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Coupling of order-parameter modes with I ~ 1 to zero sound in He-8
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The frequencies of B-phase order-parameter modes are calculated with 1 ~ 1 pairing interac-

tions and all Landau parameters included. The two modes that have been observed are modi-

fied by v3 and the 1=2 Landau parameters. The corrections from v3 and F2 can explain the ob-

served frequency and temperature dependence of the 2+ mode (real squashing mode). A new

mode with J=4, whose frequency depends on v3, v5, and F4, may be observable in the zero-

sound dispersion.

Weak-coupling collisionless kinetic equations, in-

cluding Fermi-liquid interactions and a single angular
momentum component (l =1) of the pairing interac-
tion, have been used extensively to study the order-
parameter collective modes coupled to zero sound in
superfluid 'He-8: this work was summarized and
completed by Wolfle in Ref. 1. In this paper we ex-
tend the theory to include all angular momentum
components vl of the pairing interaction. We find
that v3 modifies the frequencies of the two modes al-

ready observed in ultrasound experiments. We also
find a new mode whose interaction with zero sound
could be strong enough to be seen.

Inconsequence of the spontaneously broken
spin-orbit symmetry of the equilibrium order parame-
ter, the total angular momentum J (but not the orbi-
tal angular momentum l) is an appropriate quantum
number to characterize the collective modes of the
order parameter d(p;q, r0) at q =0. A spin-triplet
mode with total angular momentum Jean have com-
ponents with orbital angular momentum l =J +1.
Only modes with even Jare coupled to the density,
and hence with a pure I =1 pairing interaction the
relevant modes have J=0, 2. Assuming particle-hole
symmetry, one finds that the density couples to
modes of d (q, co) = —, [ d( q, ru) —d "(—q, —r0) ],
but not to modes of dt+'(q, ru) = —, [d (q, co)

+d"(—q, —co)]. The J=0 mode of dt 1 (henceforth
the "0—mode") is part of the zero-sound mode,
while the 2—modes have frequency m& = &12/5
x 5(T) for F] =F3=0. Wolfle named the
2—mode which couples to sound in the absence of
transverse magnetic fields the squashing mode; it has

J, =0 along q. With particle-hole asymmetry includ-

ed, the J=0 and modes of d + also couple to the

density. The 0+ mode has coo+=25(T), indepen-
dent of Fermi-liquid corrections, and the 2+ modes
have co2+ 48/55=(T) for F2 =F3=0. Again the
mode with J, =0 along q interacts with sound in zero
transverse field; Wolfle calls this the real squashing
mode. Both J=2 modes have now been seen in

sound-propagation experiments. ' Theoretically the
effect on the zero-sound dispersion from the real
squashing (2+) mode should be smaller than that
from the squashing (2—) mode by the square of a
particle-hole asymmetry parameter which Koch and
Wolfle estimate to be of order (5/EF) ln(0. 1fr/6),
and the experiments appear to be roughly consistent
with this predictions. The 0+ mode has not yet
been identified experimentally, but it should have a

coupling strength intermediate between that of the
2—and 2+ modes.

To include the pairing interactions with I ~ 1„we
first note that spin-singlet modes' cannot couple to
the density. Gauge invariance requires that only the
combinations 544 + 454 enter observables, but
these combinations cannot contain any scalar com-
ponents from a triplet 4 and a singlet 54. Thus we
will treat the coupled equations for the diagonal and
off-diagonal mean fields

5t p(p ) = 5t"(p ) 5 p + 56 (p ) ' rr p

and

56 a(p) =id(p) (a.oy).p .

We take q =0 and neglect particle-hole asymmetry,
which is sufficient to determine the frequencies of
the modes coupled to zero sound with negligible er-
ror, but not to calculate the coupling constants. The
coupled equations for 5e(p) and d (p) are
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56(p) —5e,„,(p) = F*(p p')[ —)(5e(p') + —,0)h)(p' d' '(p')] (3)

1

r

d (p) = J) — 4)(p p ) ——,44&&5e(p')p'+ —d' '(p')+ —,(co' —4h'))( d' '(p') +)(p' d' (p')p', (4)
!

where the pairing pseudointeraction is

v(p p') = $ (2l+1)u(P((p p')
odd I

the function A. is given by

) =a') =4a' ~$ dE "" (6)
(4E2 2)(E2 g2))/2

and we have used the J=0 equilibrium order param-
eter A;„=5( T) 5;~. To solve these equations we first

I)
8'

note that if d
'

is the component of d with angu-
lar momentum 1, then p d " contains only J=1+1

I

components, and hence can be represented as

p d( /)(P) B(/+I /) p'p» '''
&I+] » I'I+]

+B(I-i,i)

where 8 '+" and B ' ' " are symmetric and traceless
in all pairs of their indices. Hence if we decompose
Eq. (4) into its angular momentum components, take
the dot product of each with p, and use the recursion
formula9

F(+) (p P') + —. F) (p p')-
21+1 21+1

we can immediately read off the coupled equations satisfied by the 1=J +1 components of the mode with total

angular momentum J:
l

J 5E(j) 2J /33B(jj+)) + 2X, + ( 3 4(J+1) ~3 B(jj—()
2J+1 2J+1 2J+1 (9)

1

+ 1 EE(j) = 2X + ) 4J k3 B(j/4. () + 2(J+ 1) &3B(jj
2J+1 ' 2J+1 2J+1 (10)

In these equations we have introduced
r

1 1
X(= X(/)( = ———

l

which is independent of the cutoff used to define the pairing pseudointeractions vi. E'~ is the totally traceless
and symmetric tensor representation of the angular momentum J component of 5e(p),

(12)

and can be calculated immediated from Eqs. (3) and (7),

(~ E,~P, +[F$/2(2J+1)]o)5)((B +' +B ' ' )
1+[F~/(2J+1) ])

Equations (9), (10), and (13) determine the frequencies of the J—modes. For the 2 —modes we find'

X3[ctJ
3

5 +
&&

F] (((l —45 ))L] +
4

cal ((4l 4A ))(=0

and for the 4—modes,

4X3X5( 1 + 9 F4 X) +X3)([co' —9
5' +

(3(
F4 (0)3 —4d 3) 1(] +X&)i[03' ——h3 + 8,

F4' (a)3 —453) )(]

(13)

(14)

+ —„' ~'(co' —44')(7)'=0 . (15)

Equation (14) agrees with the result given by Wolfle in the limit lj3 0 and ~F] ~
((1. A positive F] increases
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the eigenfrequency co2, while a positive (attractive) v) lowers F2 . Because h. 0 for T T„ruq always ap-
proaches 412/56( T) in this limit.

The equations satisfied by 87(p) and d(+'(p) are
I

5e(p) g—e,„((p) = Jt F (p p') (
—&[&a(p') —p' &e(p')p'] — icvh—) p'xd (p.') ), (16)

rI

d (p) = v(p p') ' irui—k) p'x ge(p') +—d'+'(p')+ —'rv')( d'+'(p') —)(p' d'+'(p')p'
4m

(17)

These are slightly more difficult to solve than Eqs. (3) and (4) because of the cross products, but if we proceed
just as for the d equation, we can eventually obtain equations for the I =J +1 components B — of the
mode of d +' with total angular momentum J:

(

~ gE(J) J g2B(JJ+]) 2~ + 2 J g2 B(JJ—])
2J+1 2J+1 2 2J+1

(

/E(J) = 2X + ) 2 4(J+1) ~2 B(JJ+)) 2(J+1) /2B(JJ ))
2J+1 2J+1 2J+1

(18)

(19)

The new tensor E ' is defined by"

la) . )IJ J ( la) Jk kdy2 PJ laJJk kj'la) . le

where in analogy to Eq. (12) we represent the angular momentum Jcomponent of 5a(p) by

ge) (p) El, /I) ' ' ' Jl jpp) ppJ

From Eq. (16) for ga(p) we find

.(J) E,„,—[Fj'/2(2J+1)]i0)h)[B J~+' .—[(J+I)/J]B 1 ']
1+[Fy/(2J+ I) ])

(20)

(21)

(22)

which together with Eqs. (18) and (19) determines
the frequency of the J+ mode. For the 2+ mode
the dispersion relation is

X) [ ru —
5

4 +
~q F( (0)2 —462) h. ]

+ 4
o)'(0)' —462) )( =0 . (23)

In the limit v) 0 and ~F(j~ && 1 this reduces to

a)22+ = —,g( T)'(I + 2, )(Ff ) (24)

which differs from the result given by Wolfle, who

found the coefficient of F2 to be three times larger
than it is in Eq. (24).

Figure 1 shows the dispersion relations for 0)2+( T)
calculated from Eq. (23) in the two extreme cases
v3 0 and Ff =0, with the remaining parameter in
each case adjusted to give 0)2+(T =0) = 1.0755( T
=0). For v) =0 this requires Ff = —1.56, while

Ff =0 implies X3=—2.31, which-corresponds to
v3 0.14 if we take v] =0.20. Although the tempera-
ture dependence of a)2+( T) changes very little
between these two cases, precision measurements of
a),+( T) can in principle be used to determine both F2
and v3 with no other experimental input except T,.
However„existing measurements of (v2+(T) alone
cannot be used to determine either F2 or v3, an
analogous ambiguity exists between the corrections to

rv2 (T) from Ff and from v). Measurements
of &()(T=0) can give F2 (at least at low pressures
where the nontrivial strong-coupling corrections are
negligible) once current uncertainties over Ff and F(')

have been resolved, so another determination of v3
from «)2+(T) should be possible eventually. Similar-
ly, since F2 can be determined from the difference
between the first- and zero-sound velocities (given an
accurate value for Ff ), an independent value for v)
can be obtained from accurate measurements of
a)2 (T) Any significant .discrepancy between these
two values for v3 could then be interpreted as experi-
mental evidence for nontrivial strong-coupling correc-
tions to the collective mode frequencies. tn Fig. 1 we
have also shown experimental results for cu2+( T)/
Aacs(T) from Refs. 3 and 4. The agreement between
these data and Eq. (23) is excellent, given that some
discrepancy is expected due to the strong-coupling
corrections to 5( T)

We can estimate the maximum possible effect on
zero sound from modes with J)2 by a simple argu-
ment. When the order-parameter oscillations are
driven by zero sound, the order-parameter fluctua-
tion tensor must be constructed from powers of 5„„
and of q„q„. Furthermore, a tensor of the form in
Eq. (7) with total angular momentum Jmust contain
the tensor q„~ q„, and the associated dimension-
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FIG. 2. T =0 solutions to the 4—4—mode equation. The
s to F =0 (F$ =—1.0 anlid (dashed) curve corresponds o

X =—2.31, the value which gives co2+(T = )/
r F =0, The dash-dotted curve corresponds to

=0. The abscissa isX = —15.0 (a smaller u3/ui) and Fi = . e a3=
v~/vi with e& =0.2.
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