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Quantized Hall resistance and the measurement of the fine-structure constant

R. E. Prange
Department of Physics and Astronomy and Center for Theoretical Physics,

University of Maryland, College Park, Maryland 20742
(Received 10 October 1980; revised manuscript received 17 February 1981)

An elementary, exact calculation of two-dimensional electrons in crossed electric and magnet-
ic fields with a 5-function impurity is carried out in the quantum limit. A state localized on the
impurity exists and carries no current. However, the remaining mobile electrons passing near
the impurity carry an extra dissipationless Hall current exactly compensating the loss of current

by the localized electron. The Hall resistance should thus be precisely h/e2, as found experi-
mentally by Klitzing et al. Other possible sources of deviation from this result are briefly exam-
ined.

In a recent Letter, v. Klitzing et al. ' have reported a
high-accuracy measurement of ez/h (to one part in
10') which after improvements and together with the
known value of the speed of light, c, potentially'
would provide a measurement of the fine-structure
constant of precision greater than that currently avail-
able (one part in 107). Their result is based on a
measurement of the quantized Hall resistance in a
two-dimensional electron gas, as realized in the in-

version layer of a metal-oxide-semiconductor field-
effect transistor. We here provide an elementary cal-
culation which has a bearing on their result, and is a
step in the direction of estimating theoretically the
accuracy to which ez/h is determined by the experi-
ment.

Since free electrons which fill an integral number
of Landau levels give a Hall resistance precisely an
integral fraction of h/ez, the problem is one of treat-
ing the imperfections, which might give rise to ordi-
nary resistance, and/or to localized states which could
cause the Hall resistance to deviate from its ideal
value. (We do not treat the electrons as interacting,
an omission which future work must remedy. ) We
here work out the instructive, elementary, and essen-
tially exactly solvable case of two-dimensional elec-
trons with a single 8-function impurity.

The main result is that (a) a localized state exists,
which (b) carries no current, but (c) the remaining
nonlocalized states carry an extra Hall current which ex-
actly compensates for that nor carried by the localized
state. Thus, provided all the nonlocalized states of the
appropriate Landau level are filled, the total Hall
current carried by the level is precisely the same as in
the absence ofimpurities and localized states.

We consider then free electrons of mass m

(=0.2m, as appropriate for silicon) in the xy plane,
subjected to an electric field E in the negative x direc-
tion, and a magnetic field B in the z direction. (The
geometry is given in Fig. 1.) Spin and valley degen-
eracies are ignored, and attention is confined. to the

case in which only the ground Landau level is occu-
pied. We choose m as the unit of mass, mc/eB as the
unit of time, and (hc/2rreB)' —= is as the unit of
length. (The cyclotron radius, krhc/2rreB, does not
enter the problem. ) The drift velocity, cE/B =
—e4„/lt'is denoted by v, where &bn is the Hall vol-
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FIG. 1. The inset gives the geometry of the single-impurity
problem. To the right below is the energy diagram of the
lowest two Landau levels, as banded by impurities, and bent
by the electric potential. The lines a, —a; bound regions of
energy states deriving from distinct levels. The lines
M, —M; are mobility edges separating localized and delocal-
ized states. The hatched regions are those of delocalized
states. The electrochemical potential is given by the line
p, —p,

"—p,
"—p, . The position of this line depends on the

total density of electrons, i.e., on the gate voltage. The
states are occupied below the line p, —p,

"—p,
"—p, '. The

excess of electrons (holes) in the regions p, —p,
' —p,

"
is the

source of the Hall voltage. At the left is a schematic dia-
gram of the density of states along the cut c —c.
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and with the amplitude determined by

(2)

(3)

tage, and N is the width of the device in the x direc-
tion. The Hamiltonian is H =H 0+2+!tg'(r), with
Ho= —,[—0'/Bx'+ (pr +x)2] —ux. The eigenstates of
80 are

Q„r(r) =exp(ipry )H„(x)Q(x)/(2 "n!L) 'r'

(The Landau gauge has been used. ) The length of
the sample in the y direction is L, H„ is the Hermite
polynomial, x =x +p, p =pr

—u, and $(x)
-z 2=e " r'/n'r4. The eigenenergy corresponding to

state P„r is n + vp. The values of p are 2rrk/L with k
integer and —p ranges from —b to H' —b, where the
impurity is at the origin of coordinates which is locat-
ed a distance b above the lower edge of the sample.
The total number of p values is thus WL/2rr. This
gives the degeneracy of the Landau level. For a sam-
ple as described in Ref. 1, we have in our units (with
8 =18 T), L =7 x10, W=g x10', and
v —1/ W —10 4. We shall treat L and Was macro-
scopic and u as small, but it will be seen that 1/L is

by no means the smallest number in the problem.
The potential strength A. is of order unity, i.e.,
X » 1/L.

To find the full eigenstates of 0, the state, denoted
by P, is expanded in the "unperturbed" eigenstates
of Ho as g (r) = Xc„rg„r(r) It is eas.ily seen that

c4 =A q„,(0)/(E —n —pu)

with the eigenenergy E determined by

none of the states carries current along the electric
field. In fact, for the exact solution to be found, the
same is true. The current operator in the y direction
is jz=p&+x =p+x+v. When this operator acts on
a state P it gives vP plus a state orthogonal to P,
because the operator p +x changes the Landau level,
and by assumption, there is only one Landau level in
the sum defining P . Thus, all states belonging to
the Landau level carry the same Hall current.

Since a localized state can certainly carry no cur-
rent, we conclude that whenever the approximation is
valid, there are no localized states. We shall see that
for the case of the 5-function potential, there is a lo-
calized state and the approximation is not valid.

We therefore must solve the complete problem,
keeping the admixture into the wave function of all
Landau levels. An immediate difficulty arises be-
cause the sum on n in (2) does not converge if per-
formed after the sum over p, at least if it is assumed
that the latter sum may be approximated by an in-

tegral from —~ to ~, using the largeness of L and
8', and that, for large n, the term pe in the denomi-
nators may be neglected. However, the finiteness of
the integration range will become a factor when the
spatial extent of the wave functions P„~ starts to be-
come equal to the sample width, and there will be an
effective cutoff at n =M —W'. (The large magni-
tude of this cutoff is special to the 5-function poten-
tial. Finite-range potentials will have much smaller
effective cutoffs. )

To evaluate (2) and (3), the sum over p is replaced
by a principal value integral plus a contribution corn-
ing from the p values in the immediate neighborhood
of the singular point. By introducing k —5
= LE /2rru, where k is an integer and 2~8, ~

& I, as
well as p, =2rrk /L Eq. (2) may be rewritten as

1 =kG(E.) +)y(p )'(r, /u . (2a)

As is familiar, except for possible bound states break-

ing off above or below the bands of levels, the ener-
gies determined by (2) fall between the closely
spaced levels of the successive p values. Thus, we

may use as a label for the state o, the nearest level of
the system unperturbed by the impurity. For simpli-

city only levels belonging to the zeroth Landau level
are considered.

We begin by making the approximation of retaining
only the term n =0 in the sums. This is suggested
by the "strong magnetic field limit" which is usually
taken in the literature. ' The idea is that it is ade-
quate to diagonalize the subspace consisting of the
(nearly) degenerate states of one Landau level, if the
levels are sufficiently separated. The current in this
case may be obtained without the necessity of finding
the explicit eigenfunctions and is completely indepen-
dent of the form of the scattering potential. The
(number) current operator in the x direction is

j„=(I/i)(8/Bx), and it is immediately seen that

(~ ) BG
( )

L( + )
8Ea '

(2n v)' (3a)

Consider first states for which p )& 1, that is,
states which hardly overlap the impurity and for
which Q(p )' « 1/L is very small indeed. Except
for the case that G(E,) = I/h. , o. will necessarily be
enormous, the second term on the right of (3a) will

dominate, and the state Q will differ insignificantly
from the corresponding unperturbed state.

For the special energy En satisfying G(En) = I/k,
however, cr —1, and the first term on the right-
hand side of (3a) dominates. Under the cir-

Here G (E) is the principal value integral, equal to

XD (E —n) ' for ~E —n
~

&& v. (Since G is of order
lnM, the large but finite cutoff does not lead to an
intolerably large G. ) The discrete sum is convergent
and is given by a = —scot(n5 ). In the same way

the amplitudes are expressed as
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(E, -n--l)-'] =0 .

(4)

Next, the remaining class of states is considered,
namely, those with energies E whose corresponding

p is of order unity, that is, states made up of unper-
turbed eigenstates which have a significant overlap
with the impurity. The eigenstates P do not overlap
the impurity, of course, since they must be orthogo-
nal to P~ which is localized at the site. The energies
E are of order u, and thus G(E, ) =—ReGp(p )/u
which is given by

G, (u. ) = Jdu
p~ —p + I'g

Then, G —1/u, $(p ) —I, a —I, and the second
term on the right-hand side of (3a) dominates be-

cause L is large. The Hall current carried by such a
state may be evaluated to leading order in v as

iy =u+(A )'/rru .

The sum over states n is smooth and may be re-
placed by an integral over p . It is found that

j'—= $(iy u)— (7)

= v — dp Im
2 1

7T Gp(p)

The integral is evaluated as m. dp p'@ p =m 2, by

recognizing its analytic properties. Thus, j, which is
the excess current carried by the electrons which pass
near the impurity, is just j = v, exactly enough to
compensate for the failure of the localized state to

cumstances, there is exactly one level for which this
is true. This also subsumes the case for impurities
near the sample edges, which may have bound states
lying outside the quasicontinuum. (One may also
take the thermodynamic limit, L ~, in which case
the state in question becomes an exceedingly narrow
resonance, without changing the result. ) This is a lo-
calized state, whose wave function is P»=exp[ —(x'
+y~ —2ixy)/4]/J2n (for u =0, and neglecting the
interlevel mixing). It is a peculiarity of this system
that the spatial extent of the localized state is con-
trolled by the magnetic field when the potential fluc-
tuation is short ranged and does not become large
even when X and E» become small. (This may modi-

fy the theory of Anderson localization for weakly lo-
calized states. ) The current of the localized state, j»,
of course vanishes as can be verified by direct com-
putation which gives

t

j =u 1 — g(n +I)[ (E» —n)
(A )' -2
2'

carry a current.
The case of two 5-function potentials may be stud-

ied as well. In this case, if the potential sites are
separated by a distance l » 1, they do not interact,
and the single-impurity problem gives the answer.
(This may be extended to many well separated im-

purities. ) On the other hand, if the separation l is
small compared with unity, the potential acts as a sin-

gle site. Only when l —1 do the impurity levels in-

teract and start to form an impurity band,
The preceding results, as well as the lore of Ander-

son localization due to Mott and others, ' ' support
the conjecture" that the following picture holds. In
the absence of an electric field, and in the presence
of a considerable number of impurities, defects or
other potential fluctuations, and in a sufficiently
strong magnetic field, a given Landau level will be
broadened into a band. The central region of this
band will be delocalized states. Beyond a mobility
edge there will be localized states, which can only
conduct current by hopping processes. The delocal-
ized states of different bands will thus be separated
by a region of localized states. The delocalized states
of each Landau "band, " however, collectively carry a
total Hall current I, in the presence of an electric
field or potential gradient, which is

I = ( eu/L) L W—/2rr =e~&btt/2rr(=e'4tt/h) (8)

Our calculation thus tends to confirm the expectation
that the quantum Hall resistance is h/e~.

This result applies to a dilute system of 5-function
impurities. Ando et al. also obtained a quantized
Hall current within the framework of their approxi-
mations, which are the assumption of "high magnetic
field, " the single-site approximation with the effects
of scattering taken into account self-consistently, and
the assumption that there are gaps between the
resulting "impurity bands. " The spirit of the "high-
field" approximation seems to be the same as dis-
cussed earlier, but in detail it is different since the
elegant formalism of Kubo et al. 6 is used. (This
method breaks the current correlation expression for
the conductivity into two parts, one of which is treat-
ed exactly, and the other approximately. ) Although
the conditions for the validity of the high-field ap-
proximation have not been spelled out, it seems like-

ly that it will be valid when the field is so great that
the potential hardly varies on the scale of l~. The 5-
function results on the other hand ought to be quali-
tatively valid when the potential is confined to a
small region compared with l&. Given the value of I&

0
appropriate for the experiment (70 A), it is unlikely
that either approximation is a priori very good. The
experiment, however, is evidence that the results
which have been obtained in these limiting cases
must be valid under very general conditions.

Aside from these questions which somehow must
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receive a favorable answer if the experiment is to be
explained at all, there are several other considerations
which might lead to effects at the part in 10 level.
In particular, W is not so large that corrections of or-
der 1/Incan be tolerated. Thus, the edge effects
must be carefully investigated. It is known from the
theory of the Landau diamagnetism, for example,
that the surface Landau levels tend to carry current
in a direction counter to that of the bulk. Perhaps
this kind of correction can be avoided along the lines

suggested by the foregoing, namely, that any surface
states or other anomalous states will be compensated
for by an increase in the Hall current of the delocal-
ized states. Another small effect needing investiga-
tion is the nonparabolicity of the energy bands.

It is interesting to ask whether the quantum Hall
current is a supercurrent in the sense of the theory of
superconductivity, and whether a persistent current
can be set up. There is no dissipation connected with

the Hali current per se, since it is perpendicular to the
field. It is a supercurrent in the sense that the wave
function is locked into place by an energy gap, and it
is because of the vector potential that the current ex-
ists.

Thus the more interesting question is whether
there will be a small current parallel to the electric
field, that is, whether in this direction, the system is

a perfect insulator. In our model, such a current can
come only by taking into account inelastic processes
so far neglected, which give rise to a change in occu-
pation of the states. When an entire level of
current-carrying states are filled there is no possibility
of changing their occupation without large energy
cost. The localized states also are activated so they
too are perfectly insulating at sufficiently low tem-
perature. Thus we expect that the Hall potential can
be maintained without dissipation and that a per-
sistent current can be set up.

This raises the possibility of photoinducing a poten-
tial drop in the y direction. If light falls on the junc-
tion, it can excite electrons into the unfilled delocal-
ized states of a higher Landau level, and these elec-
trons will provide a current in the x direction which

will in turn cause a shift in the direction of the Hall

current and lead to a potential drop along the length
of the sample. By controlling the frequency of the
radiation, something about the position of the mobili-

ty edges may be inferred.
The approximation of constant electric field must

also be examined. It is not known where the charge
which gives rise to this field resides, at least in the
case that the diagonal component of the conductivity,
cr, vanishes, and the actual electric field configura-
tion may depend on how the Hall current is set up.
If the charge is localized toward the edges of the
sample, it will attract an equal and opposite image
charge in the facing metal a few hundred nm away.
The potential of such a line of dipoles will vary most
pronouncedly in the first few hundred nm away from
the edge. If this is the case, most of the Hall current
will flow along the edges of the sample, and the inner
part will carry practically no current. This wi11 in-

crease the effective value of the local v and correc-
tions of order v' could start to play a role. There is,
fortunately, no evidence thus far that the electric
field is far from constant. The situation might arise,
however, in a Corbino (disk with center hole)
geometry where a Hall voltage could be applied by
moving up external charges.

In the actual experimental configuration, ' the pri-

mary charge giving rise to -the Hall potential presum-
ably resides in the localized states. We thus envisage
a situation which is schematically shown in the figure.
The charges in these localized states will be unable to
relax toward equilibrium at low temperature since
they require thermally activated inelastic processes to
change their state. The Landau band will then bend
to folio~ the potential, and a picture as in the figure
will result.
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