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The Hamiltonian formulation of lattice spin systems is used to study the critical properties of
a truncated quantum O(n)-spin model in one and d spatial dimensions for arbitrary n. Strong-
coupling expansions for the mass gap, ground-state energy density, and susceptibility have been
computed up to 14th order and used to search for phase transitions. For n =0 we obtain the
exponents for the self-avoiding random-walk problem. In the O(2) case we find that the corre-
lation length diverges with an essential singularity at the critical point in 1+1 dimensions. No
phase transition is found for the O(3) and O(4) models in the same dimension. Exponents for
other values of n are presented and higher dimensions are considered.

I. INTRODUCTION

Recently there has been renewed interest in under-
standing the phase structure of O(n)-spin systems in

two dimensions. ' Hamiltonian strong-coupling ex-
pansions have proven particularly successful in

analyzing their critical properties and in computing
exponents. ' In this paper we introduce and study a
new class of O(n)-symmetric Hamiltonian spin
models that are obtained from the quantum O(n)
Heisenberg model by a truncation of the space of
states. Since the truncation preserves the global
O(n) symmetry, one might expect that the two

classes of models share the same long-distance
behavior. The reduction of the space of states we
perform consists in retaining only n + I states at
every lattice site, and this has the effect of signifi-
cantly reducing the effort in computing strong-
coupling series. Since our series explicitly depend on
the parameter n, they may be analytically continued
to nonintegral and nonpositive values, in particular
n =0 (corresponding to the self-avoiding random-
walk problem3) and negative n 4In this p.aper we will

present evidence that truncated and untruncated
models do share the same infrared properties and use
the first to compute critical exponents.

The structure of the paper is as follows. %e shall
first introduce the truncated O(n) Hamiltonian as a
simplified version of the quantum O(n) Heisenberg
model. %e will then present strong-coupling expan-
sions for the mass gap, ground-state energy density,
and susceptibility for arbitrary n in I +1 dimensions,
and for the mass gap and ground-state energy density
in d +1 dimensions. We then use the ratio test and
Pade approximant techniques to search for critical
points and compute exponents. The case n = I
corresponds to the Ising model in a transverse field
for which an exact solution is available, ' and we use
it therefore as a test of our methods. We then study

II. TRUNCATED cr MODEL

We shall consider the classical O(n) Heisenberg
model in two dimensions described by the action

I =— d2x (II„S)2 (2.1)

where S is an n-component scalar field of unit~2
length, S =1. By relabeling one space direction as
imaginary time, one can then construct the quantum
Hamiltonian on a one-dimensional spatial lattice

(2.2)

Here J is the quadratic Casimir operator for the

the n =0 case which is expected to describe the self-
avoiding random walk on an anisotropic lattice, and
find good agreement with previous calculations of the
exponents. The O(2) model is identical to the
model studied by Luther and Scalapino. We find
that the mass gap vanishes with an essential singular-
ity at the critical point with an exponent 0. =0,85
+0.4 in rough agreement with the Kosterlitz
renormalization-group prediction for the infinite spin
model. ' %e also find q =0.27 +0.1. We have found
the series in this case quite irregular due to the pres-
ence of strong competing singularities in the complex
plane, and as a consequence of this the error bars are
quite large. For n & 2 we find no indication of a
phase transition at finite couplings. We have also
computed the thermal exponent for several other
values of n (—2 ~ n ( 2) and compared it with a re-
cent conjecture. 8 The agreement is rather satisfacto-
ry, particularly in the neighborhood of n =2; Finally,
we present some results concerning the quantum
O(n) models in higher dimensions.
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group O(n) whose eigenvalues are given by

&'Ij (m}) =j (j +n —2) Ij. (»})
j=0, 1, 2, . . . .

(2.3)

(i =oIsli =o& =o,
(j=1, mlSlj=1, m') =0, (2.4)

(i =ols ekli = I
n

we arrive at the following form for HT'.

N

H, = g(n —1)XL, —
20 I 1

2 1-.——A( A(+)
n(n —I) g'

(2.5)

where L and j/
/ are (n + I) x (n + I) matrices

Iooo o 0 1 0 0
.0

L=0

0

1 0

0 1

0
~ ~ ~ p

1

X"'=- 0

0

0 0
0 0

~ ~ r
' 0

001 . 0
000

Z~»=1 0 0

p p ~ ~ ~

0 0
g(n) ~

(2.6)

p ~ ~ ~ ~ ~ o 0

It is convenient to rescale the Hamiltonian (2.5') and
define

N20 2
W Hr X (L/ x )/ / A /+/)

g(n —I) (2.7)

H is invariant under a global O(n) rotation S/ R S/

where R is an n x n o'rthogonal matrix.
In order to simplify the above Hamiltonian further,

we follow the suggestion' of Luther and Scalapino for
the O(2) model, 6 and truncate the space of states at
every site to a finite number of states. In the
strong-coupling limit (x 0) the Hamiltonian (2.2)
reduces to the sum of the quadratic Casimir opera-
tors. In this limit the minimal set of states at each
lattice site that are lowest in energy and maintain the
full O(n) global symmetry of the Hamiltonian are
the j =0 and the n-fold-degenerate j =1 states. Us-
ing the fact that

degrees of freedom.
For n = I the Hamiltonian (2.5) describes the Ising

model in a transverse field, for which an exact solu-
tion is available. 5 For n =2 we recover the model
studied by Luther and Scalapino. The case n =0 is
also of interest since it describes the self-avoiding
random-walk problem, ' which is related to the study
of polymers in solutions. ' Finally for n = —2 we re-
cover the Gaussian model. 4

It is of interest to find out what the Euclidean
counterpart of the truncated Hamiltonian (2.5) is."
One can derive easily that the partition function

(2.9)z=Trg(1+ S, S,)
&ji)

gives rise to an infinitesimal transfer matrix of the
form (2.5) when the lattice spacing in the time direc-
tion is taken to zero. The sum is over nearest-
neighbor pairs on a two-dimensional square lattice,
and the S's are again n-component unit vectors. The
O(n) symmetry is explicit in this formulation, and
we notice that for n =1 the truncated and untruncat-
ed model are of course the same. From this we see
that the truncation we have adopted is not restricted
to the particular model we have chosen to study, but
can be generalized to a wide class of theories, includ-
ing those with a local symmetry.

III. STRONG-COUPLING EXPANSION

We now turn to the problem of computing the
spectrum of the Hamiltonian (2.7) using strong-
coupling expansion techniques. We have chosen this
method because it has proven to be quite successful
in determining the phase structure of other spin
models. z " The expansion in x =2/[n (n —l)gz) is

closely related to the high-temperature expansion in
statistical mechanics, since small x corresponds to
large g or high temperatures. Due to the different
cutoff procedures in the Euclidean and Hamiltonian
version of the theory, establishing a relationship
between the two couplings turns out to be a nontrivi-
al task. Space and time are both treated symmetrical-
ly in the Euclidean version, whereas in the quantum
model the lattice spacing in the time direction is tak-
en to zero from the start. But, the infrared proper-
ties of the two models should of course be the same
and independent of the lattice structure.

To develop a strong-coupling expansion for the
spectrum of the Hamiltonian (2.7), we separate W

into two parts

with

2
X =

n (n —1)g' (2.8)

w=&o —« ~

where
(V

Hp= XL/

(3.1)

(3.2)

The truncation we have performed has preserved the
global O(n) symmetry of the original Hamiltonian
and at the same time has significantly reduced the

N

V= X)/. / (3.3)
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TABLE I. Strong-coupling expansion coefficients for the mass gap for the O(2), O(0), and
O(n) models in 1 + 1 dlmerls1ons. The expansion variable is x. Mass gap pp = 1.

O(2) O(0) O(n)

10

—2

1

3

4

1

8

11

16

17

32

77

128

55

128

903
1024

977

8192

—2
—1

1

2

5

4

13
8

65

16

209
32

2265

128

489
16

89515
1024

—2

n —1

(n —1)/2

(n —I) (5 -4//)/4

(n —1)(13—6//)/8

(/2 1)(30n —87// +65)/16

(n —1)(48n2 —209n + 209)/32

(/7 1)(—550/I + 2S74n —4119// + 2265)/128

(/1 1)(—177Sn + 11493n —23600n + 15648)/512

(3.4)

The lowest energy state above the vacuum is

N

[n& = X) t ~fo& .
N (

%'e have computed the ground-state energy density

(3.5)

Hp is already diagonal and we denote its ground state
as ~o&

L,'io&=o, vi .

(3.6)

cop and the mass gap

p =—(roi —~o) = F(x)
2a 2a

as a power series in x up to 11th order using
Raleigh-Schrodinger perturbation theory. Here F(x)
is a dimensionless function of the parameter x and
corresponds to the inverse correlation length in sta-
tistical mechanics. The expansion coefficients for
these quantities are shown in Tables I and II for 1+1

TABLE II. Ground-state energy density for the Ising, O(2) and 0(//) models in 1+1 dimensions.

O(1) O(2) O(n)

10

12

14

1

2

1

8

1

8

25

128

49
128

441

512

1089
512

2
(N —3)!!

+if

1

2

5

16

9
64

1.

64

233
2048

34105
393216

—n/2

—n (4 —3n)/8

—n (19n —56n +41)/32

/1 (—309n + 1448n —2249n + 1 160)/256

—n (5719n —37119n +90003// —96761 n + 38942)/2048
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TABLE III. Mass gap and ground-state energy density for the 0(n) model in d +1 dimensions.

Mass gap (arbitrary d)

I N

1
—2d

—d(2d —n —1)
——d (2d —1)(4d —3 —n)

1

1——d [40d —48d —8d +21 —n (16d2 + 14d —21) + n (6d —2) )

N
Ground-state energy (arbitrary d)

Olp
N

l.——n
2

0
——n t2(9d —7) —(4d —1)n]

1

8

dimensions and in Table III for 1+8dimensions.
From the ground-state energy one can compute the
specific heat, which is given by

M
n(n —I—)x'(3a)0+2xo)0'), (3.7)

gg2

although for our purposes it will be sufficient to
study 82a)0/8x2.

It is also useful to study the Hamiltonian (2.7) in

an external field in the (I) direction

(3.8)

TABLE IV. Susceptibility series in 1+1 dimensions.

O(1)
Susceptibility Xp =1

O(2) O(n)

10

799
12

37469
108

62387
81

8741521
5184

7113365
1944

1101794737
139968

294520877
17496

19
2

35

2

329
12

113
3

40661
864

141293
2592

599521
10368

(25 —3n)/2

(77 —21n)/2

(87n2-1201n +2112)/24

(729n2 —4979n +7946) /24

(—8631n + 156705n —668789n +820467)/864
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The zero-field susceptibility is then defined as

8 MpX=-
88, // p

(3.9)

We have computed the ground-state energy as a
power series in both x and h, and after isolating the
second-order terms in the expansion in h we obtain
the coefficients listed in Table IV.

—InF (x)d '

&
. v

dx x x,
C

(4.9)

Pade approximants to this function give then esti-
mates of the pole and residue. If a value of v is as-
sumed, Pade approximants to the function

suming an algebraic singularity of the form (4.1) we

can construct the logarithmic derivative, which has a

simple pole at xc

IV. SERIES ANALYSIS AND PHASE STRUCTURE
g —1/v

[F '(x)]' "
x x, C

(4.10)

We shall now briefly digress on the various
methods we have used for analyzing the above
series. ' Let us assume an algebraic singularity for
the mass gap (as an example) of the form

F(x) —3 (x, —x)"
X ~X

C

(4.1)

—(x, —x)p(g)
g x x 2pX

(4.3)

The simplest test consists in taking ratios of succes-
sive coefficients in the series of F (x), which should
then behave as

for the x close to x, . The P function P(g) defined by

P(g) F(x)
g F(x) 2xF'(x)—

will then have a simple zero at x,

give a biased estimate of x, , and vice versa. Once a
value for xc is assumed, Pade approximants to

(x, —x)—lnF (x) —v
d

dx x x,
C

(4.11)

yield a biased estimate for v.
In certain cases, like the O(2) model in 1+1 di-

mensions, the assumption of an algebraic singularity
in the mass gap might not be the correct one. If we
assume

F '(x) —A exp
(x,, —x)

(4.12)

I—ln —lnF (x)d d 1+ o-

dx dx x —x
/

C

(4.13)

then the double logarithmic derivative should have a

simple pole"

R/= Xc 1+ ' +00/ ) p 1

a/ ~/--' ( (2
(4.4) and the same should be true for

From these one then computes the linear extrapolant
—lnF '(x)
dx

( ) I/I + rr

x x,
C C

(4.14)

E/ = IRI —(I —I ) R/ t
—x, '

/ oo
(4.5)

and for the logarithmic derivative of the P function,

and the slopes

S, = (R, —R, , )/[I// —I/(I —I ) ]

d, P(g) I+
dx g x x

(4.15)

—x, '(v —I)
oo

(4.6)

We have found that the convergence can sometimes
(in the presence of confluent singularities) be im-

proved by using quadratic extrapolants

—'[I'R, —2(I —I)'R, , +(I —2)'R, 2] —x, '
/~oo

We have found some series [like the O(2) mass

gap and susceptibility] quite irregular because of the
presence of competing singularities in the complex
plane, besides the physical one on the positive real
axis. To reduce the effects of these singularities we
have frequently mapped the series conformally using
the Euler transformation in the general form

3 —2/+x, t/&[ltR, (I —I)'R, . , ] —v-
/ ~oo

(4.7)

(4.8)

a +bz
X =

c+dz

The transformation

(4.16)

where x,'" in Eq. (4.8) stands for the inverse of the
left-hand side (Ihs) of Eq. (4.7).

In the presence of strong competing singularities in
the complex plane we have found the Pade approxi-
mant method more useful than the ratio test. As-

1 z
X =—

2 1 —z
(4.17)

has proven particularly beneficial in analyzing the
O(2) mass-gap series, but improved results were ob-
tained also in other cases that we have studied. We
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now turn to the results we have obtained from the
series in 1+1 dimensions.

A. Ising model

The Ising model in a transverse field in one space
dimension is solvable and provides a good test for
the methods we have summarized in the preceding
section. %e recover the series for the Ising model
when we set n =1. The mass-gap series then trun-
cates and gives the exact result

TABLE VI. Ratio test applied to the mass-gap series for
the O(0) model, in the variable z =xj(1+x). Successive
columns list the order N, the ratios of coefficients Rz, the
estimate for z, given by the inverse linear extrapolant, z~,
and the corresponding estimate for the index, p, z. The final

estimates for x, and p, are; z,. =0.2682+0.001, x, =0.3665
+0.001, v =0.750 +0.005.

n =0, p,
' ratios in Z

ziv

F(x) =1 —2x (4.18)

and therefore we find x, = —, and v =1. %e have
1

also computed the ground-state energy density to
20th order in x and checked it against the exact solu-
tion. Using the ratio test on the specific heat we find
x =0.5001 +0.0001 and n =0.01 +0.01. 'From the
susceptibility series we obtain using Pade approxi-
mants x, =0.49999+0.00001 and y =1.7495
+ 0.0005. Using the scaling argument

(4.19)

1

2

3
4
5
6

8
9

10

2

3.5
3.5
3.5408
3.5692
3.5912
3.6077
3.6207
3.6311
3.6396

0.5
0.2
0.2857
0.2730
0.2716
0.2702
0.2698
0.2694
0.2692
0.2691

1

0.4
1

0.8663
0.8460
0.8211
0.8135
0.8038
0.7988
0.7939

and therefore

lnX —2 —3ln(' x-x„
(4.20)

we have computed q and found q =0.2501 +0.0001.
The methods seem therefore to be quite reliable for
this model, and we can turn now with some confi-
dence to less trivial cases.

B. n -0 case

%e have already mentioned the fact that the n =0
limit corresponds to the self-avoiding random walk
and is equivalent to the long-polymer problem. ' '

Since each closed loop has a factor of n in front of it and

x, =0.3665 + 0.001 (4.21)

in the strong-coupling series expansion, for n =0
there are no closed loops. This leads to a vanishing
ground-state energy density coo, although the limit
a)p/n remains finite as n 0 and can be analyzed for
singularities.

Pade approximants to the logarithmic derivative of
the mass-gap" series give x, =0.366 +0.002 and
p =0.75 +0.01. The rate of convergence in the Pade
table (see Table V) is rather slow due to the presence
of a competing singularity at xo = —0.392 +0.005.
The transformation x = z/(1 —z) moves it away from
the origin, and the ratio test on the conformally
mapped series now gives (see Table VI)

v =0.750 +0.005 (4.22)
TABLE V. Pade method analysis of the series for

D in@, ' in the O(0) model. Listed are the positions and
{in brackets) residues of the first pole on the positive real
axis, for Pade approximants of various order. Our final esti-
mates are x =0.366+0.002 v =0.75+0.01.

The series for (p, ')+' gives, using Pade approxi-

TABLE VII. Pade approximants to the series (p, ) in

the O(0) model. The estimate for x, is 0.3667 +0.001.

[N, N -1]
n=0, Ding, ~

[N, N] [N, N +1] [N, N -1]
0 (

—1)4/3

[N, N] [N, N + I]

~ ~ ~

0.3605 (0.726}
0.3680 (0.782)
0.3681 (0.782)
0.3674 (0.772)

0.3871 (0.929)
0.3692 (0.792)
0.3681 (0,783)
0.3674 (0.771)

0.3690 (0.791)
0.3690 (0.792)
0.3676 (0.775)
0.3674 (0.772)

0.3647
0.3641
0.3670
0.3665

0.3529
0.3634
0.3656
0.3664
0.3667

0.3606
0.3671
0.3661
0.3669



4704 HERBERT %. HAMBER AND JOHN L. RICHARDSON 23

TABLE VIII. Ratio method analysis of the series for
82aop/t'Bx2 in the O(0) model. Format as in Table VI.
(x =0.359+0.01 a =0.55+0.1.)

rl
n =0, o)p

xy2

ing relations P=vq/2 and 6 =I+y/P. We can com-
pare our exponents with similar estimates from exact
enumeration techniques which yield v =0.755
+0.005.' " The agreement is quite good and pro-
vides further evidence for universality of critical
behavior.

C. O(2) model

6
6.4063
6.6016
6.7441

0.1666
0.1468
0.1430
0.1394

1

0.8807
0.8324
0.7616

mants, the estimate (Table VII) x, =0.3667+0.001,
in agreement with the previous one, and an ampli-
tude A =1.042 +0.01 which leads to the approximate
result

p, —1.042(1 —x/0. 3667) "
X~Xr

(4.23)

The ratio test applied to the second derivative of the
ground-state energy density gives x, =0.359 + 0.01
and (Table VIII)

o. =0.55 +0.1 (4.24)

x, =0.3667 + 0.0002 (4.25)

in good agreement with the estimate from the mass-

gap series, and

The large uncertainty in this case is due to the short-
ness of the series.

Pade approximants for the logarithmic derivative of
the susceptibility series give (Table IX)

x, =1.52 +0.3 (4.2g)

For n =2 the Hamiltonian (2.5) describes the
model studied by Luther and Scalapino. ' Their calcu-
lations indicate the presence of a phase transition at
some finite coupling, as in the infinite-spin (or classi-
cal) planar model for which some presumably exact
results have been derived by Kosterlitz and Thou-
less. 7 Here we will try to address the question of
whether the two models exhibit universal behavior at
the critical point using the strong-coupling expansion.

Ratio test and Pade approximant techniques applied
to the mass gap and susceptibility series reveal that
the series are quite irregular due to the presence of
competing singularities in the complex plane. In the
case of the mass-gap series there are two singularities
at x =0.25 +0.73i and = —0.89, whereas the physi-
cal singularity is around x = 1.67. The mapping
x =z/2(1 —z) reduces the effect of the unphysical
singularities and moves the physical one closer to the
origin. The series becomes now more regular and the
results of the Pade analysis are shown in the Tables
X—XVI.

When we analyze the mass-gap series assuming an
algebraic singularity, we find that Pade approximants
to the logarithmic derivative suggest a phase transi-
tion at z, =0.75 +0.02 or

y = 1.333 + 0.003 (4.26)

From the series for D I X/nD In@,
' we obtain

g =0.23 +0.02 (4.27)

These results therefore suggest v 4
A

2 y 3,
3 1 4

q = —and therefore P= —and 8 =17 from the seal-= 2 1

9 12

TABLE IX. Pade approximants to the series D lnX in the

O(0) model. Format as in Table V. (x, =0.3667 +0.0002,

y = 1.333 + 0.003.)

with a large exponent v=2.6+0.8. The fact that the
values for x, and v are not stable suggests that an
algebraic singularity might not be the right ansatz.
The large value for v indeed suggests that the mass

[N, N —1]
n =2, D lnp. '(z)

[N, N] [N, N +1]

TABLE X. Pade method analysis of the series D in@, ' in

the O(2) model, in the variable z =2x/(1+2x). I denotes
a small imaginary part. (z =0.75 +0.02, v =2.6+0.8.)

[N, N —1]

~ ~ ~

0.4370 (2.463)
0.3669 (1.338)

n=0, DlnX
[N, N]

0.3051 (0.837)
0.3666 (1,333)

[N, N +1]

0,3668 (1.336)
0.3667 (1,335)

1

2 0,6239 (1.11)
0.7270 (2.57)

4 0.7252 (2.52)
5 0.7723 (I)

0.5480 (0.75)
0.7490 (3.44)
0.7314 (2.73)
0.7723 (I)
0.76.85 (3.39)

0.4401 (1.22)
0.7155(I)
0.7231 (1.73)
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TABLE XI. Pade method analysis of the series for
D 1n2p, ~ in the O(2) model, in the variable z = 2x/
(1+2x). Dagger denotes the presence of a secondary pole
close to z, . (z, =0.82+0.05, 1+a =1.86+0.3.)

TABLE XIIL Pade method analysis of the series for
(Dlnp, ) in the O(2) model, in the variable z. Dagger
denotes the presence of a secondary pole close to z, .

zc =0 771 + 0 01 xc 1 67 +0 1

[X,X-ll
n =2, D ln'p, -'(z)

[x,x]
n =2, (D inp, ) (z)

[%,N +1j

0.8030 (1.73)
O.7665 (1.45)
0.8823 (2.54)
O.9373 (3.29)'

0.8598 (2.13)
0.6829 (0.69)
0.8430 (2.18)t

0.9722 (4.21)

O.8714 (2.1S)
0.8114 (1.92)
1,0510 + 0.1753i
O.S964' (2.41)

0.7543
0.7716
0.7716
o.s5o4'

0.7101
0.7778
0.7712
O.S255'
o.s464t

0.7900
0.7507
0.7848
0.8549t

gap might go to zero exponentially as first suggested

by Kosterlitz and Thouless. '
%hen we analyze the mass-gap series for an essen-

tial singularity of the type

a
p, —exp —=-

x-x (x —x)~
C

we find using double logarithmic derivatives

z, =0.82+0.05 or

x, =2.3 + 0.6

and

1+a =1.85+0.3

(4.30)

(4.31)

Pade analysis of the logarithmic derivative of the P
function leads to the estimate z, =0.78 +0.05 or

x, =1.88 +0.4 (4.32)

1+cr =1,90+0.3 (4.33)

TABLE XII. Pade method analysis of the series for
D ln[P(g)/g) in the O(2) model, in the variable z.

(z =0.78+0.05 1+o =1.90+0.3.)

The convergence in, the estimates for o- appears slow,
as is the case in the infinite spin model. An algebraic

singularity would mean 0- =0, which we can rule out
with some confidence. If we assume 0- = ~z, we can

improve our estimate of x, (see Tabie XIII), and we

find z, =0.77 +0.01 and

x, =1.67 +0.1 (4.34)

TABLE XIV. Ratio method analysis of the susceptibility
series in the O(2) model, in the variable z. Format as in

Table VI. (z, =0,753 + 0.02, y = 3,4 +0.3.)

n =2, x(z)
Xg

These results agree rather well with finite lattice ap-
proaches. '

%e now turn to the ground-state energy density.
The renormalization-group approach for the
(infinite-spin) planar model predicts that the specific
does not diverge at the critical point. Our series for
the second derivative of coo with respect to x does in
fact not show a singularity on the real axis (the only
singularities are at x„=+0.68i) in agreement with

the previous results.
From the scaling hypothesis we know that the sus-

ceptibility should diverge as a power of the correla-
tion length as x approaches x, . %e therefore expect
an exponential divergence of the type (4.12) as in the
case of the mass gap. The ratio test applied to the

[X,W —1]

~ ~

0.8091 (1.90)
0.6605 (2.53)

~ =2, D ln[P(g)/g)(z)

[x,x]

O.792S (1.73)
0.7857 (1.67)
0.8739 (2.35}

[X,X+1)

O.71O7 (1.22)
0.7989 (1.78)
0.8337 (2.03)

2
2.375
1.7536
1.6593
1.5955
1.5498
1.5158
1.4894

0.5
0.4210
0.5703
0.6027
0.6268
0.6453
0.6597
0.6714

1

0.8421
1.4949
1.6935
1.8810
2.0547
2.2128
2.3583



4706 HERBERT W. HAMBER AND JOHN L. RICHARDSON 23

TABLE XV. Pade method analysis of the series for D lnX

in the O(2) model, in the variable z. (z,. =0.775+0.01.) I

denotes a small imaginary part.

which is consistent with q = —.' Although we favor

this result, we cannot entirely rule out q = I/JS, for
example. 6

[W, W -1]
» =2, D inX{z)

[w, w] [X,@+1]

0.6194
0.6194
0.7672(I)
0.7598 (I)

0.5547
0.7945 (I)
0.7734(I)

0.7351
0.7480(I)
0.7930(I)

susceptibility series gives

x,. =1.64 +0.04 (4.35)

and

y =7.1 + 0.5 (4.36)

which suggests again that the assumption of an alge-
braic singularity is probably not correct. After
transforming to the variable z =2x/(I +2x) the ratio
test gives z. =0.753 +0.02 and y =3.4 +0.3 (see
Table XIV), and Pade approximants to the logarith-
mic derivative of X give z, =0.775+0.01, which
corresponds to a critical point at

x,. =1.72 +0.1 (4.37)

in satisfactory agreement with the estimates from the
mass-gap series. The estimates for o- from the sus-
ceptibility series converge rather slowly at this order,
and although they seem to favor a nonzero value for
o-, the series is still too short to provide a reliable es-
timate.

From the knowledge of the critical point we can
extract the exponent g using the series for lnX/lnp, '

Again the convergence is rather slow and we find
(see Table XVI)

D. Other values of n

and

x, =0.2666 + 0.001

v =0.58 + 0.08

(4.39)

(4.40)

The convergence is rather slow and is reflected in the

In two dimensions we have computed the mass

gap, ground-state energy, and susceptibility series
coefficients through a few orders for arbitrary n.

This allows us to study, besides the previous cases,
the case n & 2, ~here no phase transition is expect-
ed, ' and n = —2, which corresponds to the Gaussian
model, among others.

The ratio test and Pade analysis applied to the mass

gap and susceptibility series (see Table XVII) for the
O(3) model give no evidence for a singularity at fi-
nite real x. After a conformal mapping to the vari-
able z =2x/(I +2x), we find that the only singularity
is at z ——1, corresponding to x =oo. The large index

y (y —3) indicates that the assumption of an alge-
braic singularity for the susceptibility at I/x =0 is

probably not correct. Similar results seem to hold for
n & 3. In these cases we again do not find evidence
for a critical point at finite x.

In the large-n limit the correct expansion variable is
n x, and Pade approximants give evidence of two
singularities at x,. = +(n) ' '0 55i and no. singularity
on the real axis.

The case n = —2 is also of interest since it describes
the Gaussian model. The free energy and the two-

point correlation function take their noninteracting
values, and the exponents are v = 2, q =0, y =1,1

and a=2 —d/2 (d ~4). From the strong-coupling
series for the mass gap we get

q =0.27 +0.1 (4.38)

TABLE XVI. Pade method analysis of the series for
InX/in@, t in the O(2) model, in the variable z. Our final

estimate for q is 0.27+0.1.

TABLE XVII. Ratio method analysis of the susceptibility
series in the O(2) model, in the variable z =2x/(1+2x).
Format as in Table VI. (z,. =1.0+0.1, y=3 +1.)

[W, W —1]

0.1074
0.0980
0.3547

»=2, lnX/in@, '(z)
[N, N)

0.1196
0.0904
0.4370
0.4296

[W, W +1]

0.0984
0.0958
0.3545

R/v

0.6667
1.3333
1.2865
1.2480
1.2149
1.1855
1.1584

» =3, X{z)
x/v

1.5
0.5
0.8383
0.8830
0.9235
0.9632
1.0043

1

0.3333
1.2357
1.4080
1.6102
1.8511
2.1437
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TABLE XVIII. Conjectured v and mass-gap series for
various values of n.

TABLE XIX. Summary of extimates of the critical point
and exponent v for integer n, —2 ~ n «2, from the analysis
of mass-gap series in 1+1 dimensions.

Conjectured v Series
d =1+1

0.5
1.5
1.75

—=0.625
5

8

0.8458
1.3367
1.8041

067 +00
0.865 + 0.02
1.330 + 0.02
1,80 +0 3

2

1

0
-1
—2

1.67 +0.1

0.5
0.3667 + 0.0001
0.3050 + 0.001
0.2666 + 0.0002

1

0.750 + 0,00S
0.66 +0.03
0;58 + 0.06

large uncertainty in v. The specific-heat series gives
a similar value for x, and

n = 1.05 + 0.05 (4.41) short. " In 3+1 dimensions we have analyzed the
mass-gap series for the Ising model and found

which is consistent with o, = 1. From the susceptibili-

ty series we have also computed y =1.05 + 0.05.
Recently one of us (H.H.) has conjectured an

analytical form for the thermal exponent of the n-

vector model as a function of n. ' The conjecture is and

x, =0.09807 + 0.00002 (5.1)

1+y
4y

(4.42) v =0.577 + 0.05 (5.2)

where

y = (2/m) cos '[(2+n)' 2/2]

for —2 ~ n ~ 2. %e have used the mass-gap series
to test the validity of the conjecture, and some of the
results we have already presented. We have shown

evidence in the preceding sections for v being —ex-

actly for the O(0) model and ~ (i.e. , an essential
singularity) for the planar model. For other values of
n we find, using Pade approximants for the loga-

rithmic derivative of the mass gap, the data in Table
XVIII. We see that the agreement is particularly

good close to n =2 and quite consistent with a diver-

gence of the type

In this case we should expect v = —,, but the conver-

gence appears to be slow as in the case n = —2.
In the large-d limit we can sum the leading term in

the series for the mass gap and we obtain

p, = 1 —2dx —2(dx)2 —4(dx)3 —10(dx)4—
d

(5.3)

which gives correctly the mean-field exponent v = 2,
independent of n, and a critical point at x, =1/4d.

v —(m/4) (2 —n) (4.43) TABLE XX. Critical points and exponents v for the O(n)
model in 2+1 dimensions. The results were obtained using
Pade approximants on D in@, '.

V. HIGHER DIMENSIONS
d =2+1

Table III contains the coefficients of the mass gap
and ground-state energy series for the truncated
O(n) model on a hypercubical spatial lattice in d di-

mensions. Pade approximants to the logarithmic
derivative of the mass gap give the critical points and

exponents shown in Tables XIX and XX. The agree-

ment with previous calculations is rather good if one
takes into account the fact that the series is quite

3
2
1

0
—2

0.209 + 0.01
0.1835 + 0,01
0.1650 + 0.002
0.1513 + 0.003
0, 132 + 0.01

0.75 + 0.12
0.68 + 0.06
0.643 + 0.01
0.63 + 0.04
0.55 + 0.05
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VI. CONCLUSIONS

%e have shown in the preceding sections how
Hamiltonian strong-coupling expansions can be used
to study the critical properties of the truncated 0(n)
models we have introduced. The analysis we have
presented suggests that in spite of their simplicity
these models share the same infrared properties with

the infinite-spin o- model. They can therefore be re-
garded as an effective tool for studying the critical
behavior of other models for which a truncation of
the type we have discussed can be performed.

Among further applications of the method we see
SU(n) chirai modeis in two dimensions and gauge
theories in four dimensions.
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