear to cause much
effect: we return to this in the concluding sec-

We recognize that this is a highly convergent
sum, to which only values of 8~- I/n contribute
appreciably, and for n large it is precise to re-
place the cosine by its expansion:

(1) (2)

2 2+n262 ~ (1O)

g1+82 Iv P1+P2,„
This is then the same result as one gets for the
average transmission in the pure one-dimensional,

The phase angles 6), of the n eigenvat. ues are dis-
tributed evenly from -w to m. It is instructive to
take a simple phase average of g, which gives us
the ensemble average:

( ) dg lg2
2 [(2 +2 )/2]'+ 'e')
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one-channel case (see Paper I): this adds classi-
cally in that

1 1

(T& =(
&

=[«P, +P~) '&.,]',
which gives us Ohm's law in the limit in which the
distribution in g is sufficiently narrow to obey the
law of large numbers. This wil. l. clearly be the
case when the H„are closely spaced relative to the
distance (l(N,&„ l

—1) between the circle of eigen-
values and 1, i.e. , when g„g,»1; the large con-
ductance limit. In this case many eigenvalues
contribute but in the opposite case only the smal-

lest few are relevant.
Again, as in the pure 1D case, all of the impor-

tant action is in the statistics: it is essential to
calculate probability distributions rather than
means. Let us then calculate from (10) the prob-
ability distribution P(g)dg:

)')y) =f)')yt "y,"'e,)ag, ag, d e,)
gxg2~.))y. +y)/2)'+ 'el)

We evaluate this by the well known technique of
Markov and Kolmogorov'

P(g) =—
.dp, e '"'e ""',1

2' (i2a)

~y

P(g, )P(g, )dg, dg, dx 1 —exp „
27t

(12b)

It does not seem to be easy to get P(g) explicitly.
However, it seems adequate to study it in each of
two limits:

AA2

[(g, + g, )/3]'+ x'

is small if g, or g, —~ or 0, so that exceptional
values don't contribute strongly. It will be con-
venient to treat as secondary the fluctuations of

g, and g~ to begin with, therefore, and concentrate
on those caused by the phase. Let us 'take g, and

g, fixed and calculate the conditional probability

di exp[ il g-$(} lg,g-, )]
1

where

Pgm2gg )=~ dx2' ~ g g~ +g2 +X

gig2 ~ 2 giga

gl g2 &gl g2)
(13)

It is a well known theorem (Ref. 7) of this
method that the power-series coefficients in p,

give the first, second, etc. , moments of the prob-

g~ +g2 && 1 and && 1.
First, consider g„g,»1. In all cases, it is clear
from (12b) that exceptionally large or small values
of g, and g, are not very important (if they were,
we should have had to deal more carefully with

lN, l, for one thing). This is because the combin-
ation

ability distribution. Thus the first two moments
are always given by [as we already saw in (ll) for
the first one]

( &
g)g2 (14)av g +g

g lyy ( y )3'

This is irrespective of the size of g„g„although
we will see that (14) and (15) become nearly ir-
relevant for small g. The behavior of P(g) de-
pends crucially on the size of (15) since this is the
firstreal term of )))(p). Ifg,g, » 1, (4g'&,„[in (15)]
ls »1 and 8 ~"' falls off to small values for p, - 1 .
Then the power series (13) is a good representa-
tion of P, the next terms in the power series be-
come successively very much smaller in the rel-
evant region, and a Gaussian representation of
P(g) is accurate:

P&gl g„g.) =- exp[-(g —&g&.,)'/3&~ &„].
It is perhaps worthwhile to make this more ex-

plicit with a simplification: set g, =g, =g, . (The
same manipulations, slightly more complicated,
work for g, y-'g, .) Then

1 —exp
~a

4(v) .2r
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Here p(}i) is a universal. function which has a good
convergent power series well represented by its
first terms {for tu»1}, but is very'badly expres-
sed by this power series for ii o 1. (We will see
that in this limit, it is ~tu'~'. ) Thus even though

{(4g'&,„)'.~' is not extremely smail compared to

(g),„ in this region, the power-series argument
tells us that the Gaussian is a good approximation
throughout this region, since the expansion is in

} -1/g.
We now wish to transform (16) into a distribution

in an appropriate variable f(g) which has the all-
important property of additive meag, as explained
in Paper I:

&f(g)&., =&f{g'»"+&f{g.».,

To a zeroth approximation, this is the case for the
resistance p =1/g in the limit g —~. That is,
when

(ag'),„2
(&g&.,)' g, +g'2

we may write

I,(ag'&, . . .
(&g&.,)'

1 1 2
(P) =—+—+ + .

f(g) = p~p'+-"
We determine e by demanding additive means:

(19)

This is the, result if g, and g, are fixed: averaging
(I'I) gives

&p).,=&p,&..+&P.):+2&p,&.,&p.&., +

which is Bdditive to lowest order but exhibits lo-
calization in higher, and in fact the localizing
term is identical to that in the one-channel case.

In the one-channel case the appropriate linear-
izing variable was

p2 ps
f(g) = I"{I+P)=P +

2 3
In the present case there seems no easy way to de-
termine the full functional form of f(g) but we can
approach it from its limiting values: first as a
power series in p. That is, we write

&f&., =(P)..- c'&P'&., =&{P,—c'Pl)&„+& {P.—op2)&..
= + +2 . ' +'&'g'&"- + "Pl P2 PIP2

Q&
8

(Q& )4

=P, +P. +2P,P, —o' {(Pi+Pa)'+2P,P.{pl+P2}l

=p, —o'p,' +p, - ir P2 + (2 —2)x )p,p, + {higher order) +

2=p) (1+2p)=p)p()+— (20)

(20) has the power-series expansion (19). We now
confirm that a similar form (20) holds in the op-
posite limit p»1, g«1.

In this opposite limit, we may neglect (g„+g,)'
relative to g 2 in the exponent and

U o! =1, (19) is additive to lowest order. This
result holds throughout the region of the Gaussian
distribution.

Borrowing from the one-channel case, we guess
that the form of the additive variable f(g) should
be a version of that appropriate to that case, pos-
sibly involving a new conductance scale:

)ip) =p, ) (1 +—
)

j
'p(P) =

2
dx 1 —exp

t( )/ p +&

dx 1 —exp i

The cox x espondlng px'obabillty distribution

~gig2P(g) =— dp, exp -ipg-
2Tr- sm'

is calculated by an exact saddle-point integration
about the saddle point

and one obtains
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e"sgs2I4s'& + + jl2
&(g) =-

27T g
(22)

where the scale resistivity p, is a slowly varying
function of p with the two limits

Note that (22) has no finite mean or variance,
since at large g it falls off only as g ' . A more
exact calculation would confirm the values (14)
and (15), since when the correction

2 8i 82 + 2(+)'
4

is made, a cutoff for large g results which must
converge the means. In fact, the cutoff occurs
approximately at

g= const 2,(g,g.)
&g, +g.&' '

which is consistent with the two means we have
quoted in Eqs. (14) and (15)

When p» 1, the logarithmic form (19) reduces
to p, lnp/po=poln(1/p~). We are therefore inter-
ested in ((lnp)) which may be calculated from (22)
as follows:

1 j2
(lng) =— e "~'~'""lngdg~

27I' 0 ( g
Let 1/g= x'.

(lng& =(-2 lnx) = — 'g' e "&'&~"'" (lnx)dx,
co

2

av 27T 0

which is a known integral:

4t)'e " 'lnxdz=inn —y=0. 568
0

p, =7te "=1.764, p-~.
The scaling, then, is not exactly calculable except
in these limits, but it is probably quite accurate
to treat p, as though it were constant and then we
would have, starting at a length I.0 with starting
resistivity p0, the Landauer form

1+—exp ~-~ —1P Po P P

Ps Ps i Ps Ps

where p, is, as in the previous paper, the clas-
sically calculated additive resistivity, and the se-
cond version holds if we start at weak scattering
with p, very small.

It is now essential to carry out the second stage
of the prescription of the earlier paper'. to make
sure that the variable with additive mean has a
variance which scales at least according to a weak
law of large numbers, so that in the limit of large
scale lengths, the quantity f(g) will have a Gaus-
s ian distribution.

This. , may be checked in the two limits. At very
small. p, it is unnecessary to include the small
correction term in the power series in p, and we
have

so that = 2pipa(pi + p ) (25)

(lng&,„=lng, + 1ng, —(inn —y), (23)

where y is Euler's constant, 0.57722. This
means that the combination which is additive in
this limit is (choosing the sign to obtain a positive
quantity, and noting that multiplicative factors are
irrelevant)

w ) ).(.'—')=-
= ln =ln 1.764 ' (24)

l.e. )

1.764 1.764
+ 1.764

This limiting result fits on to the result in the
extended limit only if we allow the resistivity scale
to vary slowly between the two limits. Ne may
write

which goes adequately to zero as P-0. It is fairly
clear, since the distribution is most singular as
p- ~, that (4f'&,„rises monotonically from this
to its value in the limit p- ~. The integral. for
ln2g can be done only numerically as far as was
ascertained: the relevant integral is

e " ~~ (lnx) dx = 1.33 .
1

7t 0

From this we obtain that

lim([&f(g)]'&,„=((f—f)'&,„=—5.01 . (2'7)

It is interesting that this is about the same ratio
to the one-channel result as the scale factor on
the resistance.

To repeat the argument of the previous paper, '
we may majorize the variance in the distribution
P(f) after scaling by noting that the added variance
at each scaling step is less than (27). Thus the
total variance satisfies

f(g)=p, l ()+-
s

(25)
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(L) =6 (L,) +6 (L2)+n.o,

which in turn is satisfied by

4' (L) = -n', + const x L . (26)

which is to say that

exp — '"+-'&' p' -const

This is satisfied by

~2 (L) —2 p~(L) (29)

because p is to first approximation linear in L and

L =L~+L2+3L,L2(L, +L2) .

Thus the variance in the extended limit rises much
more slowly, initially, than for a single chain,
where it rises as L2.

The ultimate slope of the linear portions of &2(L)

for large p may, again, be estimated by using the
exact mean value of g, (13). If (g),„ is not to vary
exponentially in this limit, we must have

J 2 2
dJe &f &f&~ ~ /24 -e f-los const

//
////

//
ZP( L) ( Linear)

(L) n limit

FIG. 2. Schematic representation of the variance of
f (L). The solid line gives the rigorous upper limit,
the dashed line gives the estimate for the linear chain
from the previous paper, and the dotted line gives our
best estimate from the present vrork.

We plotted this result, as well as a plausible actu-
al course for 42(L), in Fig. 3 of that paper which
is reproduced here as Fig. 2. This also com-
pares our later results [see Eq. (29)] with the
one-channel case. We see that the rms breadth
asymptotically approaches ~L in this variable,
which is suitably small.

As, again, for the simple chain, it is possible
to study 4'(L) a little more precisely. In the
first place, it is possible to solve the scaling
equation implied by the "extended" limit (26). We
must add the variances of the starting distribu-
tions P(f, ) and P(f~) to that caused by the compo-
sition process, namely (26):

&'(L) = r '(L, ) + n'(L. ) + 2p, p.(p, + p.)

or
s'- 2(f),„p,=2p,p, =3.33p,

=3.33paL .

IV. DISCUSSION AND IMPLICATIONS FOR HIGHER
DIMENSIONALITIES

Unlike the results for truly one-dimensional
chains of one or a few channels discussed in the
previous paper, these results are not rigorously
derivable nor entirely precise quantitatively. The
deep assumption is that the different channels or
eigenstates A, of the back reflection matrix N can
be discussed independently. There is the problem
already mentioned, that in fact they may not be
quite independent in that transmission between two
of them can interfere after taking into account the
t matrices of the separate boxes 1 and 2, but I am
sure this is not serious because of the smallness
and random phasing of these terms.

All of the effects of such interactions of the dif-
ferent channels would surely be to enhance local-
ization. In the first place, one might expect that
insofar as the N, 's are eigenvalues of a random
matrix problem, they may to some extent repel
like the eigenvalues of the energy in a random po-
tential. I do not, however, believe that this is
physically the case, although I have not produced
a rigorous argument. (Unpublished calculations
by Lee show, however, that individual eigen-
values of z can be very different in magnitude,
but we see no reason for such a correlation
in N )In any c. ase this simply enhances their rel-
ative spacing, which plays no special role in the
problem. In the second place, transverse local-
ization will act to anomalously decrease the g's
which determine the magnitudes of the N~ and
space the eigenvalues further apart, because they
will lead to a correlation between the N„'s and the

g, and g, matrix elements which couple to them.
That is, once the sample width is wider than the
localization length, it should be necessary to treat
it roughiy as W/L„, separate one-dimensional
systems (where W is the width). Interpolation be-
tween this concept and the considerations to be
given shortly should give quite a satisfactory heur-
istic theory of the d-dimensional system.

In the opposite case, that of a d-dimensional
sample not too wide relative to the localization
length, we may derive the scaling for d dimen-
sions directly from that for one dimension by the
following transformation. Let us consider a sam-
ple with one-dimensional topology, but which does
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not have a constant cross section. In our terms
this means that it does not have equal numbers of
ingoing channels from the left and'outgoing chan-
nels to the right (see Fig. 8). In this case the
matrices r,' and r, are no longer equal in size:
one is NXN and the other MXM, while t is N~M.
Unitarity conditions still require that

rr~+ ttt =r'ty'+tt'=1

so that the conductance is still symmetric and for
practical purposes given by

not by adding equal lengths but by adding pieces
with equal ratios of radii

ln~= ln~.R R

R2 R1

In this case the fundamental scaling law (].8)

&P&., =&P,&.„+&P.&., + 2&P,).„&p.&,

becomes

&p),„(R„R,) =&p,).„(a„R,)

Two such unsymmetrical objects may still be
compounded by the law

1

1 2

and the properties of the matrix N are the same.
Thus, as far as we can see, the manipulations of
the previous section are perfectly valid so l.ong as
transverse localization does not interf ere.

We may make such a nonuniform sample in the
shape of a sector of an annulus of opening angle 8
(see figure). In scaling up such a sample, we
note that we get equal increments of resistance

'i ~2 dimensions: the fan'transformation.

+ In~(1 + 2(p,).„).R~
O.1~ R,

Here we have setR, -B2«B2- B1 and so small, in
fact, as to make the resistance of the sector R3
—R, perfectly classical. This may be converted
into a differential equation:

dp
1+2p Hd lnR

Rl 1' In(1+2p)ls = In~i
R) o.~~

Now there is nothing in this argument which pre-
vents us from allowing 8 to approach 2m, at which
point the sample becomes strictly two dimension-
al. Thus this expression in the limit 8=2m should

give us g(L), the effective two dimensional conduc-
tance as a function of scale length L . This may be
simply done by comparing

n channels
in

n channels
out

p(L) g.
1 L g(L)

2'„R1

n channels
ln

n'channels
out

which leads to

1
g(L) =g, — inL/L, +—

n channels
out

FIG. 3. Sketch of the fan transformation which carries
the one-dimensional, many-channel case into 2 or higher
dimensions. Instead of symmetric scatterers, we use
random scatterers with I channels on the left and
n' &n on the right. Doing this repetitively gives us a
sample which is topologically 2 or z dimensional.

This happens to be expertly the resuI. t obtained by
perturbation theory in Ref. 8. We do not believe
this to be a coincidence but think the reasoning
correct in the large-g limit. Incidentally, the re-
sult [Eg. (29)] shows that fluctuations are much
less severe in the higher dimensionalities than in
the 1D chain.

The same trick may be extended to higher di-
mensionality, where indeed the numerical coef-
ficient of the first term agrees perfectly with per-
turbation theory in three dimensions as well.
Thus this method seems to obtain a valid first-
order correction in powers of 1/g. Combined with
the idea of transverse localization with Az'bel's
methods, one could undoubtedly interpolate a quite
satisfactory estimate of the P(g) curve of Ref. 8
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at physical dimensionalities of 2 or 3.
The next and more difficult problem is to apply

this method to the essentially two- or three-di-
mensional questions of Hall effect and magneto-
res istance, and possibly to generalize to interacting
systems. We feel that as it is it places the quan-
tum transport theory on a much firmer foundation
than heretofore.
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