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The phase diagram of a modulated system in a field which changes the periodicity is investi-

gated near the critical temperature. For certain values of the field, the system can gain energy

by locking into phases where the wave vector is commensurable with the reciprocal-lattice vec-

tors. The widths, dk, of these phases are calculated by renormalization-group theory in 4 —e di-

mensions. We find 4k —[(T,. —T)/T] ", with
1 1

2k —4k +3 Sk —20k +6k +1
10(k -1) 100(k —1)

where 2k is the order of the commensurability. Near T, , the wave vector locks into every sin-

gle commensurate value as the field is varied, thus generating a "devil's staircase"-like

behavior.

I. INTRODUCTION

Periodically modulated structures are very common
in solid-state physics. ' The ordered structure may be
a spin-density wave or a helical magnetic structure as
found in many rare-earth systems, a charge-density
wave as found in layered compounds such as TaSe2
and in quasi-one-dimensional conductors such as
tetrathiofulvalene-tetracyanoquinodimethane (TTF-
TCNQ), or a "mass-density" wave as found in rare-

gas monolayers absorbed on graphite and in graphite
intercalation compounds.

Generally, the periodic structure can gain "umk-
lapp" energy by locking into phases which are com-
mensurate with the lattice, i.e., the wave vector qt,

can be written as a rational fraction of the reciprocal-
lattice vectors. This may give rise to phase di-

agrams including an in finity of commensurate phases
which may or may not be separated by an infinity of
incommensurate phases. In particular, mean-field
theory predicts that if the system is subjected to a
field which changes the periodicity, the wave vector
will lock into every single commensurate value it

passes, at least when the temperature is close enough
to the critical temperature, T, . The widths of the

commensurate phases vanish as power laws as
T~T 4—6

In this paper we investigate the effects of fluctua-
tions by means of renormalization-group calculations
in 4 —~ dimensions. We find that the exponents
governing the widths of the commensurate are modi-

fied, but the mean-field phase diagram essentially
remains valid.

The order parameter describing a periodic structure
is generally complex, M-= X-+i Y-, and the phase

transition thus belongs to the XY universality class.
We shall consider a system with wave vector

q = (0, 0,q, ). In mean-field theory, in the vicinity of
the commensurate phase with q =qk = (0, 0, rr/k) the
free energy has the following form:

F, = [r + (q, —5)—']—M~M,

+X[u „.(M, M-, )"
K

+ st,„(M'" + M-'" ) 5(q —q„.)],. (1.1)

where r, u2t„and v2t, are phenomenological expansion
coefficients. When 8= v2t, =0 this is the usual XY
model describing a transition into an ordered phase
with M-, &0. When 5 &0 this remains an XY
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where

S-=M- +-
k

(2.2)

I

'')C '
k~3

model, but into a phase with M-, ~O, q =qk
+ (0, 0, 5). When vqk AO, mean-field theory gives a

transition into an incommensurate phase when the
energy involved in forming- a domain wall, or soliton,
in the commensurate phase becomes negative. This
energy (per unit length) is

Es=
4(,„lM,'" l)' '

7r

—sly (1.2)

so the transition takes place at

glM, l
-(lM l'"~,„)' ' (1.3)

Near T„ lM, l-t' ' so in this limit the borderline

value is given by

t)k ltl ~ 6MF = (1.4)

where t = (T —T, )/T, . At the critical value of 5, the
commensurate phase becomes unstable with respect
to soliton formation. 4 The resulting mean-field phase
diagram is indicated in Fig. 1. The upper curve
separates the disordered phase from the incommen-
surate one (with qo varying continuously along the
line). The lower curves bound commensurate phases
with the wave vectors qk. The shapes of these curves
are given in mean-field theory by Eq. (1.4).

II. EFFECTS OF FLUCTUATIONS

FIG. 1. Schematic phase diagram for periodic structure on
a lattice near T, , The broken line shows the mean-field
behavior.

&c =3'c

Substituting x, = 4„l t, l

" andy, = v2k l t, l
"k" this

yields

tt(1- e)tk)
~a =&fkl~. l

(2.4)

(2.5)

The explicit value of 8 must be determined by a cal-
culation. We shall see that by iterating the renormal-
ization group and matching with mean-field theory
one finds 8= —,. The leading operator coupled to v2k

is easily identified as the appropriate "cubic" opera-
tor (X,'" + Y,'"), and thus vq„ is the same as the g0, 2k

defined by Houghton and Wegner. ' They find

This is an XY model for which the critical exponents
can be calculated in d =4 —e dimensions. ' We now
switch on a nonzero 5, while v2k remains zero.
Clearly, the result is a shift of q from qk to qk
+ (0, 0, 5), with the same XY exponents. The or-

der parameter thus becomes M-for any infinitesimal

value of 5. This result will change once the umklapp
term e2q is introduced, since this term stabilizes the
commensurate phase.

For small 8 and v2k we expect all the critical prop-
erties in the commensurate phase to be described by
the scaling properties of the XY model. Thus, we ex-
pect the free energy to have the form

F(t, ,g. 2)k= ltl' f(&ltl ".v2kltl """), (23)

where t =(T —T, )/T„with T„being the transition
temperature into the commensurate phase, while 0.

and v are the specific-heat and the correlation-length
exponents of the XY model, and )« is the scaling ex-
ponent for the field ut„. The scaling of 8 as ltl "

simply follows from the fact that 5 is a "momen-
tum, " i.e., an inverse length.

The function F is expected to be singular at the
commensurate-incommensurate transition. This
singularity must arise as a singular line for the scaling
function f (x,y), i.e. , x, = X(y, ). Since we expect the
transition to occur at 8 =0 when v2k =0, this function
must have the form"

(2.1)

We now concentrate on the vicinity of the com-
mensurate phase in which q =qk. In this phase the
important fluctuations are those with wave vectors
q =qk+p, with small values of p. With a cutoff
l pl ( A, and choosing 5 = vq, =0, the appropriate
Landau-Ginzburg-Wilson Hamiltonian takes the form

H = —— r+p S-S „

+ Q4 S[y Sp Sp S
p p [y

+higher-order terms,

)Lk =4 —2k + 6[k —1 —k (2k —1)/5]
2

+ [2k (2k —1)(2k —3) —k]
50

Combining all of this with e-expansion results for
10

2@=1+ + 11

100

we find that

vt/2l t
l

k

(2.6)
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with

i (k 1) 1+ 2k —4k +3
10(k —1)

Combining Eqs. (2.10) and (2.11) yields Eq. (2.5)
with 8= —.

2
'

III. DISCUSSION

Sk3 —20k2+6k +1
100(k —1)

This is the main result of our calculations. It implies
a modified shape for the curves bounding the com-
mensurate phases as indicated in Fig. 1.

To obtain the result 8=
2

we start with the Hamil-

tonian (2.1), including the umklapp term with coeffi-
cient v2&, and perform I' iterations of the renormali-
zation group, each time increasing the length scale by
a factor e, until we have t(l') = ——(see Rudnick and

Nelson, Ref. 13). Since we are in the ordered phase,
we first shift the order parameter

(2.8)

The result of our calculations is that the exponents
(2.7) governing the widths of the commensurate
phases are modified, and generally increased, com-
pared with the mean-field exponents (1.3). For in-

stance, for k =3 mean-field theory gives h3 —t, , but

the renormalization group gives A3 —t, Extrapolat-
ing Eq. (2.7) to a =1 (d =3) yields g3

-—1.2. Pade
approximants yield g3

—1.2—1.4, so the cusp be-
comes sharper. All Pades give higher values than
mean-field theory, so we conjecture that the shape
becomes sharper also for k & 3. For large k we have

gk
— f(ka), —f,(x) —1+———xk X 2

2' 25

Since we have chosen I' such that t(l') = ——, ,

(2.10)

(2.11)

After I' interations, u4 practically reaches its XY-
model fixed-point value, while the parameters M, 5,
and v2k rescale as

t(l) =re' ", M(l) =Me '

(2.9)
A, kI8(l) =he ', v,„(l)=u2ke '

At I', all the important fluctuations have been elim-
inated and we can use mean-field theory to deter-
mine the line on which the commensurate phase be-
comes unstable. As discussed in the introduction this
happens when Eq. (1.3) is obeyed, i.e. , when

Figure 1 shows schematically the behavior near T,

Since the widths decrease to zero as t ', the com-
mensurate phases will not overlap when t is small

enough, and they do not fill out the phase diagram
(see the discussion by Pokrovsky, Ref. 14). We thus
have an infinity of commensurate phases, i,e., the
"devil's staircase" survives fluctuations in the limitT- T'
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