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Melting of a two-dimensional electron lattice is studied using the molecular-dynamics tech-
nique. It is found that the system undergoes a first-order phase transition between
I[=e2(mwn)"/2/kyT] =118—130. The system exhibits hysteresis in the temperature dependence
of total energy and the coefficient of self-diffusion. The change in entropy on melting is found

to be 0.3kg per particle.

Recently, there has been a great deal of interest in
the phenomenon of melting in two dimensions.!™
Grimes and Adams’ first observed the existence of
an electron solid on a liquid-helium surface. Fisher,
Halperin, and Platzman® have analyzed the experi-
ment and find that the results can be explained on
the basis that the electrons form a triangular lattice
below the transition temperature. Experimentally, it
is found that the liquid-to-solid transition takes place
for a value of the coupling constant I',,[=e(7n)/?/
kg T, n being the electron density] =137 +15. The
classical system of electrons in two dimensions has
been studied using Monte Carlo (MC)”-% and molecu-
far dynamics (MD) methods®™!! and the values of T,
are in good agreement with the experiment.

In this Communication we report a molecular
dynamics study of a classical two-dimensional (2D)
electron system. Nature of the liquid-solid transition
is examined via structural and dynamical properties.
Clear evidence for the existence of hysteresis in the
temperature dependence of energy and the constant
of self-diffusion lead to the conclusion that the melt-
ing of a 2D Coulomb solid is a first-order phase tran-
sition. Results are also presented for the specific
heat and the velocity autocorrelation function.

MD calculations were performed on a system of
100 electrons on a rigid, uniform, positive back-
ground in a rectangular box with periodic boundary
conditions. The Hamiltonian of the system is given
by
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where the last term arises from the interaction of
electrons with the uniform, positive background. Be-
cause of the long-range nature of the Coulomb in-
teraction, we use the method of Ewald summations
to take into account the interaction of an electron

with an infinite array of periodic images of the other
electrons and the uniform, positive background. It
should be pointed out here that a rectangle whose
sides have the ratio v/3/2 can accommodate 4M?
(where M is an integer) particles on a triangular lat-
tice. Our calculations were performed at a density of
1.477 x 108 electrons/cm?, in a rectangle of area
0.677 x 107% cm?, and at 20 values of temperatures
ranging from 0.19 to 1 K, corresponding to the
values of I' between 180 and 36, respectively. A
predictor-corrector method involving up to fifth time
derivatives of the positions was employed to integrate
the Newton’s equations of motion.'?> A time step of
2.5 x 10712 sec was used in all the calculations, which
led to the conservation of energy of 1 part in 50 000
after a 15000-time-step run. We checked our values
of the internal energy and pair correlation functions
at I'=36 and 90 with those of Gann ef al. (MC)? and
Hansen et al. (MD),!° and found them to be in excel-
lent agreement. Our velocity autocorrelation func-
tions at I' =36 and 90 are also in excellent agreement
with those of Hansen et al. In our calculations, at
each temperature the system was first thermalized for
about 3000 time steps. The results presented in this
letter are based on MD runs of 15000 time steps at
each I'.

In Figs. 1(a), 1(b), and 1(c) we present the results
for the temperature dependence of the total energy
per particle, coefficient of self-diffusion and the
specific heat. The crosses in the figures represent the
results for the electron liquid which has been mono-
tonically cooled from a temperature of 1 K (I'=36).
The solid points are the results for the electron solid
which has been monotonically heated starting from a
lattice at very low temperatures. The results are in-
dependent of the thermal history of the initial lattice
configuration. Sizes of crosses and solid points are
meant to indicate the degree of uncertainty in the
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FIG. 1. Temperature dependence of (a) total energy per
particle in degrees kelvin; (b) constant of self-diffusion; and
(c) specific heat per particle.

values. The region of hysteresis is marked by the
two vertical dotted lines. In the temperature range
shown in Fig. 1(a) the energy per particle for the
solid as well as the liquid is nearly linear with tem-
perature. The point marked S, on the lower line
(monotonically heated solid) represents the meta-
stable solid at the highest temperature. When this
system was heated slightly the system abruptly melt-
ed into a liquid marked L, via the path indicated by
the dotted line. On the liquid line L, is the last
metastable point which when slightly cooled crystal-
lizes into an electron solid via a path schematically
shown by the dotted line. The observed hysteresis in
Fig. 1(a) between I' =118 and 130 is clear evidence
for the existence of latent heat of melting. Based on
our MD calculation we find the value of the latent
heat per particle to be 0.09 K and 118 <T',, =<130.
From a MC calculation Gann, Chakravarty, and
Chester8 find T',, <125 +15, whereas Morf'! from an
MD calculation gets I',, =130 £10. While results of
these two authors are in good agreement with the ex-
periment as well as our MD calculations, the value of
I',, =95 +£2 obtained by Hockney and Brown is some-
what lower.’

It should be pointed out here that for a Coulomb
system the internal pressure, p, can be obtained in a
straightforward fashion from the virial theorem
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From this expression and the behavior of energy as a
function of temperature, as shown in Fig. 1(a), it is
clear that the pressure will also exhibit a discontinu-
ous behavior.

The constant of self-diffusion, D, is calculated for
systems on the solid and liquid lines shown in Fig.
1(a). The results for D solid ( ®) and liquid (x),
are shown in Fig. 1(b). Between the hysteresis re-
gion marked by the vertical dotted lines, at each tem-
perature D has two values: zero corresponding to the
solid phase and about 0.6 cm?/sec for the liquid
phase. It should be emphasized here that the D cor-
responding to point S, is zero whereas when this last
metastable state is slightly heated the system melts to
L, and the constant of self-diffusion jumps from zero
to about 0.6 cm?/sec. In the other instance it is
found that the value of D at L, is approximately 0.5
cm?/sec and on cooling the system goes over to S,
which has a diffusion constant of zero. Such a
behavior of the constant of self-diffusion in the hys-
teresis region is another manifestation of a first-order
phase transition.

The specific heat, Cy, of the system is calculated
from the fluctuations in kinetic energy in a micro-
canonical ensemble!®:;
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The results for the solid and liquid phases are shown
in Fig. 1(c). It is found that Cy, increases when the
system approaches the transition region both from
the solid and liquid sides. The value of Cy in the
hysteresis region shows large variations.

To further demonstrate the nondiffusive and dif-
fusive behavior of the last points on the solid line
(S)) and liquid line (L,), respectively, we show the
behavior of the mean-square displacement (R2(¢))
in Fig. 2. It is clear that at S; the mean-square dis-
placement does not increase with time and the sys-
tem is nondiffusive whereas at L, the mean-square
displacement increases linearly with time and the sys-
tem shows finite diffusion.

The normalized velocity autocorrelation function
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for the system in the liquid phase at two values of T’
are shown in Fig. 3. The upper curve, I' =36, is for
a hot liquid whereas the lower curve, I' =130, is for a
system in the hysteresis region. As also observed by
Hansen et al., ' the period of the oscillation in Z (1)
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FIG. 2. Mean-square displacement (R2(7))
=(3,[T;() =T;(0)]%/N) as a function of time for the last
points, L, and S, on the liquid and solid lines, respectively,
in Fig. 1(a).

is almost independent of the value of I' of the system
and is not an artifact of the size of the system. Un-
like the case of a three-dimensional plasma where os-
cillation in Z (¢) arise from the coupling of the
single-particle motion with the well-defined longitudi-
nal-plasmon mode, the situation is somewhat supris-
ing in two dimensions because the characteristic
plasmon dispersion goes as the square root of the
wave vector.

To check the effect of size of the system on the
results described above, calculations were also per-
formed on 256 and 576 particle systems. In all three
sizes of the system we find evidence of supercooled
liquid and superheated solid. The temperature
dependence of total energy for 256 and 576 particle
systems is the same as for a 100 particle system,
which is shown in Fig. 1. For larger systems too, the
latent heat of melting is found to be 0.09 K per parti-
cle. The results for the temperature dependence of
the constant of self-diffusion and specific heat are
again essentially the same irrespective of the size of
the system; the results for the larger systems are
within the uncertainty indicated in Fig. 1 regarding
the results for D and Cy.

In order to further confirm the nature of the phase
transition we have studied the homogeneous nu-
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FIG. 3. Time variation of normalized velocity autocorre-
lation functions at I' =36 (upper curve) and I' =130 (lower
curve).

cleation in the system. This is done by first lowering
the energy of the last supercooled liquid state by an
amount that is slightly larger than the latent heat and
then the time dependence of instantaneous tempera-
ture, T(¢), is observed over many thousand time
steps. It is found that in the first several thousand
time steps 7(#) fluctuates around a temperature that
is above the lower line for the solid, but then in a
small time interval (—~ 1000 time steps) the tempera-
ture increases and settles lower to a value where the
system is exactly on the lower line and it has zero
mobility. The observed behavior is unique to sys-
tems which undergo first-order phase transition.!

Finally, on the basis of the MD results for a classi-
cal system of electrons we conclude that the melting
of a 2D electron solid is a first-order phase transition.
It would indeed be very interesting to experimentally
investigate the detailed nature of the melting transi-
tion of the electron solid.
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