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Infrared and dc conductivity in metals with strong scattering: Nonclassical behavior from a
generalized Qoltzmann equation containing band-mixing effects
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Metals with high resistivity (-100 pQ cm) seem to show weaker variation of resistivity (as a function of
temperature and perhaps also static disorder) than predicted by semiclassical (Bloch-Boltzrnann) theory (SBT). We

argue that the effect is not closely related to Anderson localization, and therefore does not necessarily signify a
failure of the independent collision approximation. Instead we propose a failure of the semiclassical acceleration and

conduction approximations. A generalization of Boltzmann theory is made which includes quantum (interband)

acceleration and conduction, as well as a complete treatment of interband-collision effects (within the independent-

collision approximation). The interband terms enhance short-time response to E fields (because the theory satisfies

the exact f-sum rule instead of the semiclassical approximation to it). This suggests that the additional conductivity,

as expressed phenomenologically by the shunt resistor model, is explained by interband effects. The scattering

operator is complex, its imaginary parts being related to energy-band renormalization caused by the disorder.

Charge conservation is respected and thermal equilibrium is restored by the collision operator. The theory is

formally solved for the leading corrections to SBT, which have the form of a shunt resistor model. At infrared

frequencies, the conduqtivity mostly obeys the Drude law o (~)-fr(0){1—iuv. ) ', except for one term which goes as

(1 —icor)

I. INTRODUCTION

1/p.„,(T) = I/p, sT (T) +1/p

a„„(T)=assT(T) +o .

(la)

(lb)

when temperature (and possibly also defect den-
sity) vary. Experimentally, p =1/o „is
-150 pQ cm for many d-band systems. Mooij
has also shown that if the T =0 resistivity exceeds

Strong-scattering metals (such as A15-structure
metals, e.g. , Nb, Sn) show anomalous behavior of
dc electrical, resistivity which theory is not yet
able to explain. ' The high-temperature (T) re-
sistivity of metals is predicted by semiclassical
Boltzmann theory (SBT) to rise linearly with
disorder, i.e. , p»T ——p, +p, T with residual re-
sistivity p, linear in defect density and phonon
resistivity p, T linear in temperature or phonon
disorder. Experimental observations show that
for metals with high resistivity (p-100 pQ cm),
p rises less rapidly with T than predicted by SBT
and seems to approach a maximum p as T in-
creases. This phenomenon has been termed
resistivity "saturation" by Fisk and Webb, 2 who
argue as Mooij' that the effect is associated with
the mean free path (l) decreasing toward a min-
imum value, the interatomic spacing (a). Wies-
mann et al. show that for several A15 metals,
the behavior fits the phenomenological shunt re-
sistor model

-150 p, Q cm, p will usually decrease as T in-
creases, again approaching a saturation value
-150 p, Q cm. This latter behavior caiinot be fit
by Eq. (1), but must be regarded as part of the
same class of phenomena. For convenience, we
shall refer to these phenomena collectively as
"Mooij 's laws. "

There is a very simple way in which Eq. (1)
might arise out of microscopic theory. %'e must
believe two things; first that the only parameter
o depends on is a/l, and second that a(a/l) can
be represented as a simple series of powers of
a/l. If so, the prediction of microscopic theory
will have the form

where t.-„are dimensionless coeff icients. The
irst term a, (a/1) ' is cr sT, which contains the

leading singular part of 0, i.e. , the parts which
diverge as l-~. Corrections to Boltzmann theory
appear as higher powers of a/l. As long as a/l
is small, the corrections can be ignored and
Boltzmann theory is correct. Equation (2) re-
duces to Eq. (1) if two conditions hold: c,-l
and Q„~c„(a/l)"«1. It should be mentioned that
(a/l) is used here as symbolic for whatever
parameter in the Hamiltonian measures the
strength of the disorder. For impurity scatter-
ing. (a/l) is proportional to n, ~

V~', impurity
density times impurity potential squared. We can
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imagine increasing this parameter so that (a/I)
becomes 1 or larger, even though the concept of
a mean free path loses meaning in this regime. '

Anderson'considered a simple model with a sin-
gle band of unperturbed width S', which is per-
turbed by giving each site a random energy distri-
buted in the range (-V, V). Then the parameter,
corresponding to a/I is (V/W)'. He showed that
at T =0 a series of the type (2) does not exist.
There is an essential singularity near the critical
value (a/I), -1 beyond which o =0 because the
states become localized. Gotze' has a self-con-
sistent approximation scheme which seems to
give the correct features for the metallic region
a/I & (a/I), , although it is not expected to work
very close to the critical point. Gotze finds at
T = 0 that a remarkably good account is given of
o' by using (2) with co- —1 and c„=0for n&0.
In other words, Gotze finds a shunt resistor
model with a negative shunt resistance. This
does not necessarily contradict experiment be-
cause (1) is obeyed as a function of T and has been
seldom tested in metals at T =0. A qualitative
explanation using localization ideas has been
given for the T & 0 resistive anomalies (Mooij's
laws) by Jonson and Girvin' and Imry. ' When the
Fermi energy E~ is near a mobility edge E„ the
effects of temperature cannot be completely
described by adding thermal disorder scattering
to (a/I). There are also parameters kT/I &„-&,~

and I/(, where ] is the localization length. In-
elastic scattering plays a different role from
elastic scattering when the states are localized
or nearly localized. References 8 and 9 take ap-
proximate account of some of these new param-
eters. We find these theories inadequate because
(1) they offer no explanation for the excellent suc-
cess of Eq. (1) in clean metals (in particular they
do not explain how o' can be enhanced above o»r),
and (2) there is no evidence for an Anderson
transition in dirty metals of this type. At T =0,
p is seldom above 200-300 p, Q cm, whereas if
an Anderson transition is nearby, it should be
possible to make p diverge. We doubt that local-
ization ideas are applicable to metals obeying
Mooij 's laws.

This paper proposes a completely different
picture" for Mooij's laws, based on a different
mode of failure of Bloch-Boltzmann theory.
Localization is related to the failure of the inde-
pendent scattering approximation when E is
not large compared with g. In Sec. II we an-
alyze the semiclassical acceleration and cur-
rent approximations and show that they also fail
unless (a/I) «1. Associated with this failure is
the possibility for new modes of conduction as-
sisted by interband effects. This provides a na-

tural explanation for the additional currents
described by Eq. (1). In Sec. III, a generalized
Boltzmann theory is described which completely
avoids the semiclassical approximations, but
continues to use the independent collision ap-
proximation. In this theory, the only parameter
of obvious significance is (a/I), so the expansion
(2) is expected to work, and Eq. (1) can be thus
rationalized. However, no great distinction is
made between elastic and inelastic scattering,
so Eq. (1) should work both at T =0 and at T & 0.
This apparently contradicts the experimental
fact that strongly disordered d-band metals can
have dp/dT & 0 at T & 0, and p(T =0) exceeding
p (observed for the corresponding clean metal).
A possible resolution of this difficulty is that
p coul.d be somewhat T dependent and l.arger
at T =0 than at T =~. Within the generalized
Boltzmann theory, including impurity and phonon
scattering, the expression for p (worked out in
Sec. V) turns out to have a form at least as com-
plicated as

en; + PT p', „n; +q p".„T
yn;+5T ns+9T

where n and y are related to electron-impurity
matrix elements, while P and 6 are related to
electron-phonon matrix elements, and q = 5/y.
Thus p' =n/y can exceed p = P/5. This
explains why very large values of p(T =0) are
not achieved in these systems. In Sec. VI the
infrared conductivity is discussed. Our theory
predicts that some of the additional dc currents
(not contained in o»~) diminish more rapidly at
finite ~ thanthe Drude law predicts. Thus in-
frared experiments provide a possible method for
deciding which theoretical alternative is correct.

Several other groups have recently published
work of a similar nature. Garik and Ashcroft"
have treated the effort of collision broadening
on interband conduction using a phenomenological
number-conserving relaxation-time approxima-
tion. They also f ind new types of dc currents.
However, because scattering does not directly
couple intraband and interband disturbances in
their model, their results are of the form e, =0,
c, -l in Eq. (2)—i.e. , the corrections to o, in
their theory are weaker than ours and scale as
(a/I), whereas ours are independent of a/I.
Kragler and Thomas" have introduced equations
of the same kind as Garik and Ashcroft, except
specialized to the case where all bands are iden-
tical. Kragler' has made a microscopic trans-
port theory similar to ours, except specialized
to the same case of identical bands. He has used
Green's-function methods, while we use the less
reliable but more physically transparent method
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of truncated equations of motion. Finally,
Agassi' has developed a related transportlike
equation for the problem of the dielectric con-
stant of a doped semiconductor.

II. SEMICLASSICAI. APPROXIMATIONS

H'=eE ~ xe '"~~

ih """= eE . g (knl x I
k'n') a~ -„, (t}

dt

x e&«jest-&i'ff'-»t . (6)

To avoid the difficulty that x is unbounded, we use
the identity

(i/5)(f),„—fs „,)(kn l x I
k'n') =v),„~BI),.

v1„„,=(kn I p/ml kn') . (6)

Note that the diagonal element v-„„„is just'the
group velocity v-„„=h 'Be„-JBk. After some mani-
pulations described by Bloch, Eq. (6) becomes

~a- - ~a-n% E nt
dt

= ' ak

—eE. " a - e''"inn't
n ~n Rwn

where Sw-„„~ is e-„~ -e-„„. In Bloch's work the in-
terband part of (9) was missing, and the remain-
ing, purely intraband part can be integrated to
give

The fact that one-electron states of a crystal
can be assigned a wave vector k provides an an-
alogy between electrons in crystals and particles
in a gas. This analogy is fully exploited in the
Bloch-Boltzmann transport theory, "which
assumes that the electron dynamics can be des-
cribed in terms of the distribution function E„-„,
the number of electrons in quantum state I kn),
n being the band index. Just as in classical
physics, the E field is assumed to cause a smooth
acceleration of electrons (which in band theory
corresponds to intraband transitions to nearby
k states with n fixed). Bloch" gave a nice micro-
scopic justification, except that he neglected all
bands except one, which prevented an analysis
of the accuracy of semiclassical approximation.
Herewegeneralize Bloch's proof to the case of
many bands. A general wave function is

@(x, t) = Q a„,-„.(f) l
k'n') .

g'n'

%e ask how such an electronic state evolves in
time under the influence of an external E field.
According to standard time-dependent perturba-
tion theory,

a„)((t)= a„t, ,f«).,(0) .

]./~ «ac/2vh,

I » 21Th v~/4E

(11a)

(11b)

where &e is a typical separation of nearest bands,
v~ the average Fermi velocity. In d-band com-
pounds with manv overlapping bands, repulsion
of neighboring bands tends to keep v~ small. A

reasonable estimate is h v„-Be/Bh —&e(27(/a) '.
Thus (11) is equivalent to I » a, although the
criterion may be stronger since we have probably
underestimated Be/Bk somewhat. Thus in (f-band
metals, the semiclassical approximation is at
least as likely to fail as the independent collision
approximation.

As mentioned in Sec. I, the failure of the in-
dependent collision approximation provides a
likely source of enhanced resistivity (at least at
T =0) due to incipient local. ization. We now argue
that failure of semiclassical approximation pro-
vides a likely source of enhanced conductivity
(independent of T) due to interband conduction,
and can thus account for Eq. (1). Suppose the
metal is perturbed by an impulsive E field 6(t).
The response is

)()) fu "v( )= (12)

since E(&u}= 27(. The instantaneous response
j(t =0') is ne'/m, because the classical law mv'

=- eE applies at very short times. This gives the
f-sum rule

)() o)=J a~o( =)= e.') =,'l4, ()3)

where m is the free-electron mass. The semi-
classical law hh = eE gives mv„= -(m-/m f) zeE&
which predicts a smaller instantaneous cur-
rent

This is the semiclassical law": Electrons remain
in whatever band they start in and evolve according
to dk/dt =- eE/h . It relies on ignoring the second
term of (9). This is quite safe in the appropriate
circumstances, namely if we are concerned with
either the long-time or the average behavior, and
if the electron is allowed to evolve smoothly ac-
cording to (9) over more than one cycle t'=27(/
l(dk„. I of the interband oscillations. Assuming

(d « l&a-„~„l, the second term of (9) averages away
at long times, but the first term remains. In a
real solid with phonons or impurities, collisions
will interrupt the evolution at average intervals

Thus we require 7'» 1' in order to ignore the
second term of (9}. This condition can be written
several ways:
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r Q~
d(o o„((o)= — e' = (i4)

where the subscript sc means semiclassical, 0
is the "Drude" or infrared plasma frequency,
cubic symmetry is assumed, and the factor of
2 is for spin degeneracy. The effective inverse
mass (n/m), « is always less than the free value
n/m, and in d-band systems (n /m), ««n /m. For
example, ""in Nb, Ge, 0'=15(eV)' while &u'

=390(eV)' (counting 38 valence electrons per
cubic cell). The ratio 0'/&o,'=0.04 is the fraction
of the /=0 val. ence electron current which is
carried by the semiclassical. mechanism. Thus
the interband currents overwhelm the semiclass-
ical currents at short times, This suggests that
interband effects may enhance the dc current.
The dc conductivity o=(2v) J dtj(t) is the time-
average response to E =6(t). In the absence of
collisions, the interband part ofj (t) averages to
zero, but with frequent collisions it is plausible
that the interband part gives a significant enhance-
ment of o, just as it does to j (t =0).

The anomalous T-dependent resistivity of A15
metals has often" been ascribed to "Fermi smear-
ing" effects, i.e. , the possibility that within
+ k~T of the Fermi energy the character of class-
ical conduction changes rapidly enough for an
additional source of T dependence (beyond the
usual linear behavior) to enter. There is no doubt
that this effect can alter the SBT prediction to a
noticeable degree in metals. where structure oc-
curs in electronic properties on a fairly narrow
scale &e. The scale &e for Fermi smearing is
the same as the 4e for interband effects because
in both cases the determining factor is the average
band separation. This can be quite smal. l, i.e. ,
0.3 eV in A.15 metals, since 30 d bands in a unit
cell are compressed into an overall band about 10
eV wide. Fermi smearing, if computed using the
Sommerfeld expansion, ' gives corrections in
powers of the small parameter (vkeT/&e)2. This
should be compared with the smal. l parameter
(g/7)/AE which governs the size of the "nonclass-
ical" corrections discussed here. In a pure metal
with only electron-phonon scattering, 8/r be-
comes 2m~, k~T for T & g~. The coupl. ing constant
A,„equals A. in superconductivity (to about 10%
accuracy). Thus, for 215 metals with A& 1, the
"nonclassical" corrections should enter at lower
T than Fermi-smearing corrections.

k kn'
kan'

(i 8)

From here on, gk-„~ and j will be written as
scalars, and should be interpreted as the com-
ponent of the corresponding vector in the direction
of the E field. In SBT, the current is given by an
unbalanced occupation E&„of states each of which
have a current —evk-„,

(17)

where E,„can be defined as trpck„ck„. These
equations suggest that a natural general. ization
of the ideas of Boltzmann theory begins with a
matrix "distribution function, "

j=-e g v-„„,F,„„ (18)

Eke~ = tr~ck~ cr (i9)

The off-diagonal parts Ek„~ describe a nonequili-
brium electron-hole pair amplitude which gives
rise to interband currents, while the diagonal.
parts are the semiclassical occupation function
E~. A cl.osed equation of motion can be derived
for Ek„~ in the same way that Kohn and Lut-
tinger first "derived" the SBT by approximately
closing the equation of motion for E„-~. Details
are in Befs. 21 and 23.

To simplify the notation, E-„„~ will be regarded
as the element (knl Elk'n') of a matrix F, with
the important restriction that the physical ma-
trices which enter at our level of approximation
are all k diagonal. The standard scalar product
of two matrices A, B is

(A. ,a) =trW'a . (20)

The matrix v [Eq. (8)] is Hermitian (as F also
turns out to be in the dc case), so we can write
the current (18) in a compact form

j = e(v, z) . -
The equation of motion is calculated to linear

(21)

HI. THE GENERALIZED BOLTZMANN EQUATION

In a previous paper" we have derived a general. -
ization of SBT which includes interband effects,
and studied its predictions in the interband part
of the spectrum. Unlike our present results"
for small ~, our previous results" for large co

are not at all controversial; yet the same equation
governs both regimes. In this section the equation
is reviewed, and some new notation and previously
unpublished properties presented.

The quantum-mechanical current operator can
be expressed in the form
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order in the E field and second order in the elec-
tron-scattering matrix elements, at which stage
a standard" decoupling approximation is made.
The distribution-function matrix is written as

/=/0+4 (22)

where P' is the equilibrium value and 4 is the
term linear in E. In the absence of collisions,
A„„,would be B„~f(e-„„),but corrections to second
order in the scattering matrix elements must be
taken into account.

The resulting generalized Boltzmann equation is

T(z)e = [-i(z —6) —K(z)]C =X(z), (23)

where z is a complex external frequency to be set
equal to ~+i5; & is real and 6 is a positive infin-
itesimal. The notation K means that the scatter-
ing operator K is a tetradic, i.e. , it operates
on a matrix yielding another matrix, and in par-
ticular, Q is a diagonal tetradic,

(K4 )„=+K„,,4 „ (24)
3, 4

(QC )„-=(e, —e, )C „, (23)

where &, is the energy of the electron state i, and
the shorthand i (= 1,2, 3, 4) denotes the quantum
numbers kn T. he operator i(z —0) describes a
sort of "inertial" effect which tends to keep the
current out of phase with the field unless the ex-
ternal frequency (d is on resonance with a transi-
tion e, -e2 The "driving term" X=X"'+X"'
+ ~ ~ is linear in E and has matrix elements

X,„~ which are expanded in powers of the scatter-
ing. The zeroth-order term is

where the dagger means ordinary Hermitian con-
jugation of a matrix. If @~=Q, we shall call
Q "self-J-adjoint. " Such a tetradic has the pro-
perty that (QA) is Hermitian if A is (and likewise
for anti-Hermitian). A specific formula for the
elements of the J-adjoint tetradic is

(28)nJ ne
~12,34 ~21,43

The operator T(z) of Eq. (23), as well as its con-
stituent operators iz, iQ, and K(z), all have the
property under J conjugation,

T'(&u+i5)=f'( &u+i5) . - (29)

It is important to note that the complex conjuga-
tion [asterisk in Eq. (28)] is interpreted to oper-
ate on all quantities entering Q21 43 including the
complex variable z. In the dc limit, Eq. (29)
says that T is self-J-adjoint. The operators iQ
and 8', being independent of z, are always self-
J-joint.

K conjugation. The K-adjoint tetradic Q~ is
defined by

(A, Ofl) =(e A, a). (30)

An explicit formula for the elements of Q~ is

o (knn', z)."'4 Explicit formulas for K are given
in the Appendix. Various properties and sym-
metries of the operators and matrices are now
listed.

J conjugation. There are two different tetradics
(which we shall denote @~and Qz) which are
adjoint to a given tetradic Q, and generalize the
notion of the Hermitian adjoint for matrices. J
conjugation is defined by

(QA)' = j'A', (2'I)

n& —n+~ 12,34 ~34, 12 (3l)

-=- eE(Wv)~„„,

which defines W, another diagonal tetradic. The
second-order term X"' is given in Ref. 21. It
is a function of z, and is analytic in the upper
half plane, as is the scattering operator K(z).
The "band-diagonal" parts K„»(z) of K reduce
to the semiclassical collision operator K» in the
small-& limit. The semiclassical operator is
real, Hermitian, and positive, which guarantees
that the dc 0 is real and positive. The full oper-
ator K(z) is considerably more complicated.
Like the Boltzmann operator, there are scatter-
ing-out and scattering-in parts, which corres-
pond in Feynman graphs to self-energy effects
and vertex corrections. In fact, the scattering-
out parts of K can be expressed entirely in terms
of the (band nondiagonal) matrix self-energy

The operators iz, iQ, K, and 7' have the property

T (~+i5) = —T(~ —i5), (32)

while 8' is self-K-adjoint, i.e., W = gi. In the dc
limit, K and T are neither self-K-adjoint nor
anti-self-K-adjoint, whereas iQ, beingindependent
of z, is anti-self-K-adjoint for all values of z.

Charge conservation. Collisions can alter elec-
tronic energy (because of phonons) and momentum
(because of the lattice) but must leave charge
conserved. The expectation value of the Q th
Fourier component of the charge density is

n(Q) = tr p g (k'n'~ e'o ' "
~
kn) cI.~ c- ~ (33)

kk'nn' kn

Thelaw V j+en/Bf =0 mustbesatisfied. Forhomo-
geneous external fields (@=0) this reduces to
Bn(Q = 0)jBI = 0. Using (19}this becomes
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%llll 0 i~ QyQF
(34)

a sufficient condition to guarantee this is

@t((a+in) =4 (-~+ i5). (40)
To px'ov6 this, we must prove

eF,,-'t +g jejkF jk &~t ) coll gyes

(34a)

(34b}

Specifically, in the dc limit, (40) says that the
distx'ibution function should be Hermitian, which
is sufficient to guarantee that the dc conductivity
is real. The property (40) follows from the J-
conjugation symmetry (29) of T, plus the property

Xt(~+ i6) = X(- ~+ R).
A detailed inspection of the operator K (Refs.

21, 23, and the Appendix) shows that

(35)

(86)

These establish (34a) and (34b), respectively, and
thus guarantee charge conservation, Eq. (34}. Re-
lation (35) derives from a cancellation of scatter-
ing-in terIns against scattering-out terms, just
as in SBT. As a consequence of these relations,
it is apparent that the matrices 4; X, V, are all
tx'Rc eles s»

¹gatigity. A fundamental property of the scat-
tering operator in Boltzmann theory is that in the
absence of external forces, it should always drive
the system towards thermal equilibrium. This
property remains true when interband effects are
included. That is, if the distribution F differs by
an ax'bitrary small amount 4 from equilibrium

Foy then

(37)

A proof of this property is given in Ref. 23. From
this it also follows that

(e,kc) o (89)

px'ovided 4 is a HermitiRn mRtx'ix. %e had hoped
to be able to use this property to develop a varia-
tional principle for the dc current. (In the dc
limit, the true distribution 4 is Hermitian. ) How-
evex', we have not been able to find a way to do
this.

Beatity of response. A physical restriction on
a response function like o (~) is that o(- ro) = o (ta)*.
This condition guarantees that the response to
a real field E cos(ut) will be a real current
o'((o)E cosutt+o "((o)E sin&et. Using (21) and (22),

Since there is no external force, the external
frequency z is here f'5. In other woxds, the opera-
tor K +K is negative definite, i.e., for arbitrary
4

(4, (i+It )c) o.

Property (41) follows by inspection of the form of
X(z); property (40) then follows from (23) and (29).
A tetradic with the property (29) conserves the
property (40) of the matrices it operates on.

The solution of Eqs. (21) and (23) for the con-
ductivity is derived in Ref. 21 and can be written

o(z) = i{e/E-) Q X~, (z)o-„
knn~

x [g + ~-„-e&, + M„,(z)] '.

This expression is very similar to the usual
Kramers-Heisenberg dispersion relation, diff er-
ing only in the appearance of the memory term
M&, and the terms in X&, which are higher
ordex than XD, . The meInory function satisfies

k n'n
a nonlinear integral equation [Eq. (19) of Ref. 21],
which has the advantage that good leading-order
solut1ons CRn be obtR1ned 1n VRX'1ous limits~ Rl-
though exact solutions are difficult. In the special
case when the external frequency ~ is equal to
an interband frequency e-„„,—e&, the memory
function M-„,{z)becomes, to excellent approxi-
mation, the self-energy difference Z&„. —3-„*

[Eq. (23) of Ref. 21]. This result confirms (and
extends) earlier work on this problem and demon-
strates that vertex corrections do not alter the
intuitive one-electron interpretation of optical
spectroscopy (Coulombic vertex corrections lead-
ing to exciton effects are omitted from our theory).
In the case where equals an indirect interband
frequency e~ -

~ -c-, M- has been shown ' to+On l n' knnt
contain the usual theory of indirect optical absorp-
t1on. These x'esults hRve been summarized 1n

the hope of convincing the reader that Eq. (23) is
both powerful and correct (at the familiar level
of approximation which treats collisions as inde-
pendent events). Before proceeding to the new re-
sults for dc and 1nfrared properties in Secs. V
and VI, a brief further cfigression on the interpre-
tation of Eq. (23) is made.

IV. RELATION BEllVEEN NONCLASSICAL
CURRENTS AND BAND RENORMALIZATION

There are two ways to describe qualitatively the
problem we are addressing. The surprising thing
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is that they seem intuitively to be different pxob-
lems, but they turn out to be the same. The first
has already been mentioned, namely the problem
of including interband currents and band mixing
due to the E field in the description of transport.
The second was our initial aim, namely to include
in transport theory a recognition of the fact that
at high T or in the presence of impurities, con-
duction occuxs in electronic states which have
been altered or renormalized by the disorder
[as contained in the memory function M~, , of
Eq. (42)]. The approach we have taken unifies
these tmo problem. This does not seem to us
an accident of the method, but an inescapable fact.
The renormalization mhich shifts bands with g, or
T, and the scattering mhich affects transport,
are real and imaginary parts of the same object,
ik(z) in our theory. In semiclassical theory,
which keeps only intraband parts of iK, all im-
portant real parts of iK cancel in the de limit.
This includes the large electron-phonon mass
enhancement, which appears in specific heat,
and can also be seen in c(&) at low T for ~ in the
infrared, "'"but not for = 0. Holstein" has
shown that this theory is accurate to the level of
Migdal' s approximation, i.e., R~~/E„, and men-
tions that interband effects are negligible at the
same level. Our analysis is consistent mith his.
The nem contributions to 0 are "smaller" than

c~~T by a/I or g/abc = 2m ART/Ae, and this is
just the high-T, narrow-band analog of the Migdal
parameter R&~/E~, but it is no longer small. The
renormalization effects contained in our theory
are the high Than-d shifts'4 of order dE/dT - 2-4
k~ as seen by optical spectroscopy in semiconduc-
tors. 27 These corrections are ignored in lom-
temperature physics, having a relative (but not
absolute) effect smaller by K~~/E~ than the non-
adiabatic mass enhancement. For high-T trans-
port, we claim that the priorities are revexsed,
and effects which were of order RMo/Ez at low
T have become significant.

For the alloy problem, the coherent potential
approximation (CPA)(Ref. 28) seems to give a
good account of the band renormalization; that is,
it gives a good treatment of G, the average Green's
function. Transport properties are determined
by GG, the average of the product of two Green's
functions. There is some hope" that the approxi-
mation GG - CG mill allow CPA theory to describe
transport beyond the regime of Boltzmann theory,
and attempts have been made to extend this to
T & 0 phonon effects. so The counterargument is
that GG —GG describes vertex corrections, 'which
are necessary for charge conservation (they give
the scattering-in term in the Boltzmann limit)
and are crucial for localization. Nevertheless,

it is possible that GG - GG works reasonably mell
for d-band metals at high alloy concentration or
high T. After all, neglecting scattering-in terms
in Boltzmann theory, although very bad at low T,
is accurate to about 10/0 at high T. So far, most
CPA theories have been model theories with a
single band. However, Stocks and Butler" have
recently reported a calculation for o(T = 0) in
concentrated AgPd alloys based on a full Kor-
ringa-Kohn-Rostoker (KKR)-CPA band theory. 2'

Agreement with experiment is impressive, and
suggests that the method should be tested for
stronger-scattering systems. The relation be-
tween such R theory Rnd our formalism is com-
plicated. Many-band CPA theory keeps many
of the interband x'enormalization effects to higher
accuracy than our theory and thus describes, at
least in part, the effects we call nonclassical con-
duction via intexband channels.

V. dc CONDUCTIVITY

In order to put the generalized theory in per-
spective, a brief discussion of the standard dc
theory is presented, with special emphasis on
the VRlidity of the RssUmptlons usuRlly IQRde

The semiclassical Boltzmann equation is written

Here 4~ is the correction to first order in E to
the equilibrium distribution function I „for elec-
trons in state k (short for kn) with energy e~ and

velocity e~ = Be~/ek, . The solution to this equa-
tion is

-1 84a=eEM ( )aa sa
8 Cy~

(44)

where &~ is defined by this set of equations. The
resulting conductivity is

(45)

In principle T~ can be evaluated only by solving
Eq. (43). For most cases, howeverthe ,assump-
tion of &~ being independent of k morks surpris-
ingly well. '2 The optimum value of & is then de-
termined by R varlatlonal principle.

Our aim in this section is to shorn horn the gen-
eralized equation (23) can be used to derive sys-
tematic corrections to the result (45). The lowest
corrections will have the same form as the "shunt
resistor model, " Eq. (1), and provide a novel but
natural interpretation for the shunt resistor, p,„,
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P = 3.k(i5)i,
it = SZ(1-I),},
q = (1 -i )k(i5)(1-3,) .

The new tetradies (48) are written in matrix form
in (47), so the caret is omitted. The generalized
driving term Xg, has also been divided into
diagonal and nondiagonal paxts,

-eEx= 4X,
-eE)& = (I. -~)x.

(49)

In what follows, the symbol d will be used to de-
note the degree of disorder, " for example, d will
stand for the number of impurities in the case of
impurity disorder, and k~T in the case of high-
temperature phonon disorder. The operators
P, O, R are all of order d ' and in the limit of
small disorder can be neglected compared to iQ,
which is of order d . But because of. the other-
wise singular nature of the equation when w = 0,
P should be retained. The resulting transport
equation for small disorder is

as a nonclassical conduction channel. The method
of derivation used in this section is chosen be-
cause it assists in the interpretation of the new
results. The same results will also emerge in
a different way in the next section by taking the
dc limit of the infrared results.

We now write the tranport equation in a form
where the presence of two conduction channels,
intra and interband, is evident. The distribution
function can be separated into band-diagonal
and nondiagonal parts Q and g, respectively;

/=64&,

i&
= (1-I).)C, (46)

..
p

~
= &g p

&„m &,~,m~ &„~ ~

where i is the unit tetradic and E is a "diagonal
projection operator "Th.e function Q is the semi-
classical component of 4. It is useful to consider
Xg, and 4g„„, as elements of column vectors
with the band-diagonal parts occupying the first
Nv entries and the nondiagonal parts the remain-
ing N(v' —v) entries, where N is the number of k
states and v the Dumber of bands. In this repre-
sentation, the dc version of the generalized trans-
port equation [Eq. (23)] becomes

(P & )(e) (

where the scattering operator has been divided
into diagonal, nondiagonal, and coupled terms,
as follows:

(P 0 )(y'}
()

i'
E0 -*~)&~i

In this equation the intraband and interband part
are completely decoupled. Using the various
definitions (48), (49), (25), (26), the two parts of
Eq. (50) ean be written out explicitly. The intra-
band part of (50) is identical to SBT, Eq. (43).
The interband term is

(50}

—i(e» -e-„,)&j&», = -eEI&», " " . (51)
L ff'

The corresponding intraband conductivity o„(0)
is os~Y [Eq. (45)], while the interband part is

o„(0)=i ""',- (f» -f-, ) (52)
(g» g»

2 g tn'

which is pure imaginary, and in fact, zero. There
is no dc interband conductivity in a collisionless
theory. Nevertheless, we shall see that when col-
lisions are added, an interband conductivity which
is formally of order d' will appear.

As the disorder is increased, it is no longer
justified to neglect B and Q. From the structure
of Eq. (4V) it is evident that the two conduction
channels get coupled by B. The exact formal solu-
tion of (4V) does not seem to us to yield much in-
sight into the theory. We exhibit instead a pertur-
bative solution, where the small parameter which
we have been calling d will turn out to be 1/Yac as
mentioned in Sec. I. The distribution function is
expanded in powers of the disorder with pi") and
&j&~") denoting functions of order d". Since the
Boltzmann result p~ ') is of order d ', the rele-
vant corrections are of order d'. To get some
understanding of the physical processes involved,
it is useful to write the matrix Eq. (4V) expanded
to order d', as a set of two coupled equations;

p y(0) +gy(0& — «&0& (53)
&) -in' "&-= -eEy") (54)

A

where Q has been left out because it contributes
only in higher order. Focusing on (53), the main
difference with semiclassical theory is the ap-
pearance of an extra driving term, -R&t&@&. The
function &I& can be thought of as an interband polari-
zation, arising from processes contained in (54).
The sources of the polarization g are (i) the di-
rect effect of the electric field represented by,
e.g ~ EQ g (this pRrt gives zel'0 dc clll'1'slit Rs
Rll'8Rdy Illentlolled) Rlld (11) axl llidllced effec't
iQ 'RP~ ') (with P~ ') = «P 'xo)} Th-ephysics
of the induced effect is that the electric field creates
an intraband imbalance P~ '), with the real scat-
terings (P ') counteracting; then virtual scatter-
ings (R} excite electron-hole pairs out of this
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shifted distribution, with the "inertia" Q ' counter-
acting. This part of g contributes in order d' to
O'. Both parts of Q have a further effect ono in
order d: they alter the intraband distribution
(t) because of virtual interband scatterings repre-
sented by R. (This is a phonon-mediated recom-
bination process )A. typical scattering-out term
inR$ is

(1) (~)

( () KS g g~ + Q)~ ~ +jQ
kg pm~ k-k

Pff Nt

x[f(q1)p)+f)t((o~ &)] . (55)

The electron-hole pair (km, kn) has an amplitude
which the phonons can reduce by scattering

the electronfrom ~km) to~kn) via~pm'). This
recombination results in altering the semiclassi-
cal distribution p for electrons in state ~kn). In
otllel' wol'ds 'the scRt'tel lng opex'Rtox' R dl'ives $
toward equilibrium, but this has the effect of
dl'lvlng tile sellliclRsslcRl distribution Q bRck
amay from equilibrium. The disorder therefore
acts in two different ways, resulting in an extra
contribution to the dc current which is formally

independent of the disorder. These px'ocesses
are only x'elevant in metals. In a semiconductor
there is no leading term P~ 'l which can initiate
the chain leading to o - d'.

A nem dc conduction channel thus opens up be-
cause of virtual interband scatterings. The picture
that results is very suggestive of the shunt resis-
tor xnodel. The interband channel offers an extra
path for the current to flow through, and so the
total resistivity does not increase mith disorder
as rapidly as it would have if only the intraband
channel were present. This mechanism is more
complicated, and more powerful, than the one
described in Refs. 11 and 12.

The Boltzmann result was obtained when the dis-
order was small enough for R to be neglected
compared to O. Since R like P is of the order of
1/7 while 0 is of order bc, the effective expan-
sion parameter is 1/abc. The corrections due to
the opening of this nem conduction channel are
unimportant when this parameter is much less
than one. The final result for the conductivity
o (0) to zeroth order in d is

o (0) = o(nx (0) + o")(0), (55)

(5V a)~rp(())=~' l t ((p 'p') —((p 'p() 'p'-)- +((p'p(p'p'p 'p') ) ( P ~ .„(()'p p 'p')„„.)--
Rn kXXN 8W

-=o, (0)+o,(0)+o,(0)+o, (0) . (57l )

A more explicit expression for 0'0' mill be pre-
sented in the next section when the de result is
,derived as a special case of infrared. The four
parts o, (0) refer to the four terms Rnd will be
discussed separately. These equations are now

just a step amay from the shunt resistor formula;
identifying o'"(0) with o,,= 1/p gives Eq. (1).
Numerical calculations of p have not been at-
tempted. It can be seen, however, that o'"(0)
has the right order of magnitude; o'"(0)- Qp/4v be,
where Qp is the Drude plasma frequency. For
aluminum, using free-electron parameters and

setting 6& to EF the deduced value of p ~ is
-350 p.Acm. This is much larger than the ob-
served p for Al and thus a negligible effect, in
agreement with experiment. For the A15's both
Qj~ and h E are much smaller than their free-elec-
tron values, and the experimental value of p
for these materials is of the order of 150 p.O cm,
the same order of magnitude a,s the room-temp-
exatux e resistivity, and thus a very important
correction. Since the operators 8, P, and the
driving term x' in (57) are linear sums of impurity

and phonon terms, it is clear that all terms of
(57) have the form of Eq. (3) except for the third
which looks like (3) squared.

It is not marranted to claim that the theory pre-
sented here provides a complete description of
Mooij's laws. %e believe there is little doubt'
that the parameters a/I and 1/~bE have increased
to values near 1 in the physically accessible range
of disorder in highly disordered d-band alloys
and even, zn clean A15 metals" mith T &300 K.
Therefore it is insufficient to solve our generalized
equation (20) only to order d', and impossible to
justify the independent eolbsion approximation.
Nevertheless we believe it likely that the explana-
tion given here for saturation is qualitatively
correct. %ith greater confidence we claim that
the results found here are significant and should
be included in any attempt at a full theory.

VI. INFRARED OPTKAL PROPERTIES

Infrared measurements can provide valuable
additional insight into transport processes. In
this section we show how band-mixing effects
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alter the infrared response and how this in princi-
ple can be used to get some independent informa-
tion about the nonclassical conduction mechanisms.

In the usual (l »a) theory, optical response in
the infrared is given by

g ((0) = f ((d) + 4rr20'~ (2(d)/~

o„(~)=a„/[1-i(uT(1+&)].

(5Sa)

(5sb)

The factor (1+&) is a many-body correction fac-
tor which disappears from the theory in the dc
limit. The electron-phonon interaction makes a
large contribution (of order 1) to & at low temp-
eratures, ' ' but this is a nonadjabatic effect
and goes away at temperatures higher than eD.
Coulomb interactions can also contribute to ~,
as predicted by Landau Fermi-liquid theory, but
the effect appears to be quite small (less than
10%) in alkali metals. " The term g ((u) in (58a)
represents the interband dielectric response. If
& lies well below the interband excitation ener-
gies, then this term is real and independent of co.

However, metals like A15's have interband tran-
sitions and structure in a (&) at energies &0.1 eV.
Even in this case, the term &„((u) can be ne-
glected if the second term dominates. Supposing
a dc resistivity of 100 p. Ocm and a photon energy
&u- 0.1 eV, the factor 471od, /&u is -600 while &uT

can be expected to be of order 1. Thus it seems
safe to drop & (&u) if w& 0.1 eV.

First we digress a little on the status of (58b).
This classical Drude result is not an exact solu-
tion of the semiclassical theory, but is based on
some relatively accurate approximations which
we review so that we can justify similar approxi-
mations in our generalized theory. The right-
hand side of the SBT [Eq. (43)]must be augmented by
the term SC/Sf = i+4 -The e.xact solution is then

c„((u)= ie-2 QX1v1[(o+M1((u+i6)] 1, (61)

o ((o) =-ie' QX»v»[~+~»™»(~+i6)]'. (62)

In this notation, v, is short for v~ and v» for
v~, , and so forth. The coupling between the
intra and interband channels manifests itself
through the interdependence of the inter and
intra- and interband channels manifests itself
through the interdependence of the inter- and

tained from the equation for M~, =M» presented
in Ref. 21, Eq. (19), are

M~ =M~+M~ &

M'=j E -g-v3 @+M,
v @+M3 1 3

(63)

(64a)

4 Vl ~ + 34+ 34

=—(g+M1)1'1 ~

v, 4 1r, =i I~, „(-,)
4

~ Vl 8 + M34+ 34

12™12+ 12

(64b)

(64c)

(65)

(66)

v„(z ++24™„)
(67b)

Consistent with this, we replace X~ and &~ by their
average dc values 4 and w, thus recovering the
Drude result (58b).

When we examine our generalized theory, it is
no longer possible to make a unique separation of
a(&u) into intra- and interband parts because of the
coupling between the two channels. We shall use
a separation based on Eq. (42), namely,

rr„((d) = -e'Q v,[i(u(1 +6,) -If.,]-'v„ sf(g)
(g + 12+ 12) 12 (67c)

(59)

where an additional operator ~„has been added
phenomenologic ally. We then approximate (59) by

o„(~)= eQ v, -i~(1+&,)+— . (60), sf

This step may be regarded as a definition of &~

and 7„, except that in order to be exact, different
values of ~~ and w~ would have to be used at each
frequency e. In practice it seems safe (except
at low T where strong &-dependent electron-
phonon effects occur) to use the dc values since
(a) &„and If„re aprobably both approximate con-
stants giving A~ and 7~ only weak k and & depen-
dence, and (b) what k and e dependence there is
will be washed out by the final k sum in Eq. (60).

v3 1
12=2 Q 12 3( g)

V12 g + 3
(68)

g+M, =(z+M;)(1 —I',) '

Z + 12+ 12 (Z + 12+ 12) ( 12)

(69)

(70)

Equations (61) and (62) for the conductivity then
become

cr„((u) = ie' QX,-v, [(u+M;((u+ i5)] ', (71)

o„((u) = -ie' QX12v12[&a+ &u12+M;2((u+i6)] ',
J,W2

(72)

where renormalized velocities v are defined as

The equations (64c) and (67c) which define I' can
be rewritten
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V, =v, (1- r,),
v„=v„(1—r„).

(78a)

(vsb)

)
v„(1-r„)

4
~ Vl 8 + h)34

(vsa)

The coupled equations for M; and M» [(64a) and
(6Va)] ean be written in a form in which M» no

longer explicitly appears:

r„=; x„,—, "
3 V12 g +M3

(vsb)

(v9)

g +Ml
(V4a)

12», 4 v ( +~ +M )
(v4b)

Equations (V1)-(74) represent an exact transfor-
mation of the equations of Ref. 21; no approxima-
tion except independent collisions has been made.
These equations appear to have no coupling be-
tween intraband and interband channels because
the coupling is now hidden in the functions I",
which obey Eqs. (65) and (68), or alternately

The only remaining difficulty with these equations
is that (79) is still an integral equation for M;;
everything else is simple integrals. There is no
avoiding this difficulty —it is an ac generalization
of the semiclassical theory, and our guiding
principle has been to construct a theory which re-
duces properly to SBT in the weak-scattering
limit. %e can, however, use our experience with
SBT to approximate the solution of Eq. (79), fol-
lowing the procedure of Eqs. (59) and (60). In the
dc limit, the solution is

v, (z+M;) '- -iv, ~, = -i(P-'v)„ (80)
Vl ~+~34+ 34

~12 2 12 3
3 V12 Z+

(75b)

where the operator P, defined in Eqs. (48), is the
dc limit of K, ,(x), or the SBT scattering opera-
tor. The approximate ac generalization is

Equations (72)-(75) are a complicated set of non-
linear coupled equations. However, approximate
solutions can be easily formulated for the weak-
scattering limit. We will treat h/&4»: and @&a/d E
as small parameters. Equations (74) show that
~, is of order E or d to the first power, and

M»/&» is of order h/&hE. Thus to first order,
&u»+M» can be replaced by &u» in (74b) (numera-
tor and denominator) and (75a) (denominator).
Thus I, is also of order d', while I'» [Eq. ('15b))
is of order K/(g +M) which is of order d'. The
part of a„(&o) [Eq. (72)] which is of order d» can
be written explicitly as

»
~ ~

A f2 z2

1 2 ~2 ~1 + 12

where Eq. (26) has been used for X» in lowest
order. The corresponding result for &r„(~) is

(76)

v„,((o) =ie'Q v,'(~+M;) '

-ie' x,"'v, ~+M' '
I

v I' ++M'
1 1

(77)

The only approximations made so far are omis-
sion of second-order terms such as the cross
term involving X,"'I', in Eq. ('77), the term in-
volving X~+,' in Eq. (76), and replacing &u»+M»
by &u» in the denominator of (76). Consistent with
this, we can approximate Eqs. (V5) for I' and Eq.
('14a) for M~ by

(x +M,)-'=- [~(I+A)+ i/~]-', (s1)

(x ((o) =o,(0)(i-i(us*) '~

T*=r(1+A) .
(»)
(84)

The ac intraband conductivity, Eq. (77), has three
parts. The first is clearly osET(0)(l -i&@&*) ', and
the second corresponds to o,(0)(1 -itoT*) '. The
third term of (77) involves r~. In the dc limit,
Eq. (78a) for I', can be written as

where r is (roughly) the dc 7» and A is a renorm-
alization defined implicitly through Eqs. (79) and

(81). The exact answer can always be written in
the form of Eq. (81), but we propose that the k

and & dependence of the exact A, T is probably
not very significant, at least in dirty metals or at
T &eD. If this approximation is accepted, the
infrared results can be expressed simply in terms
of the dc results. For example, consider Eq. (76),
which separates into two parts, the second con-
taining I'» and the first being the collisionless
interband response. In the dc limit, the first
part becomes Eq. (52) which is zero. At finite ~,
this term is nonzero, but we have already argued
that we can. neglect it in the region 5& & 0.1 eV.
The second term can be written out using Eqs.
(vsb) and (81). In the dc limit, Eq. (78b) becomes

v„r„=—[fi'(S'-'v)] „
[where Eq. (40) defines K», as an element of A~].
Thus the corresponding conductivity (76) corres-
ponds to the second term of Eq. (57a), i.e., &r,

The result can be written
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+1 1 3 Q 1,34+ )34, 34~34

-3 g (RII-'ft'f -')„~„ (88)

(
o~ +ra, (0)+o (02)+a (04)

1-i(dr*

o.(0)+ (I ~r 4)2

where the second term comes from the part of
(78a) involving I",4 [E(I. (82)] and corresponds to
cr3(0), while the first term corresponds to o4(0).
In the ac case, a3 involves (@ +3)f) ' twice (once
explicitly and once through I;,) and thus be-
comes o3(0)(l —3(d&*) ', while o4 becomes
o4(0)(l -3&@&3) '. Collecting all the terms, the
final answer is

21, 43{ +3 (AI)

Here the complex conjugation operates on all
quantities entering 2g 43 including the argument
-(()+35. From E(I. (Al) the property (29) of & can
be verified. The subsidiary operator = has two
parts corresponding to scattering in and scatter-
ing out:

APPENDIX

In Sec. III the scattering operator E was intro-
duced and described abstractly. A concrete rep-
resentation. of this operator, for the case of im-
purity scattering, is given here for the conven-
ience of the reader. These formulas were de-
rived in Ref. 21, but it is necessary to use also
Ref. 24 in order to find all the pieces explicitly.
The result in a Bloch-state basis ~1)= (iTn) is

3+13 34(++3 ) = "13 34(++33)

4))
4-4011 g ~ jn (A2)

Of the four nonclassical terms of order d in the
dc theory, three have Drude-type infrared res-
ponse, while one decays more rapidly than Drude.
%e have no numerical estimates of the relative
sizes of the four terms o, {0), and can only sug-
gest that there seems to us no reason why o3(0)
should be particularly different in magnitude from
the other terms (i.e., presumably of order
o „/4).

The predicted behavior of E(I. (86) is in sharp
contrast to the expected behavior of a metal with

E~ near a mobility edge E,. The only results we
know of for this problem are theoretical results
by Gotze' which predict an ac conductivity peak
instead of Drude inertial falloff of He[o((())]. Thus
infrared measurements could in principle help
clarify the physics of resistivity in metals with
resistivities -100 p.G cm. Preliminary results
by Yao and Schnatterly" seem consistent with
neither scheme, but could be nicely explained if
part of the dc conductivity remained constant in
the infrared while the remainder exhibited Drude
inertial falloff. At an earlier stage of our work,
we believed that our theory yielded such a re-
sult, '' ""but this preliminary conclusion turned
out to be incorrect.
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&Il Vl 3)(4l Vl 2)
1234' ~1 8+4'4 C1

where g, is impurity density and V is the elec-
tron-impurity scattering operator or T matrix.
Charge conservation, E(I. (35), can now be veri-
fied. When the sum Z, :» 34 is constructed, scat-
tering in cancels the second-order part of scat-
tering out, leaving only a term n, (3~1)~4). This
piece cancels when+, Ã» „is constructed from
E(I. (AI).

The electron-phonon part of & is somewhat
messier because of the appearance of +&& in the
denominators to (A3) and {A4), and Fermi func-
tions in the numerator. However, at high T it is
accurate to make the adiabatic approximation,
i.e., neglect am+ in the denominators, which cor-
responds to neglecting the explicit time depen-
dence of the phonons. Then Fermi functions can-
cel, and formulas completely analogous to (A3)
and (A4) result. In the second-order terms, the
operator V is replaced by u ~ vV' and in the first-
order term of (A4), V is replaced by 2u2V2V,

where VV is the change in crystal potential felt
by an electron due to atomic motion, and u is the
displacement. The impurity concentration n, is
replaced by phonon density 2lV((du)+1. Finally,
the correct momentum transfer Q must be used
both for uo —(g/2M(()4))112q and for N((()u)
= [exp((8(d4)) —1] '.
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