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Green's function in a disordered spin-exchange field
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The temperature dependence of the single-electron Green's function of an itinerant ferromag-

net has been recently studied by Korenman and Prange fPhys, Rev. Lett, 44, 1291 (1980)]. In

addition to the general importance of the single-electron Green's function the study is of special

interest because of the photoemission measurements of Eastman et al. [Phys. Rev. Lett. 40,
1514 (1978)j, and the improved experiments of Gerhardt et al. (unpublished). Korenman and

Prange obtained an unusual form for the Green's function, by an equation-of-motion decou-

pling technique (unpublished). The purpose of this note is to sho~ that the identical form for

the Green's function is obtained by two completely different methods, one based on-the

continued-fraction expansion, and the other based on an expansion and resummation method

applied to the Green's function in the form found by Capellmann [J. Phys. F 4, 1466 (1974)].
The forms found are identical, and the precise expressions are in fact very close to that of
Korenman and Prange, They differ because of some additional approximations made, primarily

the neglect of the time dependence of the disorder. It is, ho~ever, clear that the form of the
Green's function has a remarkable structure for the type of disorder envisaged.

I. INTRODUCTION

A study of the single electron Green's function is
always of interest because of thc fundamental na-
ture of this object. It can, as well, be measured
directly in angle-resolved photoemission experiments.
Such experiments were recently performed" on the
ferromagnetic 3d transition metals, which are
itinerant. These experiments were of particular im-

portance since they were the first direct measure of
the exchange split band structure, Thc experiments
in the case of nickel have been extended above the
Curie temperature Tq. The results are consistent
with the existencc of a nonvanishing exchange split-
ting above T~, although the resolution of the experi-
ment is such that theoretical interpretation is re-
quired.

The notion of a nonvanishing exchange splitting
above T~ is central to a number of theoretical ap-
proaches ' to itinerant electron ferromagnetisrn.
Moriya6 has provided a recent review of this subject.
According to these ideas, a typical magnetization con-
figuration, although it may be time dependent, and
without any net long time or long-range order, will

still possess significant short-range order. Locally the
average magnitude of the magnetization is not much
different from that at the absolute zero of tempera-
ture. The Auctuations in the magnitude are fast, and
similar to the ground-state fluctuations. The short-

range magnetic order then allows a definition of "lo-
cal bands" which are exchange split with respect to
the local direction of magnetization. This preferred
direction varies rather smoothly throughout the crys-
tal. Its time variation is of lesser importance, and
will be neglected in this paper.

Based on this picture, Korenman and Prange7 re-
cently used an equation of motion decoupling tech-
nique for the Green's function to discuss the tem-
perature dependence and give a novel interpretation
of the photoemission data.

Here we shall give two alternative methods which
yield equivalent results. The Green's function is

sought for the independent electron model with
Hamiltonian

In this equation o. is the Pauli matrix, IM, is a unit
vector which depends on the position variable r, and
5 is a parameter, corresponding to the exchange
splitting. The Harniltonian need not have this simple
parabolic form, which is chosen only for illustration.
Indeed, we shall use a more general Hamiltonian in
Sec. III. In principle, one must determine d self-
consistently, according to the relation

p, 5= U(M(r))

with U thc intra-atomic Coulomb repulsion. %e shall
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not concern ourselves with this aspect of the prob-
lem, however, but simply consider the problem of
finding the single electron Green's function for the
Hamiltonian (1), averaged over appropriate config-
urations of the unit vector p, ( r).

The (inverse) Green's function is customarily writ-
ten

1/G(k, E) =E —eg —M(k, E) (3)

where M is the self-energy operator and ek is in this
case k2/2m. Here we must be more precise and
specify that we are speaking of the t t component of
G, as G is generally a matrix in the spin indices. We
shall imagine for the moment, however, that we are
considering configurations of exchange field direc-
tions which on the average vanish, corresponding to
a temperature above the Curie point. Then G is pro-
portional to the unit matrix in spin space. The result
of Korenman and Prange is that M(k, E) can be writ-

ten

Q2 1

4 E —ek —2X(k, E) (4)

II. CONTINUED FRACTION EXPANSION

The method of continued fractions has most vig-
orously been exploited recently by the Cambridge
group. In that method, one chooses to find the
Green's function, defined by the formula,

G(k, E) = 0 01

E —H

where the state ~0& is in general arbitrary. For the
case at hand, where we wish to find the Green's

Here X has a form which resembles a standard
electron-magnon self-energy in a low approximation.
We shall display X later.

This rather unusual form practically guarantees that
G will have a multiple pole structure, and indeed that
is exactly what is found. Korenman has given an in-
tuitive description of why this multiple pole structure
is necessary physically. Briefly, it is needed so that
the excitation of (collective) spin waves can be re-
flected in the structure of the single particle Green's
function. The excitation of the spin waves must of
course lower the net magnetization, and at the same
time, at long wavelengths, cannot change the elec-
tronic energy. ' It does this by introducing into the
spin-up Green's function an extra pole corresponding
to a spin-down electron, and at the same time the
residue at the up-spin pole is reduced.

In the next section, we shall derive this form, and
an approximation to X, by the method of continued
fractions. In Sec. III, we shall carry out the deriva-
tion by a method based on series resummation.

function for a definite momentum, it is

1
i0& = (1/4 V) '" ' "

0

Here Vis the total volume of the system.
Here, it is enough to find the Green's function for

a typical configuration, as this is equivalent to a spa-
tial average, which will be identical to the result of an
ensemble average.

The continued fraction method sets up a linear
chain or heirarchy of states

~
N & according to the re-

cursion relations

&10& =aol0& + bil1&

HlN & =b+[N —1) +a~)N& +hz+2 [N +1)
(N &0)

The coefficients a~ and b& as well as the states can
readily be found by using the orthonormality of the
states. Having found the coefficients, the Green's
function is expressed in continued fraction form by

G(k, E) =
E —ap— /b, /2

Ib2lE —a, —
E —a

It is easily found that

ao=ek, b~ =5/2, (1& = —o. p(r)~0&

a, =(1iei1& a„+=2( a' &/m,

with (a2) the measure of short-range order intro-
duced by Korenman, Murray, and Prange, ' namely,

The brackets indicate spatial (or ensemble) averages.
So far, all is exact, provided the space average p,

vanishes. One may also get precisely the same
results below T& by considering the spin trace of the
Green's function, but in that case it is necessary to
introduce projection operators rather than states, as
Mori' has done.

It is straightforward, although increasingly tedious,
to write down the coefficients to any desired order.
Accordingly, we make now the approximation that
(a2) is small, and keep only the leading terms in the
remainder of the expansion. This, while not quite
adequate numerically for nickel, will give at least the
main form of the result. The approximation of small
(a') is the short-range magnetic order approximation
of Capellmann, and of Korenman, Murray, and
Prange, who have discussed its validity and experi-
mental justification.

We therefore shall keep b2 to first order (the lead-
ing order) in '7p, , and all the remaining terms to
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zeroth order in this quantity. %e find

b212) = ( —t/ttt)(k»(p, a) l0) lb2I'= (lk &t4I2)/ttt2 = (lvk 7p 12), a2 = a4 = pk,

b2 = 5/2, b4 =0

The result for M is thus

Q2- 1
M(k, E) =—

4 2E —p„—((V t") )/2m—

The expression for X is therefore

((v Vt2)2)
(6/2)2

F. —ek-
~k

2

2Z(k, E) =((V t )2)/2
(b/2)'

& —&k—
F. —ek

which can be written as

x(k, E) =2(a2)/2m —(lv vt4l2) [(E—pk —5/2) '+(E —p„+5/2) ']

III. SERIES RESUMMATION

In this section we use the Green's function tech-
nique derived previously by one of us for itinerant
ferromagnetism in the 3d-transition metals. This
technique proceeds as follows: The definition of the
Green's function

g, ,(K, t) = i (Kl T[c;,(t)c,—(0) 1lK) (10)

is used where lK) is some typical configuration (i.e. ,
some vector of Hilbert space which is important in

the thermal averages to be carried out later). Here t

is a time variable, T is the usual time ordering opera-
tor, and c;,(c,, ) are annihilation (creation) operators
in a local site representation, with i the site index,
and s the spin index. The matrix function g is calcu-
lated using a Hamiltonian in which the interaction
term is replaced by molecular fields (exchange fields)
which are determined self-consistently for each

l K)
according to Eq. (2). This Hamiltonian is thus

This displays the character of X as the sum of "ele-
mentary" self-energies, one for spin-up electrons and
one for spin down. This self-energy is discussed fur-
ther in Ref. 11.

The result, Eq. (9), is identical to that of Koren-
man and Prange, to the order here maintained, and
with the neglect of the time dependence of p. .

1
g' =

0 M
(12)

The configuration dependence is contained in the ex-
change field direction p, ;, which for the most impor-
tant configurations are not translationally invariant,
but do have short-range magnetic order. This aspect
may be exploited by using an expansion in the com-
mutator in the following way. Let

K = [Hp, M] (13)

One can then show that g may be written as

g =(P'r'+P g )- 1 (14)

particle Hamiltonian is identical to that of Eq. (1) ex-
cept that a discrete site representation has been used
and the kinetic and spin independent potential-energy
terms are represented by a "tight-binding" hopping
matrix, t, which transfers an electron from site j to
site i The r.epresentation, Eq. (11), is thus some-
what more general than that of Eq. (1). It is neces-
sary to generalize still further (to multiple bands) in
order to have a Hamiltonian capable of representing
iron or nickel accurately.

Next, the appropriate thermal averages are carried
out to determine the thermal properties. The time
Fourier transformed (and configuration dependent)
Green's function, in a matrix notation, is written as

Since this is a single-particle Hamiltonian, we can
drop the creation and annihilation operators and deal
directly with the Hamiltonian matrix. This single-

The P- are projection operator matrices onto the lo-
cal direction of the magnetization and the g+- are
Green's functions for spin up or down electrons.
The quantization axis is the local direction of the
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magnetization

P +=—5"(I + p, cr)/2

where the A; are given by

(18)

Here, 1 is the unit matrix in spin space.
We are interested in a configurational average

(denoted by angular brackets ( )) of the spin trace
of g, which we shail call 6 = (Trg). Because of the
spin trace (or thc configurat'ion average, above Tc)
only even powers of p, will survive this average. We
can expand g in powers of K, throw away all odd
powers in p, , and resum. It follows that

Equation (16) is exact. At this point we make the
simplest possible approximation and replace the
quantities A; by their configurational averages (A;).
This yields 6 in terms of the correlation function I;,,
defined as

G= &{g'+g )/2+&pg'g I
1 (16) G can be written in the form given by Eqs. (3) and

(4), with

1+ +(A, ) (w, ) (E —e, )
A2/4 hp/4

The result of Ref. 7 is recovered if the (A;) in the denominator of X at'e neglected. Using the pourjer
transformed quantities

Hp ~ok, I g
~I'k', XJ Xk

we obtain

(20)

IV. DISCUSSION

According to the continued fraction expansion of
Scc. II, the form of thc Green's function for a Harn-

iltonian of the type considered is rather special. It
might be thought that this form is a tautology, and
that any se)f-energy could be cast into the structure
found. This is not true, because thc structure deter-
mines the large energy behavior or alternatively, thc
first moments of the density of states of the Green's
function.

There arc of course other approximations in com-
mon use in the theory of disordered systems. Most
notable is the single-site coherent potential approxi-
mation (CPA). The CPA is the simplest single-site
approximation, based on complete disorder with no
short-range order, which has the structure of Eq. (3).
The "average potential, " and "average t-matrix" ap-
proximations do not have this structure, for example.
(To be precise, in the CPA, M is independent of k,
as is X, and the explicit ek is replaced by its average.

I

The quantity M in the CPA is the single-site coherent
potential of the effective medium. ) It has long been
felt that for many applications the CPA is the best
approximation available.

What this paper has shown is that there is an ap-
proximation with similar virtues available for the case
of short-range order, and that this approximation is

essentially unique, although it can be derived in a
number of ways.
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