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Anisotropy induced by nonmagnetic impurities in CuMn spin-glass alloys
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Recent measurements on CuMn spin-glass alloys have revealed that the anisotropy field

maintaining the remanent magnetization in the direction of the initial applied field is strongly

enhanced by the addition of nonmagnetic Au or Pt impurities. A similar enhancement of the

anisotropy field of CuMn spin-glass alloys by nonmagnetic impurities is also indicated by ESR
measurements. We show that these results can be accounted for by the existence of
Dzyaloshinsky-Moriya-type interactions between the Mn spins arising from spin-orbit scattering

of the conduction electrons by nonmagnetic impurities. We derive this interaction by using

third-order perturbation theory on the conduction electrons and by retaining only the terms in

the energy which are first order in the spin-orbit coupling of the nonmagnetic impurity. To cal-

culate the macroscopic anisotropy energy from the anisotropic pair interaction, it is necessary to

make some assumptions because of our incomplete knowledge of the spin-g)ass state, We are

able to justify our assumptions a posteriori by comparing our predictions to the experimental

results. In particular, we are able to explain the variation over two decades of the anisotropy

energy with the type of nonmagnetic transition-metal impurity.

I. INTRODUCTION

Recent experiments by Prejean et al. ' on CuMn
doped with nonmagnetic impurities shine a new light
on the crucial role played by anisotropic couplings
between local moments in stabilizing the remanent
magnetization of spin-glasses. From measurements
of the hysteresis loops of CuMn spin-glass alloys, it

has been found that the remanent magnetization in-

duced by positive fields undergoes a steep reversal at
a negative field H„. Prejean et al. have found that

~H„~ is considerably enhanced by the addition of a

few hundred ppm of Au or Pt nonmagnetic impuri-
ties. For example, ~H, ~

is 170 Oe in pure CuMn 1

at. '/0 and is increased by the addition of Au impuri-

ties at a linear rate of 6.2 x 10' Oe/at. '/0 Au. This
linear increase has been observed for concentrations
of Au between 0.01 and 0.15 at. %. At higher con-
centrations, the width of the hysteresis loop contin-
ues to increase but there is no longer a sharp reversal
of the magnetization and a reversal field H, cannot
be defined. Pt impurities are even more effective
than Au and increase

~
H,

~
at a rate of 34 x 10s

Oe/at. '/0 Pt. By contrast the addition of Al has prac-
tically no effect. Thus Prejean et al. concluded that
the addition of nonmagnetic impurities with strong spin

orbit coupling (Au, Pt) sharply increases the anisotropy

field vvhich maintains the remanent magnetization in the

direction of the initial applied field
Additional evidence for the selective effect of non-

magnetic impurities on the anisotropy field of spin-
glasses is provided by electron-spin-resonance (ESR)
measurements. In spin-glasses, a shift of the ESR is
associated with the anlsotropy field acting on the
remanent part of the magnetization. This has been
clearly shown by Monod and Berthier2 in their low-

frequency and low-field ESR studies of CuMn spin-
glass alloys. These authors found that, in the field-
cooled spin-glass state, the ESR frequency ~ is
described by the relation

oyi(Hp+ Hg)

where Ho is the applied field and H& is the anisotropy
field. The determination of H& from the resonance
shift is in agreement with that found by other
methods in particular, NMR. 3 Some time ago Okuda
and Date studied the ESR of CuMn 2 at. '/0 alloys
containing Al, Zn, Ti, Ni, Fe, Co, or Pd impurities.
They found that the ESR of these ternary alloys in
the spin-glass state is shifted with respect to CuMn
by an amount which varies linearly with the concen-
tration of the added elements. The rate of increase
of the shift varies from zero for Al impurities to
6.6 x 10 0/at. /0 for Co impurities. These results
provide further evidence for the enhancement of the
anisotropy field by nonmagnetic impurities (Ni and
Co impurities in Cu do not carry a magnetic mo-
ment). As in the results of Prejean et ai ,

' the im-.
purities with strong spin-orbit scattering (Co and the
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other transition elements) give much stronger effects
than impurities with weak spin-orbit scattering (Zn, Al).

In a preceding article' referred to as FL we have
shown that the enhancement of the anisotropy field
in CuMn T ternary alloys can be accounted for by an
additional term in the Ruderman-Kittel-Kasuya-
Yosida (RKKY) interaction which is of the
Dzyaloshinsky-Moriya (DM) type and is due to
spin-orbit scattering of the conduction electrons by
the nonmagnetic impurities. The existence of such
interaction terms had been already predicted in low-

symmetry crystals and in disordered magnetic sys-
tems. In FL we derived a simple expression for
the DM interaction induced by spin-orbit scattering
from nonmagnetic transition-metal impurities as a
function of some reliably known parameters and we

compared our predictions with the experimental
result. Here we present the details of the calculations
of the DM interaction and the macroscopic anisotro-

py field arising from the DM interactions.
The salient feature of the results of Prejean et al. '

and Okuda and Date4 is the clear relation of the an-

isotropy energy of the ternary alloys CuMn„T~ to the
spin-orbit coupling scattering of the nonmagnetic im-

purity T. For platinum which produces large spin or-
bit scattering in Cu, the anisotropy energy as estimat-
ed by Prejean et al. is two orders of magnitude larger
than for CuMn with no additional impurities.

We are able to explain this increase in anisotropy
as follows. In the absence of additional impurities
the dominant magnetic coupling between manganese
magnetic moments is mediated by conduction elec-
trons via the RKKY interaction. It is rather isotropic,
the residual anisotropy in CuMn is very small com-
pared to that when nonmagnetic ternary impurities
are introduced and is not of interest to us in this pa-

per. The introduction of a nonmagnetic impurity per-
turbs the gas of conduction electrons. This leads to a

reduction in the RKKY coupling due to the reduced
mean free path of the conduction electrons. Howev-

er, from the result of Prejean et al. ' we see that this
effect is not large because aluminum which is an ef-
fective scatterer does not appreciably change the prop-
erties of the CuMn alloys. In addition, when the
nonmagnetic impurity has a sizable spin-orbit cou-
pling Prejean et al. find a dramatic increase in the
coercivity or anisotropy energy of the alloys without
appreciable changes in either T, the spin-glass freez-
ing temperature, or p, , the remanent magnetization.
These impurities act in such a way as to induce local-

ly a spin-orbit coupling in the conduction electrons.
When Mn magnetic moments interact with these
modified conduction-electron states the resultant
magnetic coupling contains anisotropic terms whose
magnitudes are sufficiently large to explain the aniso-
tropy energies observed by Prejean et al. '

There are two ways we can calculate the anisotropic
coupling between Mn spins in Cu in the presence of

nonmagnetic impurities with appreciable spin-orbit
coupling. We can use the expression given originally

by Ruderman and Kittel and use in this second-order
perturbation expression spin-orbit-coupled
conduction-electron wave functions which include
the phase shifts due to the impurities, i.e., spin-
orbit-coupled distorted plane waves. The resulting
coupling contains antisymmetric (Dzyaloshinsky-
Moriya) and pseudodipoiar interactions in addition to
the conventional isotropic RKKY interaction. The
DM term appears in the lowest order in the spin-orbit
coupling X, and we do not consider the higher-order
pseudodipolar term in this paper. The difficulty with

this approach is that we introduce perturbed wave
functions (correct to first order in h. ) into a second-
order perturbation expression and we must assure
ourselves that other contributions to the same order
of A. do not enter. In Appendix 8 we show that this

approach does in fact give us the correction coupling
to lowest (first) order in the spin-orbit coupling.

The more satisfactory way (at least from a formal
standpoint) to calculate the anisotropic coupling to
first order in the spin-orbit coupling is to develop and
evaluate an expression for the third-order perturba-
tion of the ground-state energy of the gas of conduc-
tion electrons due to the nonmagnetic impurity and
the Mn spins. We rapidly find the expression trilinear

in the Mn spins and spin-orbit coupling parameter A.

of the nonmagnetic impurity is of the antisymmetric
DM type. While the existence of such a term has
been previously shown' the formula derived was

missing a crucial term due to double pole singularities
in the perturbation expression. Furthermore, previ-
ously plane waves were used, while in our derivation
we use distorted plane ~aves to include the effects of
the impurity potential scattering on our coupling.

The crucial ingredient of the anisotropic coupling
found in our calculation is that the interaction energy
between spins depends on their orientation relative to
the triangle formed by the manganese and impurity
ions. This dependence is the origin of the anisotropy

.energy observed in the CuMn T, alloys. An exact
calculation of the macroscopic anisotropy energy from
these anisotropic pair couplings is hindered by our
lack of knowledge of the ground state of a spin-glass.
We have made some plausible and justifiable assurnp-
tions to perform the averaging over the individual
Mn pairs of spins to estimate the anisotropy energy
that arises from our anisotropic pair couplings
between Mn spins due to ternary nonmagnetic im-

purities.
In Appendix A we derive the third-order energy

expression for an electron gas perturbed by one elec-
tron interactions. In the next section we use this ex-
pression to calculate the anisotropic coupling between
Mn spins linear in the spin-orbit coupling of the non-
magnetic impurity T. In Sec. III we estimate the an-
isotropy energy. In the last section we introduce nu-
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merical values for the parameters entering our derived expression and compare our results to those found in the
experiments of Prejean et at. and Okuda and Date.

II. ANISOTROPIC COUPLING BETWEEN Mn SPINS

To derive the anisotropic coupling between Mn spins in Cu induced by the addition of nonmagnetic impurities
we consider the third-order energy correction to a gas of conduction electrons Eq. (A34),

E = Jl dkl J' dkg J dk3 ~, t, ~
8(kp —kt) 8(k3 —kt) V(kikpk3)

Srr it . D 0 0 k, kj ki —k3 12k|'
i

where

V(k, k,k, ) =k,'kjk3 X J dII„,J dQ„JdQ„V(k,oi, kyoto) V(kyoto, k3o3) V(k, cr3, k, (r, )
tyi 0'2CJ3

due to the following perturbation potential,

V= —I'8(r —R, ) s S,
—I'8(r —Rb) s Sb+X(r) s I

x X I", (k)@p (r)+ (3a)

for electrons in the immediate region about the
transition-metal impurity (R =0). This is the wave

function appropriate for the matrix elements of the
perturbation k(r ) s 1 . For the matrix elements of

The coupling constants I represent the interactions
of the Mn spins S, and Sb localized at R, and Rb
with the spins of conduction electrons and the last
term presents the spin-orbit interaction on the site of
a nonmagnetic transition-metal impurity at R =0.
When this perturbation is introduced in Eq. (1) there
are 27 terms. However, there are only six terms of
interest to us, i.e., those trilinear in the Mn spins S„
Sb, and the spin-orbit coupling parameter A..

On the site of the impurity, the spin-orbit coupling
of a conduction electron is considerably enhanced be-

cause the admixture of the impurities' d states into
the conduction band allows the conduction electrons
to experience the strong spin-orbit forces of the d

states. Therefore it is important to take into account
this admixture when calculating the matrix elements
entering Eq. (1). In the virtual bound state (vbs)
model9 the admixture of the atomic d states $q,„with
plane waves is written as

Q-„-e x(pi k r ) +exp[i'~(k) ] sin'gg(k)
(dl Vol k)

the perturbations due to the Mn spins, which are
0

situated at R„Rbabout 10 A from the transition-
metal impurity, the appropriate wave function to use
1s

qb-„=exp(ik r ) —4w exp[i', (k) ] sing, (k) h)i+' (kr)
2'

x X I",„,(k) 1', (r) . (3b)
m~ 2

In these expressions 5 is the half-width of the virtual
bound state, h)+' (kr) is an Hankel function of the
first kind, and g2 is the phase shift of the / =2 partial
~aves,

g~(k) =tan '(/b/[E„—E(k)] ] (4)

l(kl v, ld)P=4/t/it/(E, ) . (5)

As mentioned before there are six terms trilinear
in the Mn spins and the spin-orbit coupling parame-
ter. %'e will evaluate one term explicitly; the contri-
butions from the remaining ones can be readily
found by taking permutations of S„Sb,and A, in the
expression we develop. By placing the perturbation
Eq. (2) in the third-order energy correction Eq. (1),
we find one trilinear term in S„Sb,and A. is

where F.
„

is the energy of the center of the vbs reso-
nance. At the Fermi level the phase shift is related
to the number of d electrons Zd by the Friedel rule

g, (Er) = (w/10) Z, , (4

and the matrix element (d l Valk) is related to the
density of states for one spin direction at the Fermi
level W(Er) by the relation

«k|ktk3) =k|'k~k3& 'J)»., J"«b, J df)b, X (kl~tlI'8(r —R.) s S.lk~~t)(k~~~l&(r) s
0'i ty'2 rT3

" (k3~311'8(r —Rb) s Sbl k 1~1) (6)
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where the factor N, enters from the matrix elements of the 5 functions evaluated by using Eq. (3b), and Vis
the number of lattice sites per unit volume in the crystal. To evaluate the spin-orbit interaction for the conduc-
tion electron when it is in the vicinity of the transition-metal impurity R =0 we use the wave function Eq. (3a).
The plane-wave part of the function does not contribute much to the spin-orbit coupling because the radial por-
tion of a plane wave is rather diffuse. The dominant part of the spin-orbit interaction comes from the atomic d
states admixed in Eq. (3a) and we find

&k2o1IX(r) 1 ~ s Ik3o») = [4kd/Elt/(Er)] exp [i[ri1(k3) —g, (k1)] }

xsing1(k1) sing&(k»)410[ Y'(k1) x Y'(k»)]' &a1I s Io3)

where h, d represents the average of the s'pin-orbit coupiing constant A.(r) taken over the atomic radial d state wave

function, and [ Y (k1) x Y'(k3) ] ' is the vector product of second-rank spherical harmonics, i.e.,

[Y1(k,) ~ Y1{k,)]1= X (2~, 2~"Il~) Y&, (k, ) Y2„(k,),
where (2m', 2m" l1m) is a Clebsch-Gordan coefficient. To evaluate the matrix element of the Mn spin interaction
with the conduction electrons we use Eq. (3b) and find

&k101lrs( r —K, ) s s, lkpo1) = r [exp( —i k1 ~ R, ) 41r exp—[ i rig(kt—) ] slnvi1(k1) I11 1(k1R,) Y1(k,) Y1(R,) }

x (exp(ik, ~ R, ) —4e exp[i', (k )]sing, (k, )/11+'(k, R, ) Y'(k, ) Y'(R, ) }

x&o1ls s.l~z),
where

Y'(k) ~ Y'{R) X(—) Y'(k) 1" (R) (10)

is the scalar product of second-rank harmonics. The
principal contribution to this matrix element comes
from the undistorted plane ~ave; the distortions pro-
portional to g2 contribute very little. After placing
Eqs. (7), (9), and one equivalent for the spin interac-
tion at R», in Eq. (6) we must integrate over the
solid angles of the k vectors and sum over the spin
states of the conduction electrons. The integrations
over Qq are done by using the following formulas

Jl dQ» e'" '" Y (k) - 4rrj2(kr) Y1(R—)

J"de, [Y'(k) Y'(R)] Y'(k) = Y'(R)
01)

J"de [Y'(k) Y'(R )][Y'(k) ~ Y'(R, )]
= Y'(R, ) Y'(R,),

Jtd 0» exp(i k R, ) Y1(k) ~ Y1{R»)

=—4e j2(kR ) Y1(R ) Y (R )

d Ok exp i k ~ R, —R& =4m sinks, q kR, I,

where R.» = IK.-R» I, and j1(kR) 1s a spherical
Sessel function of rank 2. The sum over the spin
states is

g &o, ls S„lo,&&o,lsl~, )&~,ls S»l~, &

=Tr (s S,)s(s S,)

= —(i/4)(S, x S»), (12)

By using these formulas and performing the integra-
tions and sums over states indicated in Eq. (6) we
find

4(4m) 3kdI'1
V(k1k2k3) =, kt k1k3' (sink1R. »/k1Rg» +sin'ri2(kt) [exp[ —i ri2(kt) l/11 ' (ktR. )g1(k1R»)

+exp[in, (k, ) ]j,(k,R.)i,t+& (k,R, ) }

x4 Y&(R.) Y1(R,)+sin&~, (k, )kt-&(k, R.)i 1'&(k,R.)4 Y1(R.) Y1{R,))

si ~,(k )[exp[—'~, (k )]J {k,R, )+sin~, (k )at+&(k, R.) } i ~,(k, )

x ( ex[ pg,i( k)] (j,kR»+)isgn, ( k) i11&1( ,kR)»}( i/4) J10[Y'(R,—) x Y'(R, )]' S, x S„.(13)
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At the concentrations used in the various experiments the average distance between the transition-metal im-
0

purity and the Mn ions at R, and Rb is about 10 A. This is sufficiently large so that we can replace the Bessel
and Hankel functions by their asymptotic expressions

h2t+-' (kR ) ~—exp(+ikR)/kR

j2(kR) —sinkR /kR (14)

By placing these expressions in Eq. (13) we find the asymptotic limit of the terms in Eq. (13) in bold parentheses
and curly brackets is

(sink, R, t/k tR, t +si nest( k&) sin[k(R, +R~) +q(k, )]/(k, R,k, R, ) 4w Y'(R, ) Y2(Rg))

x [sin[k2R, +rl2(k&)]/k2R, }(sin[k3Rb+rt2(k3)]/k3Rb } . (15)

In this limit of large R, I/R, R, is much less than I/R, l, and we will neglect the second term in the first curly
brackets. We can rewrite the vector product between second rank harmonics as

J10i[Y'(R,) x Y'(R, )]'=(15/4n)R, Rb(R, x R, )

where R =—R/}R } is a unit vector. With these simplifications we find that in the asymptotic limit Eq. (6) be-
comes

V(ktkpk3) = —[15(4rr) hdI' /IN N(E, ) ]kt'k2k3 (sinktR, /ktR, b)

x [sinrt2(k2) sin[k~R, + rt, (k2)]/k2R, }{sinrl, (k3) sin[k3Rb+ rt2(k3) ]/k3Rg }

x R~ ' Rb(R~ x Rb) ' (S, x Sb)

(16)

(17)

By placing this expression in Eq. (1) we find the contribution of Eq. (6} (one of six) to the anisotropic coupling
between Mn spins is

where

2
' '2

32' ItN N EF Ir R, RbRob
(18)

I'"F . i'" . sin[ktR, +g, (k2)] t' . sin [k3Rb + rt2(k3) ]
1~ ———

Jl kt dk~ sink~R, ~
6' 'I sinai, (k,,),', kq dk2 ty Jl sinrt, (k3), , k3 dk3

p
0 g p k (2 —k22 0

m2
sin ri2(k~) sin[k)R, +gp(k, ] sin[k)Rb+q~(k))]

12
(19)

To evaluate the Cauchy principal values of the integrals we perf~ ~ contour integrations as shown in Appendix
C and find for large R, see Eq. (C7),

sin [O'R + rt, (k') ]
O' J sing2(k'), k'dk'= ——sinrt2(kl) cos[ktR +g2(k~)]

1

By placing these integrals in Eq. (19) we find

pk~
I, = Ji sink~R, ~ [cos[k~R, + ri, (k~) ] cos[kIRI, + ri, (kt) ]

——,
' sin[k, R, +g, (k~)] sin[k~R~+g, (kt)] }sin rt, (kt)kt dkt (20}

In evaluating the other five trilinear contributions to Eq. (1), one can see by reviewing the steps from Eq. (6)
to Eq. (18) that as we permute the three terms in S„Sb,and X, the energies E2t" to E6t'~ differ from Eq. (18)
only in the integrals I„,and then only the first part of these integrals differ, see Eq. (19). After adding the six
different contributions to Eq. (1), trilinear in S„Sb,and h. we find the energy of the form of Eq. (18) with an in-

tegral I of the form
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6

i 1

kF

J (2 sinkR, b cos[kR, + rid(k)] cos[kR„+rtt(k) ]

+2coskR q [sin[kR, +q, (k) ] cos[kR~+ rt, (k) ] +cos[kR, + n, (k)] sin[kRg +rtt(k) ] }

—6( 3 ) sinkR, p sin[kR, + g, (k)] sin[kRb + rt, (k)]) sin rt, (k) k dk

2 PkF
sinkR, bcos k R, +R& +2g2 k +coskR, &sin k R, +Rb +2q2 k sin'q2 k kdk

2 PkF
I =

l sin k R, +Rb+Rab +2g2 k sin'q2 k k dk
2

(21)

(22)

To evaluate this last integral we make the following observation. From the definitition Eq. (4), we note that for

a vbs the phase shift g2

[E(k) E„]'+a-'
is appreciable only for energies E(k) in the immediate vicinity d (a half-width, i.e., about 0.25 eV) of the center
of the vbs resonance, E„.Furthermore over the interval when sin'z, (k) is nonzero, the phase rt, rapidly goes
from 0 to rr while k(R, +R~ +R,„)is relatively constant for distances between impurities corresponding to con-
centrations greater than 1000 ppm. Therefore we can set k equal to kf [which is close to k„,i.e. , (2mE, /t)'i'].
(See Note added in proof. ) By differentiating the phase shift, Eq. (4) with respect to the energy and using

E(k) =t'k'/2m, we find

drtt = (tt/m6) sintrtz kdk

This allows us to replace the integral in k space, Eq. (21), to one over the phase shift '9t

2 ~ g Pg2(EFi

Ji sin[kg. (R, +R, +R„)+2p, ]de,
2 f2 Q

- (rr'/2) (m /t/t') sing&(EF) sin[ kF(R, +Rg +R,b) + pg(EF) ]

(23)

(24)

When this resuit is placed in the energy expression of the form of Eq. (18), we find the total of the six trilinear

contributions to the third energy correction of the electron gas is

3

(3) 15 "df' 1 2m
sinrt, EF

64rr NtN(Ep. ) 2 tt

sin[kF(R. +R~+R„)+ri, (Ep)]-.
R,RbR, p

(25)

This expression can be cast in its final form as

sin[kg(R, +Rb+R,p) + (rr/10) Zd]R, Rp
+DM ~1

R,RI Rgb
(26)

where
I

and the following definitions for a gas of free elec-
trons

i3S~
32 EF2kF3 10

To arrive at this expression we used the relation, Eq.
(4a) of the phase shift at the Fermi level to the
number of d electrons on the transition-metal impuri-

ty; we assumed one electron per Cu atom, N, = N

and

EF=t kp/2m

k3 =3m.2N,

N(EF) =3N, /4EF , -
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is thc density of states for one direction of the spin at

the Fermi level.
This expression, Eq. (26) is the sought after aniso-

tropic coupling of the Dzyaloshinsky-Moriya (DM)
form between Mn spins located at sites A and 8. As

we can see the magnitude of the coupling depends on

the orientation of the spins relative to the axes

(R, & Rq); for this reason it is called anisotropic. In

addition the coupling depends on the relative orienta-

tion of one spin to the other; this of itself does not

produce anisotropy energy. To this order in the

spin-orbit coupling A. there is another coupling term

which is proportional to R, Rb ~. As this term con-

tains one more power of 1/R than Eq. (26) and R is

iarge (order of 10 A), we have neglected its contribu-

tions; i.e., Eq. (26) is the leading term in 1/R (see
Note added in proof). If one goes to higher powers

in A., i.e., fourth- or higher-order corrections to the

energy of the electron gas, other anisotropic cou-

plings between the Mn spins arise, e.g. , pseudodipo-

lar couplings. To recapitulate, the dominant anisotrop-

ic coupling between Mn spins in CuMn (1 —2 at. "/0

Mn) with transition-metal impurities ls of the
Dzyaioshinsky-Moriya form given by HoM Eq. (26).
For spin-glasses with higher concentrations of Mn or

T and for impurities with very large spin-orbit cou-

pling parameters () //EF), other couplings enter.

To obtain an estimate of the strength of this DM

interaction let us compare it to the leading term in

I/R of the RKKY interaction. For one electron per

atom, this is given by

cos(2k' R~b) (27)
RKKY 0 '

3 a
'

b
ab

9m I"2

32EFkF3
(2g)

The ratio of V~, Eq. (26), to V0 is a simple function

of the reliably known parameters Xq, EF, and Zd,

4 . m= 15 sin Zd
0 F

(29)

In Table I'we list calculated values of Vt/ V0 for vari-

ous CuMn T~ alloys. %hen A.d is large V~ is surpris-

ingly large, e.g., Vt/Vo —
5

for T=Pt. In the next1

section we use the anisotropic coupling Eq. (26) to
calculate the anisotropy energy due to the addition of
transition-metal impurities in Cu Mn alloys.

Note added i~ proof

%hen onc takes into account the variation of
k(R, +Rb +R,b) across the vbs resonance9' in

calculating the integral Eq. (24) one finds

I = (m'/2) (m6/g~) sin[(1+y)q2(EF)]
1 +7

xsin[kr(R, +Rt, +R,t) +(I +y)rt2(EF)], (24a)

y=(&/2rrEF)k, (R. +R„+R.,) .

e can neglect yq2(EF) compared to
kF(R, +R~+R,q) in the argument of the sine
function and find the final form of the DM coupling
is similar to Eq. (26), only the parameter Vi is

modified as fo1 low s:

135~ Xdl' sin[(I+y)(m/10)zg]
E2k3 1 +y

For CuMn spin-glass alloys with 5 =0.25 cV, EF =7

eV, and kF =1.36 A ' we find

y =0.0077(R, +Rb+R,g) (24b)

1H I ---RRR (R +R +R )
(26b)

-Thus„ the coupling energy when summed over a
crystal is finite. If one neglected the correction term

y for the coupling at large R, see Eq. (26), one would

find the erroneous result that the coupling energy
diverges,

In summary, the form of the DM coupling Eq.
(26) has been derived on the assumptions (1) that R
is sufficiently large so that one can replace the
spherical Bcssel and Hankcl functions by their
asymptotic forms, see Eq. (14), and (2) that R is

small enough so that the correction factor y, see Eq.
(24a), can be neglected. These conditions are not
overly restrictive and cover the CuMn„T~ spin-glass
alloys studied with x & 0.1 and y & 0.001.

III. MACROSCOPIC ANISOTROPY ENERGY

%e consider a spin-glass ternary alloy such as the

Cu Mn, T~ alloys investigated by Prejean et al. ' and

Okuda and Date. The spins of the Mn impurities in-

teract via the RKKY and DM interactions described

above. %e write the interactions of a spin S: with its

where the distances R; are given in units of angstroms.
As seen in Sec. III the. distances RI are related to

the concentrations of the manganese x, and other
impurities y. Provided x and y are greater than 1000
ppm, the correction y is small. For example, for
x =0.01 and y =0.001 and for a triangle of average

length one finds for Cu y =0.24. Therefore, if we

limit ourselves to spin-glass alloys for which x-and y
are greater than 1000 ppm we can neglect the correc-
tion factor y, as we do in this article, in calculating

the coupling between the near lying neighbors. How-

ever, for very weak concentrations of impurities y,
and in the asymptotic limit as R ae, the R s in-

crease and the correction factor is important. In this

limit thc DM coupling goes as
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neighboring spins in the following forms

Haaav =Sj XJ)»S, =S; h, (30)
J

Hg=XD, , (S, xS,)=S, X(S, x D,,)—= S,. ~ h, ',
(31)

( I) ( i)
where h, and h, are effective exchange and an-
isotropy fields, respectively. The total interaction en-
ergy of the spin S; is written as

H;„,=S; (h, +h, ) (32)

The crucial difference between h, and h, is that,
when the spin system rotates as a whole, h, follows
the -rotations while h, does not. With only RKKY
isotropic interactions, the spin system rotates freely.
In contrast, a rotation of the spin system changes the
angle between the spins and their anisotropy field
h,'), therefore the DM interactions h," S; [see Eq.
(31)] introduce anisotropy forces. We shall now
determine the macroscopic anisotropy energy induced
by these DM interactions.

Turning on the anisotropy field h, in addition to
the much stronger exchange field h, results in small
reorientations of the spins by angles d8; which are of
the order of magnitude of h, /h, . The maximum en-
ergy gain (per magnetic impurity) arising from the
orientations is of the order of magnitude of Sh, d8,
i.e., Sh,2/h, . As the anisotropy energy is only that
part of the above stabilization energy which depends
on the orientation of the remanent magnetization
with respect to the initial field, its maximum possible
value per Mn ion corresponds to the mean value of
the quantity Sh,2/h, over the sample. As we will now
show the consequences of assuming that the aniso-
tropy energy of CuMn„T~ alloys is proportional to
(Sh,2/h, ) are (i) a contribution to the anisotropy en-
ergy proportional to y from the impurity T simply
adds to the intrinsic energy of CuMn, (ii) the magni-
tude of the contribution scales with the square of the
quantity )(d sin[(2r/10) Zql. These predictions are
borne out by the experimental data, which, a pos-
teriori, justifies our assumptions.

1. Additivity of the anisotropy energy induced by

nonmagnetic impurities and the intrinsic anisotropy

energy of "pure" CuMn

Let us suppose that the anisotropy field acting on a
magnetic Mn impurity arises from two independent
mechanisms

h, =h, +h, (33)
By independent we mean that there is a random rela-
tive orientation of h,"' with respect to h„' over the
sample. On a particular Mn site, we have

where 8 is the angle between h, and h, . By tak-
(1) (2)

ing into account the random orientation of h, ' with
respect to h, ', i.e., (cos()) =0 we obtain for the
mean values over the sample:

(il,
)

((j)j')j
)

((j)j))))
(35)

As our working assumption is that the anisotropy en-
ergy E, is proportional to (h,2/h, ), we immediately
find from Eq. (35) that the anisotropy energies aris-
ing from the two mechanisms are additive.

This additivity has been borne out by the experi-
ments on CuMn„T~ alloys described above. ' It
turns out that the contribution to the anisotropy en-
ergy from the nonmagnetic impurities T simply adds
to the intrinsic anisotropy energy of the bare CuMn,
i.e.,

E.(x,y ) = E.(x, 0) + ay (36)

2. Dependence of the macroscopic anisotropy

energy on concentration

We want to calculate the magnitude of the aniso-
tropy field h, acting on a given impurity Mn(0) (at
R =0) in CuMn„T» alloys with x »y. To do this
we have to add up the contributions from all the tri-
angles formed by this impurity Mn with other Mn
and T impurities; the smallest triangles make the
strongest contributions. We begin by adding up con-
tributions from all the triangles formed by Mn' ' with
a particular impurity T at distance R from Mn and
any of the numerous Mn impurities which, for
x && y, are inside the sphere of radius R centered on
Mn 0. From Eq. (26) with

R,b = IR(Mn ) —R(Mn) I
= r

~.—= IR(Mn"') —R(2') I
=~,

and

The intrinsic anisotropy energy E, (x, 0) of the bare
CuMn is probably due either to the dipolar interac-
tions between the Mn moments or to (weak) DM in-
teractions, Eq. (26), associated with Mn triangles.
The nonmagnetic impurities T induce an additional
anisotropy due to the DM interactions associated with
Mn —T—Mn triangles. The observed additivity simply
implies that the intrinsic and induced anisotropy
fields are not correlated and that Eq. (35) is valid. If
the anisotropy energy were not proportional to h,
but, for example, to h„the additivity of the anisotro-
py energies would not be predicted.

h2 (/) (l))2 (h(2))2 h (l)h (2)

(34)
Rb =—

I R (Mn) —R( T) I
=8

the order of magnitude of the anisotropy field due to
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a particular triangle is

V)S
rR2

mean value of the square of the anisotropy field

(h') =4~ V'S'~
&a

(42)

V&S
dh,2 =4m r2p(x, r) dr

rR2

V2S2
=4m p(x, r) dr (37)

It is interesting to note that the contribution of the
shell (r, r + dr) does not decrease with r, at least for
I & R. Thus all the shells up to r = R contribute with
equal weight. In contrast, for r & R, it can be easily
shown in a similar way that the contribution of a
shell dr decreases as r '. Therefore the contributioa
from the region r & R does not significantly change
our final result. In this way we can estimate the con-
tribution from a given impurity T at distance R as

4m V&2S2
h, (R)2 =

4 J p(x, r) dr (3g)

As there are many Mn atoms in the sphere r & R,
we can represent the density as a continuous distribu-
tion and write the integral as

IR

J p(x, r) dr =—R
&a

where v, is the atomic volume of the host (Cu).
Thus we obtain

(39)

h, (R)2=4' V2S2——
~, R3

(40)

Note that, after taking into account the triangles
formed with all the Mn atoms, the contribution of a
given atom T at distance R from the central Mn atom
is proportional to R . The main contribution to the
square of the anisotropy field at a Mn atom comes
from the nearest neighbor T at distance Rp. For a
given concentration y of impurities T, the mean value
of Rp 1s

1

Rp ua3
(41)

By placing Eq. (41) in Eq. (40), we find the following

The number of Mn atoms in the volume between r
and r + dr can be written as

dn =4nr2p(x, r) dr

where p(x, r) is the density of the Mn atoms at dis-

tance r from Mn' '. As the anisotropy fields associat-
ed with these Mn atoms are randomly oriented, we
have to add up the squares of the anisotropy fields of
the individual triangles. Thus we obtain the follow-

ing contribution from the shell dr

From Eq. (27), the mean value of the isotropic ex-
change field is

(h, ) = VpS —= VpS—1

fp &a
(43)

Finally, as shown in the beginning of this section the
macroscopic anisotropy energy E, (x,y) per Mn atom
is expected to be proportional to the mean value of
Sh,2/h, . From Eqs. (42) and (43) we predict,

E,(xy) =4a '
VpS ~Vi

Vp v,
(44)

Therefore the macroscopic anisotropy energy of
CuMn„T~ spin-glass alloys per Mn atom is propor-
tiorial to the concentration of the impurities T and in-
dependent of the concentration of the Mn impurities.

Experimentalists characterize the magnetic aniso-
tropy induced by nonmagnetic impurities by the an-
isotropy per unit volume, i.e., for xN Mn atoms,

8, (x,y) =xNE, —xy

or by the macroscopic anisotropy field

E,
HA =—

Hr

(44a)

(45)

8, = ex'+Pxy

This is in agreement with experimental results in

(47)

where p, , is the remanent magnetization per Mn
atom. Well below the freezing temperature and
under similar freezing conditions, p, , is expected to
be independent of the concentration x of the Mn
atoms. From Eq. (44), this leads to

H„(x,y) -y
The proportionality of 8, (x,y) and H„(x,y) to y is
observed in the experiments on CuM n„T,alloys
described in Sec. I. Both the reversal field of the
remanent magnetization and the ESR line shift in-
crease linearly with y. ' The dependence on x had
not been thoroughly tested in those experiments.
However, recent ESR results on CuMn„Ni~ alloys
have just confirmed that the contribution of Ni im-
purities to 8, varies as xy. '

Finally, let us consider the contribution to 5, from
DM interactions associated with triangles of Mn im-
purities, i.e., DM interactions between two Mn aris-
ing from weak spin-orbit scattering by a third Mn.
By placing y =x in Eq. (44a) we find the contribution
to 5, from such interactions is expected to be propor-
tional to x . Thus we find for the total anisotropy
energy the following dependence on x and y
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CuMn„and CuMn, Ni~ alloys where it was found
that p )) a. 'a The term proportional to x' suggests
that the intrinsic anisotropy of CuMn, spin-glass al-

loys could be also due to DM interaction.

In a previous paper' (FL) we calculated the mac-
roscopic anisotropy energy for only CuMn„T„alloys.
In such alloys with equal concentrations of Mn and
T, the mean distance between nearest-neighbor im-
purities is the same for Mn —Mn pairs and Mn —T
pairs

R, = Rb = R,b
—rp=(v, /x)'

so that, from Eqs. (26) and (27), the following mean
magnitudes of the exchange field, anisotropy field,
and macroscopic anisotropy energy per Mn atom can
be predicted

h, = VpS—X
+a

(4ga)

h, = ViS—X
&a

Sh, V& 2 x
E, (x,x) — — VOS—

h, Vp va

(4sb)

(49)

In FL we extrapolated the variation of the experi-
mental anisotropy energy found in CuMn„T~ alloys
(with y « x) to y =x. Then we compared the ex-

IV. NUMERICAL CALCULATIONS AND COMPARISON
WITH EXPERIMENTAL DATA

trapolated value with the prediction of Eq. (49).
Here we will compare more directly theory and ex-
periments because, in the previous section, we
derived the expected anisotropy energy CuMn T~ al-

loys with y &( x, which corresponds to the experi-
mental conditions. From Eq. (44), we expect the an-
isotropy energy per Mn atom is

2

E, (x,y) =4m VOS'~
V

(50)

Alternatively this corresponds to the following rate of
increase of E, with y

dE, V) VpS2
=4m

dy „Vp v,

By using Eq. (29) we find, "
(51)

dE,

, d&, canc

Ag . ~ VpS
' 2 2

=4m 15 sin = -Zq (52)

%e notice that except for a factor of 4m the same ex-
pression is obtained for dE, /dy for y « x from Eq.
(51) and for E,""(x,x)/x from Eq. (49).

In comparing the calculated values of dE, /dy, Eq.
(52) to the experimental rates of increase of the an-
isotropy energy with y, we want primarily to test the
predicted dependence of the anisotropy energy on the
type of nonmagnetic impurity [mainly through h.~ and
Zq in Eq. (52)]. In Table I and Fig.'

1 we present the
experimental rates of increase of the anisotropy ener-
gy with y together with the values of dE, /dy calculat-
ed for Eq. (52). The experimental rates come from

TABLE I. Calculated and experimental values of the rate of increase of the macroscopic anisotropy energy of CuMn„T~ al-

loys with y. The table also gives the values of the parameters Zz and Az which have been used in the calculations (the values of
Az are atomic ones, see Ref. 12) and the calculated values of V&/Vp. The calculations were performed by using Eqs. {29)and

(52) with the listed values of Zz and A~, 5=1.88, Vp=7.5x10 ergcm (see Ref. 13), EF=7 eU, and vz =1.178X10 cm .
The experimental values were derived from Refs. 1 and 4 as explained in Appendix D.

dEa

, ca)c

dE,

& expt

Rate of increase with y of the

anisotropy energy per Mn
dEa

dE

expt

Zd
V)

Vp
{10 ~6 erg) (10 '6 erg)

Tl
Fe
Co
Ni
Pd
Pt

2
6
7

9.4
9.4
9,4

0.014
0.049
0.065
0.076
0.177
0.51

0.0176
0.100
0.113
0.0305
0.0711
0.205

8.79
282
359
26.3

143
1186

0.136
3.1
4.3
2.1

1,75
9.5

65
91
83
12.5
82

124
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10

~ ~ e I ~ ~
I I I I I I I ~ ~ into account the prefactors in the DM interaction

[see Eq. (26)], which were ignored in estimating the
contributions to the anisotropy field [see Eq. (37)],
and by averaging the anisotropy field ~h, l over all
orientations of the spins, Caroline Morgan-Pond
finds the result, Eq. (40), is reduced by a factor of 6.
In any case our results show that the DM interactions
are easily strong enough to account for the experi-
mental data.

I

CD

CL

CU

0.1
10' 10'

dEg i

~

(10 "erg per Hn)
dg )

cQtc

10'

FIG. l. Experimental vs calculated values of the rate of
increase of the macroscopic anisotropy energy with y in

CuMn T~ alloys. The straight line corresponds to

(dEal ~p ~exp
= (1/85)(dEa/' y &calc and is a guide to the eye.

The numerical values are listed in Table I. The calculation
is described in the text and in the caption of Table I. The
derivation of the experimental values is explained in Appen-
dix D.

the experiments of Refs. 1 and 4. The analysis of
the experimental results is explained in Appendix D.
The calculations have been performed by using atom-
ic values of A.d,

' values of Zd indicated in Table I
and experimental values of Vo and S found by
Smith'3 and given in the caption of Table I. It can be
seen that, with the exception of Ni, the calculation
reproduces very well over two decades the variation of the

anisotropy energy with the type of the nonmagnetic im

purity T. This firmly supports our interpretation that
the anisotropy energy induced by nonmagnetic im-

purities is due to DM interactions arising from spin-
orbit scattering and, in addition, our assumption that
E, varies as the square of the macroscopic anisotropy
field.

The predicted numerical values of dE, /dy are about
80 times larger than the experimental ones. Such a
discrepancy is not surprising because we have calculat-
ed the maximum possible energy which corresponds
to the total stabilization energy and not the part
dependent on the orientation of the remanent mag-
netization. In addition, if one does not assume the
optimum configuration that produces the maximum
energy gain arising from the reorientation of the
spins due to the anisotropy field, but takes an aver-
age over all configurations, and if we take account of
the increase of the RKKY energy when calculating
the stabilization energy our estimate of the anisotropy
energy is reduced by a factor of 3. Second, by taking

V. CONCLUSION

We have presented the calculation of the
Dzyaloshinsky-Moriya interactions between impurity
spins arising from the spin-orbit scattering of conduc-
tion electrons by nonmagnetic transition-metal im-

purities. These interactions which can be remarkably
large account for the magnitude of the anisotropy
fields measured in CuMnT spin-glass alloys and for
their dependence on the nonmagnetic element T.

We are also able to comment on the origin of the
anisotropy fields in binary spin-glass alloys. In pure
CuMn the anisotropy is very small (corresponding to

E, —0.06 x 10 's per Mn for I at. %, see Ref. I). It
could be due either to weak DM interactions arising
from the spin-orbit scattering of neighboring Mn
atoms of Mn pairs or to dipolar coupling. In AuFe
spin-glass alloys the anisotropy is much larger,
corresponding to E, = 20 && 10 ' erg per Fe in AuFe
3.7 at. %.' The difference with respect to CuMn is
that Fe impurities in Au carry a small orbital angular
momentum, as has been demonstrated by the ex-
istence of skew scattering contributions to the Hall ef-
fect. ' In a future publication we show that the ex-
istence of orbital angular momentum results in

single-ion anisotropy and pseudodipolar interactions
between Fe impurities. The strong anisotropy fields
in AuFe spin-glass alloys could be due to these in-

teractions. Alternatively they could also be due to
Dzyaloshinsky-Moriya interactions associated with tri-
angles of Fe impurities, i.e., DM interactions
between a pair of Fe spins arising from spin-orbit
scattering by a third Fe impurity. This latter spin-
orbit scattering could be due either to the spin-orbit
coupling of the 3d electrons or to the spin-orbit cou-
pled band structure of the host (Au). It remains a

challenge for us to reliably determine the hierarchy of
anisotropic interactions in alloys containing
transition-metal magnetic impurities.
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over the ground state of the system;- Hp is the unper-
turbed Hamiltonian for the system which is primarily
the kinetic energy of the electrons and (1 —Po) is a

projection operator which removes the ground state
when one sums over the intermediate states.

The perturbations we consider involve only one
conduction electron, and are written in second quan-
tized form as

APPENDIX A: DERIVATION OF INTERACTION
ENERGY TO THIRD ORDER

At the low temperatures at which most work on
spin-glasses is done only the ground state or T =0 K
state of the electron gas needs to be considered. The
third-order correction to the ground-state energy of a

gas of conduction electrons due to a perturbation V

1s16

1 Pp 1 Pp
'E.-H. 'E.-H. '

V = X V -„,C-„C-,
k, k

(A2)

foo

= —
Jl d A. exp[(EO —Ho) )]]

p
(A3)

By using these expressions in Eq. (Al) and the rela-
tion for fermion operators

We do not explicitly show the spin indices here but
assume them implicitly. As shown in Sec. II when
we include them we must sum over 0., cr'= +—, in

Eq. (A2). We also represent the energy denominator
as

—(v) v ', v
(E!]—Ho) ' (Al)

(A4)

The angular brackets denote expectation values taken where A~12=E1 —E2, we find

E"'=Jl »jl' » X (1-8„)(1-8,.)exp(Itchy]2) thys6) )V]2V34vs6(OIC']C2C]C4CsC6IO)
Q p

8]2) [exp(&~]2) &] V]2 Vs6 (Ol C!C2Cs C610
3 1, 2, 5, 6

(AS)

where the ground-state many-body wave function IO)
represents the Fermi sea of conduction electrons,

) ]

Io)= Q C' Ivac) .
k ~kF

(A6)

The nontrivial combinations of creation and annihi-

lation operators entering E' are

(OI C] C2C2 C3C3 C] IO) = n](1 —n2) (1 —n3), (A7a)

(0 I C] C2C3 C] C2 C3 I 0) = n] (1 —n2) (8]3—n3)

(A7b)

(OI C] C2C3 C3C2 C] IO) = n](1 —n2) (n3+ 823 8]3)

(A7c)

and

—(OI C3 C3IO) (OI C] C2C2 C] IO) = —n] (1 —n2) ns

(A7d)

where n is the Fermi distribution function which
reduces to a step function (n =1 if k ~ k~ and 0
otherwise) in the limit T =0 K. There is a fair can-
cellation of terms. It should be noted that the term
proportional to 823 in the third process of Eq. (A7c)

E"'= X (1-8„)(1-8„)
1,2, 3

n](1 —n2)(1 —ns)
X 12 23 31

h Ct)12k (g)13

—X (1 —8]2) (1 —823)
1, 2, 3

n](1 —n2)n3x
t(d12h Q)32

(AS)

By interchanging indices in the second term we are
able to rewrite the third-order correction to the
ground-state energy as

(3) X
]2 V23 V3!

1, 2, 3 12~~~13
1%2
1A3

x [ n] (1 —n 2) (1 —n3) —(1 —n! ) n]ns]

(A9)

I

should not be counted as we consider this diagram in
the first process, Eq. (A7a), when 2 =3. By placing
the nonzero expectation values Eqs. (A7) in Eq.
(AS) and after some cancellations we find
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As the energy levels of the conduction electrons form a quasicontinuous spectrum the sums wiH be replaced by

integrals. The restrictions on the sums are accounted for by using the Cauchy principal value of the integrals. As
the energy eigenvalues of the unperturbed Hamiltonian are those of the kinetic energy we write Eq. (A9) as

2irt
t'

3
&

3
'

3 V(kt, k2) V(k2, k3) V(k3, kt)
d3kt 8 d3k26' d3k3

x [n(k, )[1—n(k, )][1—n(k, )]—[1-n(k, )]n(k, )n(k, ) }, (A10)

where 5' means the Cauchy principal value of the integral, and the unperturbed energy of the electrons is written

as lt'2k~/2m. As the direction of the k vectors only enter the matrix elements of the perturbation we can write the

energy as a product of radial integrals

(, ,k, )
J! dkt O' Jl dk2 4'J dk~

Sm' k2 0 k(2 —kp2 kt2 —k32

x [n(k, ) [1—n(k, )][1—n(k, )]- [1-n(k, ) ]n(k, ) n(k, ) },(A11)

V(ktk2k3) = kt2k22k3 JI d Ok, JtdOk „"dOk, V( k (, k 2) V(k2, k3) V(k3, k()

f+2sy

J!!dOk —=JI sin8kd8k JI dp„

The function V(ktk2k3) possesses the important property that it is invariant under cyclic permutations of the in-

dices 1, 2, and 3, 1.e.,

V(ktk2k3) = V(k2k3ki) = V(k3kikg)

We assume that V(ktk2k3) does not vanish at k~ = k2 or k~ = k3 and that it is sufficiently regular so as not to
give any pathological behavior.

Usual practice is to convert the integral

teoo }!+eo teoo V(k, k,k, )
dk, a J dk, rP JI dk, [n(k, )[1-n(k,)][i—n(k, )]—[1—n(k, )]n(k, )n(k, ) },

(k-,'-k,')(k,'-k,')

into the form where only n (kt) appears in the integrand since the resulting integral is often easier to evaluate.
However, care must be exercised when we have the possibility of double-pole singularities as is the case above.
%e will show the above integral can be reduced to

i=Jl'™dk,~JI' dk, eJt dk,
(. . .)"(,)[ —.(,)]

0 4k]2

For the ground-state problem [n(k) -1, k ~ kF;
a(k) =0, k & kF] we then have

I = J dkt O' Jl dk2 tp J dk,

I = lim 1(a)

V(ktktkt)

We begin by writing the integral Ecl. (A12) ln the

( ) Jt Jl' Jt „

F ktk2k3

t/t) —k2) & a
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and Thus from Eqs. (A18), (A20), and (A22) we find

F(k)k2k3) = V(k)k2k3)(n(k)) [1 —n(k2)][1 —n(k3)]

—[1 —n(k )) jn(k2) n(k3) )

(A[7)

lk& -k2l & ~

(k& -k3I & ~

(A23)
Next we split 1(p) into two parts

1(a) = I'(e) —R)(e) (A18)

where

where I'(a) is the integral Eq. (A16) further restrict-
ed to the region (k2 —k3~ & e

Ik) —k2I

lk2-k3l & ~

and R)(a) is the remainder

Ik) —k2I &~

Ik2 —k3I «
Now the domain of integration for I'(a) is symmetric
under cyclic permutations of the k s and we write the
integrand F in Eq. (A19) in two parts

"j'J V(k[kgk')ll(k&)

(k) —k2)(k) —k3 )
Ik& -k.

l & ~

0
I J

where

F(k)k2k3) = F+ Vn(k))—
= V(k)kpk3)

x [—2n(k)) n(k2) n(k3) + n(k)) n(k2)

Ik) —k2I &~

Ikl k3l & &

Ik2 —k3I & e

and F is given by Eq. (A21). The first term of Eq.
(A23) reduces in the limit p 0 to the first term of
Eq. (A13), and our task has been reduced to showing
that

1

First we give an heuristic argument for Eq. (A25).
The domain of integration in Eq. (A24) is, for a
given k), over a thin strip of width -O(e) ip the
(k2 k3) plane as shown in Fig. 2. Therefore, except
for the double pole region k2 = k3 = k~ the integral
should vanish as e 0 and any nonzero contribution
should come from the region where k2, k3 are close to
k~. Thus we may write

R(e)=J dk) J J~ dk2dk3
F(k)kzk3)

s kt+kp k'+k3
1

(k] —k2)(k/ —k3)

F k)k)k) dk2dk3

4k') s (k) —k2)(k) —kg)

(A26)

+n(k2)n(k3)+n(k3)n( k)))

Now F is also symmetric under- cyclic permutations of
k s. Therefore the second integral of Eq. (A21) can
be shown to vanish by adding the three identical
terms generated by cyclic permutation of k s. For
the remaining first term of Eq. (A21) we write

I"" V(k.,k,k') (k, )

(k,' -k,')(k,' -k,')
Ik&-k2I &~

Iki -k3l & ~

k., —E

-k,+e

k2=k3+E

k2= k,-E

7

V k)k2k3 n k)

p (k)' —k2)(k) k3)
Ik) —k2l &~

Ikt —k3I &~

lk2 —k3I & ~

k, kt+& k~+2& k3

FIG. 2. Domain of integration S for the integrals in Eq. (A26).
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dk2dk3

(kt —kz) (kt —k3)

Let us define

k2 = kl + ey, k3 = kl +ez

dk2 = ~dy, and dk3 = 6dz

Then we write Eq. (A27) as

(A27)

(A28)

where we assume that the regular parts of the in-

tegrand do not change appreciably over the region
where most of the contribution to R (s) comes from,
and S denotes the domain of integration shown in
Fig. 2. Now we consider the integration

z=y —1

I

2 y

a(a) = d d
J

k ie yZ
1

yj&t
ly-zl &1

which in the limit ~ 0 becomes

(A29)

FIG. 3. Domain of integration for integrals in Eq. {A31).

lima(a) = '

I' dydz.-p J „yz
l~l »
lzl &1

l~-zl &1

(A30)

Now, as seen from Fig. 3 this integral has the follow-
ing limits of integration

ydz ~ ' ~ '" '~+
J J ",'=J "yJ, ,

l~l »
lzl »

lx-zl & 1

+ Jt dy J dz—. (A31)
1 max( l,y-l ) yZ

The first term can be shown to be identical to the
second by changing the variables y y', z —z'

~

As seen from Fig. 3

j
r+1

dy I
dz—

1 mar(l, p-l ) yZ

f~2 } f oo- jl dy —(lnz) f+'+
J~l dy —(Inz)g+&'

1 y 2

In(y +1) " ln( y +1)—ln( y —1)
y

+ dy

tnt(y +1)/( y —I) 1 ~"' In( y —1)
1

y J 1 y

and by making the substitution y = t in the first in-

tegral and y = t' + 1 in the second we find

l'd, In[(l+t)/(1-r)] l'd, , Inr'
J p t a!p t +)

which by partial integration of the second integral yields

il'd, In(1+r) ~l'd, ln(1 —t)

+ [Inr'In(t'+ I) )o' —
J dt'
aJ p t

In(1 —r )
Jp

This integral is evaluated by writing the integrand as
a power series in t, and

jl dy jl '—'=jt d -' X —'
n

oo

= X —
Jl r" 'dr

n

(A32)
1 m2

1
n2 6

As a (a) Eq. (A30) is twice this value, see Eq.
(A31), a(a) reduces to m'/3 as e 0 and R (a) Eq.
(A26) gives the desired result Eq. (A25).

To be more precise, we have from Eqs. (A24),
(A30), and from the transformation Eq (A28),

R(a) = jl dkt Jt dy Jl„&dz

I ~l »
lzl &1

l~-zl & 1

where we have extended the lower limits of integration to
written

F(kt, k&+y, kt+z)
(2k, +y)(2k, +z)

dk, Jl jl dydz
' +R'(a), (A33)

l~l »
lsl )1

I~-zl & 1

—~, and R'(a) is the correction term. Here we have
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By using an argument similar to the one given below
Etl. (A25) one convinces oneself that R'(e) is of the
order of e. We then have

limR(a) =lim Jl dkt Jl Jl dydz

J.yJ»
lgJ»

Jy —zJ

Thus if one assumes here that F(ay, az, kt) uniformly
converges to F(o, o,k|) as a 0 in the domain of in-

tegration (see Figs. 2 and 3), then we can inter-
change the limit as e 0 and the integration. This

gives us

lim R (a) =J) dkt JI Jl dy dz

JyJ ) &

Jy-zJ (1
foo

dk, F(O, O, k, ),
which is just the sought after result Eq. (A25). For
most of our applications, the uniform convergence
criterion is satisfied for any reasonable V(k|kzk3).

In summary we have shown that the integral enter-
ing the third-order energy correction, Eq. (A12) can
be written in the desired form Eq. (A14). Thus we
can write )he third-order energy correction as

r 3

E(3) 1 2m
8~'

j

t

0~F f' f 6' 7r2x Jl dk, Jl dkz Jl dk3
z z z z —,8(k, —k, )8(k, —k, ) V(k, kzk3) . (A34)

(kt —kz ) (k| —k3 ) 12k'
j

Equivalently we can write this as integrals over d3k,

'3
Et3i= J„„d3ktJtd kz Jl d3k3

3
8(Ez —Et) 8(E3 —Ez)

x V(kt, kz) V(kz, k3) V(k3, ki) (A35)

by using the definition of the Dirac 8 function

8(k) = (g /2m)2k8(E)

and by using the definition of V(k|kzk3) [see Eti.
(All)].

I

transition-metal impurity is to take into account the
change in the conduction-electron wave functions
due to the potential and spin-orbit scattering by the
impurities d levels in the second-order correction to
the ground-state energy. The second-order correction
to an electron gas is'

APPENDIX B: ALTERNATE DERIVATION

OF COUPLING
E()= V V

Ep Hp
(B1)

An alternate way of deriving the anisotropic cou-
pling between Mn spins due to the presence of a

By using techniques analogous to those used in Ap-
pendix A, we find

'I

E(z) Xf(k) k V(1 —Iko) (ko'I)
V k~ = 1

d kd' d'k'X V(ko. , k'cr') V(k'o. ', ko. )
EI, —HP 8~3 Eg, —Eko rrrr k'a'

(B2)

(B3)

This expression when evaluated by using the
conduction-electron-Mn spin interactions at sites A

and 8 leads directly to the RKKY coupling.
We can replace the integrations over k space by

those over energy as follows

d k= p(a, k)dedQ„
,

Sm3 4m
J

For spherical bands the density of states p(a, k) does

not depend on k and following Coqblin and
Schrieffer' we can write

dQI, kcr ko =— klmo. klma
4m Im

= X latm~) (aim~I . (B4)
lm

where e=tzk'/2m With these definition. s the
second-order correction can be written as integrals
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over the energy fore we find

feEF goo ( l)d Id"=J p(a)daa'J p
' Z"' = JI 'p'(a) d a a Jt0

x X V(aim o, e'I'm'a')
. lm cy.

I I I
I m a

V( a'I'm'o', elmer)

x X V(ajm;, a'j'mi')
Jm ~

.I Ij m.

x V(a'j'm, ajm, )

(85) (89)

Ikjlm~) = g (lm , o ll2 —jm,) Iklmo) (86)

where j= I + —,. In these basis states the second-

order correction to the ground-state energy is

faEFE'" = X J p'(e) da
0

When we take into account the spin-orbit coupling
of the transition-metal impurity in the zeroth-order
Hamiltonian we must use spin-orbit coupled basis
states, i.e., I kljm, ) states defined as follows

We conclude that the effects of the spin-orbit cou-
pling of the impurity are accounted for in the
second-order correction to the ground-state energy by
using distorted wave function with j dependent phase
shifts.

Before we proceed to do this we will show that the
terms in Eq. (89) linear in k are identical to the
third-order energy expression Eq. (A35). Towards
this end we revert to a discrete sum notation and to
distorted wave basis functions $q (X) by using the
identity

X I kjlm; ) (kVmfl = X Iklm o) (klm o I

xtp Jt
"~ (a') da'

0

kjlm.j klm o

V(ajm, , a'j'm, ') V(a'j'm, ', ajm, )

(87)

In this way we find the second-order energy is writ-
ten as

g( k ~l VI k 'o') i &( k '~'I VI k o) &

Ek —Ekr

For our problem the effects of the spin-orbit coupling
are contained in the phase shifts s, (k) of the
conduction-electron states. The density of states for
the conduction electrons in the presence of the po-
tential and spin-orbit scattering of the impurity is9

I I
k o

k Ak

(89')

p'(a) = p'(a) + p', b,(a), (Bg)
From first-order perturbation theory the wave func-
tion correct to O(X) is

where po(a) is the density of states for the conduc-
tion electrons along and p'„b,(a) represents the
Lorentzian hump due to the perturbing influence of
the spin-orbit coupled impurity. As

Ik).= lk) + X
Fk —E

(810)

while

pjybs e d e 0 1 where the unperturbed wave functions I k ) contain
the spin variable, i.e., Ik) =—

I k, o ) and

Jt p'(a) d. —O(W),
(k"I V„lk)~ V„(k",k)

we can safely neglect p'„b,(a) and use the free-
electron density of states po(a) in Eq. (87). There-

By placing this expansion for the wave function in
the second-order energy Eq. (89') we find
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E(2) X f(k) V(k, k') V(k', k)

k, k
Ek —E r

k

k Wk

+ (k, k') V(k', k") V„(k",k) + Vi(k, k") V(k",k') V(k', k)
t tt (Ei, E„i)—(EI, —E„ii)

t

k Wk
k Wk

V(k, k') V~(k, k") V(k",k) + V(k, k") V~(k, k ) V(k', k)+ +0 h.(E„E„,)-(E„, E„„—)
(B1 1)

The first term yields the conventional RKKY isotropic spin coupling. It remains to show that the second term is
identical to Eq. (A35). While the denominator of the first term in the large parentheses is of the correct form, i.e.,
the energy difference between ground and excited states, the denominator of the second must be recast. By a
change of variables the second term can be written as

f(k) V(k, k') V„(k',k") V(k",k)
kk k
k Wk

k 4k

(B12)

When the sums are written as integrals the restrictions k' ~ k, k" ~ k lead to Cauchy principal values of the in-

tegrals over d3k' and d3k", i.e., Eq. (B12) is written as

t 3 1 't

1
i d3k d t /3k tp d3k 1 1 1

8 Er —Err Ek —Er Ek —Err
V(kk') V, (k'k") V(k "k) . (B13)

As shown by Fano' the principal values of this combination of energy denominators can be rewritten as

6 g a
E —E,I Ek —E r Ek —E „

k k, k k

—w2S(E —Ei, )S(E„—E„i)
k ' k

(B14)

By placing this result in Eq. (B13) and writing the remaining sum in Eq. (Bl1) as integrals we find the part of
.E linear in A, is

'3 T

E&2'()t) = Jf „d3kJl d3k' Jl d3k" ~ [V(k.k ) V(k, k ') Vi(k",k)
a' " I"

+ Vi(k, k ) V(k', k") V(k",k)

+ V(k, k') V„(k',k") V(k",k)]

—w2S(E„—EI,)S(E„—E„)V(k, k') g(Vk, k") V(k",k) (B15)

In the present application

V= —rs(r —R.)s S.—rS(r —R, )s S&=Vs+ Vs, (B16)



ANISOTROPY INDUCED BY NONMAGNETIC IMPURITIES IN. . . 4685

and we will denote the six permutation of the matrix elements of V~, V~, and V], by

P sr V ( k, k') Vs(k'k") Vr( k"k)

By recognizing that the term in the integrand with the 5 function is the same for all six permutations we can sim-
plify Eq. (815) by introducing a factor of —, and writing the energy as

1 t 3

E"&(k)=, Jt d k JI d3k'J d k" —. g(E, —E„)8(E„—E,)

x P» X V (ka, k'a') V&( k 'a', k a.")V„(k"a'", ka'), (817)
I If

rory' 0'

where we have explicitly inserted vectors over labels
for wave functions and included the spin variables.
This coupling is identical to that derived from third-
order perturbation theory when the potential Eq. (2)
is inserted into Eq. (A35) and only the trilinear terms
in S„Sb,and A. are kept. Thus we have shown in

principle that if one takes the second-order energy
expression, Eq. (82), replaces the wave functions
Ika) by spin-orbit coupled functions Ika)„and
linearizes the result so as to keep only terms to
first order in X, one arrives at the same trilinear
coupling as that found using third-order perturbation

I

theory. %e now explicitly show that this is the
case.

To represent the potential and spin-orbit scattering
effects of the transition-metal impurity on the con-
duction electrons we introduce phase shifts which
now depend on the number j. For the Mn ions at
distances R, —Rb relatively far from the impurity Eq.
(3b) is the proper form of the wave function. When
we make the spherical wave expansion of the plane
wave (about the origin R =0) and couple the indivi-
dual angular momenta to the spin we write the dis-
torted wave function as

=4m Xi'[j, (kr) +6,2e 'sinrt, h2t+~ (kr)] X Yi,'„(k)(jm, Ilma) I jm, )
mm.

(818)

Xe 'sin(kr+rt, ) X Yq' (k) (jm;Ima) Ijm;) + (I W2)
kf

/ mm.j
(819)

The dominant phase shifts produced by the impurity
are for I =2, and the spin-orbit coupling information
is carried by the phase shifts p/, ~here

q, (k) = tan '[lL/(EJ —E„)] (820)

for j = I + —, = —,, 2. Therefore we are only interest-5 3

ed in the l =2 part of the wave function Eq. (818),
as the other terms do not contain the spin-orbit
parameter X and do not produce an anisotropic cou-
pling between the Mn spins.

To obtain the leading term in 1/R and linear in h.

of the anisotropic pair coupling, we need consider
only one of the four states in Eq. (89') of the form
of Eq. (819). For the others it is sufficient to use

l

plane wave states. When one performs the angular
integrations over k space implied in the sums it be-
comes apparent that only the l = 2 part of the plane
wave contributes to the coupling. This term with
l =2 is just that given by Eq. (819) when one sets
g/=0. As we must consider the spin-orbit coupled
states in all four positions in Eq. (89') and as we
eventually linearize our results, it is expedient to con-
sider two of the four states of the form of Eq. (819).
In this manner we simultaneously pick up contribu-
tions from two of the four ways of introducing the
spin-orbit coupled state in Eq. (89'). With the above
in mind we can write the second-order energy expres-
sion which produces the leading contribution in 1/R
and linear in A. as

'2

Et2&= —J„„d3kO'Jl X Iexp[ik (Rt, —R, )](crIS, s Ik'cr')~ &(k a'IS& s Ia)g~3 N "«r
+exp[ —lk' (R, —R, )] „(kaIS. s Ia') (a'IS& s lka)„+A BI .

(821)
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E(2)

We use plane waves e' " ' ' for two states and Eq, (B19) for the other two. By inserting the states Eq. (B19) and
performing the angular integrations in 'k space we find for the first term of Eq. (B21)

(4 )' t'F
3 I k dk sin kR, b + sin k 'R, + g, sin k 'Rb +

Sm N R, RbR~b EI Ek

x X (jm (Rb) I (Sb s )(S, s ) Ijm, (R, )), (B22)

where

jIm, (R)) =—X (ma Ijm&) Y2~(R) Itr)

To arrive at this result we used the relations

JtdQ„,Y2' (k') Y,(k') =8

I

coupling of Mn spins is

E &» (r/w)'(2m/ir')
1

16m R, RbR, b

t

x X(2j+1)(1 s )tlt(j)
j

sin kR,b
Jl d Qb exp[i k (Rb —R, ) ] -4sr

kR,b where

x R, Rb(R, x Rb) (S, x Sb), (B24)

and

X (jm, Im'o') (rn'o'Ij'mj ) =&.. &

I I
m a

l~(j) —= Jl sinkR, b kdk O' Jt, sin(k'R, + rt, )
r"F . t'" dk'

k —k'

x sin(k'Rb + q, ) . (B25)

By keeping only the anisotropic term of interest to us
(the isotropic term makes an additional contribution
of the RKKY coupling but has a different range
dependence) and by recoupling angular moments
with the aid of 6j symbols we find for general I

2 6l i+12 l+1X (jm&(Rb) I s Ijmr(R. ) )= (—I)'(2j+1) (1 s )I

j

where

x [Y'(R.) x Y'(Rb)]',

We evaluate the matrix elements of the
conduction-electron spin operator by using the identi-

ty

(Sb s)(S, s) = —„S,~ S, +(i/2) s (3b x3, )

The principal value integral is solved by first rewrit-

ing

sin(k'R, +7t, ) sin(k'Rb + rt, )

= ——[cos[k'(R, + Rb) +2rt, ] cosk'(R, ——Rb) I

(B26)

As the second term does not involve g, it does not
contribute to the coupling Eq. (24) because

X(2j+1)(T S),=0
J

The remaining integral is readily solved by using the
contour integration techniques used in Appendix C
and we find

tp JI, „(—1/2) cos[k'(R, +Rb) +2rt, (k')]
0

( I s )J = —[j(j+1)—I(i +1)—s(s+1)]

For our case l =2 and by using Eq. (16) we find this
becomes

X(jm, (Rb) I s I jm&(R, ) )

= (1/16m)(2j+ 1) ( I s ),R, Rb(R, x Rb)

(B23)

By placing this result in Eq. (B22) we find the contri-
bution of the first term of Eq. (B21) to the anisotropic

(n/4k) —sin[k(R, +Rb) +2rt, (k)]

The final integral for lt(j) becomes

n' F.k

1,(j) = ——J sinkR, b
4 o

x sin[k(R, +Rb) +2rt, (k) ]dk

(B27)

When we repeat the steps from Eqs. (B22) through
(B27) for the second term in the second-order energy
Eq. (B21) we find a contribution of the same form as
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Eq. (824) but with the integrals

tekF

lq(j) =—J sin(kR, + g, ) sin(kR, + g, ) dk

k'dk'
x O'

J~ &, sink'R, »k~ —k'~ (828)

the form of Eq. (824) with

l(i) =2[ii(i}+lq(j)]
k~=—

J cos[k (R, + R» + R,») +2'n, (k) ] dk

(830)

The principal value of the second integral is readily
ascertained and is

sin(k'R, ») k'dk'

k'-k' = ——coskR, b

By placing this in lq(j} and by using Eq. (826) we
find the nonvanishing contribution of lq(j) Eq. (828)
to the anisotropic coupling part of E"' is

m
lq( j}=—' coskR, »

4 Jp

&& cos[k(R, +R ) +2%, (k) ]dk

To evaluate this integral we first linearize it with
respect to the spin-orbit coupling by expanding the
phase shift g; about the one without spin-orbit cou-
pling q,

cos(a+2', ) =cos(a+2'01) —2 si n(a+2', )(g, —q, )
(831)

From the definition of the phase shift, 9 Eq. (820),
we find

q, —rt, = —(1/5) sin 7), Xz(1 s);+O(kq) . (832)

After linearizing and neglecting the term independent
of h. in Eq. (831) we find 1(j), Eq. (830), becomes

1(j)= J sin [k(R, +R»+R,») +2&,(k)]mk( l s) t'F .
p

(829)
x sin~g&(k) dk (833)

By adding these two contributions and the additional
two that come from exchanging indices A and B [see
Eq. (821)], we find the total anisotropic coupling of

This integral is solved by using the same approxirna-
tions as those used to solve the integral Eq. (21). By
replacing the integral over k space by one over the
phase shift, see Eq. (23), we find

t q (&F)
l(j) =—wkly( l s );(m/g )(1/kF) J sin[kF(R, +R»+R,») +2&~]drt,

'=eke( 1 s);(m/lf )(1/kF) sinn, (EF) sin[kF(R, +R»+R,»)+g~(EF)] (834)

When this result is placed in the second-order energy expression we find the anisotropic coupling linear in ~ is

4

HoM ——XE, ' =— X(2j+1)( l s )1'
32&3kF 82 j

sinn~(EF) sin[kF(R, +R»+R,») +7i, (EF)]
RRRa b ab

(835)

By evaluating the sum over j for I =2, we find

X(2j+1)( I s ),'=15

so that after using the same relations used for the
coefficient in Eq. (26) the numerical coefficient of
the anisotropic coupling Eq. (835) is

&5~ I 2 135vr 4I
32mNkF h 32 E kF

Thus we see that this anisotropic coupling which is

I

trilinear in X~, S„andS» is identical to Eq. (26).
In summary we have shown that one can find the

anisotropic coupling between Mn spins linear in A. by
using the same second-order energy expression as
that used by RKKY. The perturbations introduced
by the transition-metal impurities are taken into ac-
count by replacing the plane wave states by distorted
waves ~hose phase shifts are proportional to the
spin-orbit coupling of the impurity. When the result-
ing expression for the coupling is expanded in powers
of ~, the first-order term gives the same anisotropic
coupling found from third-order perturbation
theory —as it should!
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APPENDIX C: EVALUATION OF INTEGRAL g„Eq.(4) to write

In evaluating the anisotropic coupling between Mn
spins it is necessary to evaluate the integral in Eq.
(19) of the form,

I =8Jl, singz(k) sin[kR + gz(k) ]kdk
o and

h(E, —E)
singz(k) cosg, (k) = E-Z„)'+a'

8(k' —k')
(k —k) +8 (C2)

i 'I

kdk 1 se'"" +, (C1)
0 k —k 2/ k —I(' + /Q

where 8= 2m—h/g' and k„'=2mE,/ttz To .arrive at
this form we used the definition of the phase shift

Q2 g2
sin gz(k) =

(E —E )'+hz (kz —k )'+8'

To determine the positions of the poles in the in-

tegrand Eq. (Cl) we write

k 1 1 + 1 1 1

(k —k')(k —k +is) 2[k' —k +is] k —k' k+k' k —k; k+k;
i

where

a, -=(a'-is)' '=a„(1-is/aP)'i' .

Therefore the integral to evaluate, Eq. (Cl) is written

as

I

our contour and we find for the first integral

~" e' "dk . ;k R
~ e""

(C4)

i t

1 8
2(a'- k')

x
e' "dk ~

e' dk
, +6 ~

k+k'
t

I ! t

To evaluate these integrals we use the contour of in-

tegration shown in Fig. 4. There are no poles inside

Imk

where the second term is the contribution from the
integration in the immediate vicinity of the pole at k'

and z represents the dummy variable of integration
along the imaginary axis, see Fig. 4. By making the
transformation z =it/R, we find

e'""dk . ; ~ i I' e 'dt
~!eik R

k —k' k'R o 1 —(i/k'R )t
'n

I / !=vie" "—, n!
k'R „~ k'R

By a similar procedure we find for the second integral
in Eq. (C3)

'n

~~ ~~

oo e tkRdk ! /

k + k' k'R „~ k' R

-k
1

X

-k' k'

Rek

By adding these integrals and the analogous results
for the third and fourth integrals in Eq. (C3), i.e. ,
with k' replaced by k;, we find the four integrals in

Eq. (C3) are equal to

6' etkRdk + ~ ~ ~

k —k'

oo

=rrie'" a+2, X (2n+1)l
oo

( 1 II

k'R „~ (k'R )'"
i

—2 X (2n +1)l

k;R

FIG. 4. Poles of the integrand in Eq. (C1) and the con-
tour C used to evaluate the integrals in Eq. (C3).

As the pole at k; is not on the contour of integration
we do not pick up a contribution from integrating
about this pole, i.e., we do not have a contribution
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'k,.R
rrie ' . By placing this result in Eq. (C3) we find our integral is

r I

I=,2, —e'" "+—, X (2n +1)!, 2„——, X (2n +1)! +c.c.5 vr k'R 1 1 (-)" (—)"
2(k' —k„+i8) 2 i k'R „p '

(k'R )2" i k, R „~ '
(k R)2. (cs)

By taking the indicated complex conjugate of the first term and by using the definitions of k, all Fqs. (C2) we

find

I = —sin%2(k ) cosg2(k ) —cosk R —Im
~ I r 7f I 1 6

2 (k R)2 (k R)4

+sinter (k') —sink'R2 2
1 6 +R 1 6

(k'R) (k'R) (k R) (k;R)" (C6)

where Re and Im refer to the real and imaginary parts
of the terms in brackets. Therefore to lowest order in
I/k'R we find the integral is

I = ——sing&(k') c so[k'R + rtt(k') j (C7)

APPENDIX D' DETERMINATION OF ANISOTROPY

ENERGY FROM EXPERIMENTAL DATA

—= Hp+Hg
y

Here Hp is the applied field and H~ can be identified
as the macroscopic anisotropic field which acts on the
remanent magnetization (H~ in the notation of
Monod and Berthier', H& = Hd+ H,

„

in the notation
of Alloul and Hippert3). The values of H„deter-
mined from the resonance. shift, i.e., Hz = ru/y —Hp

turn out to be in approximate agreement with those
determined from experiments of NMR or transverse
susceptibility but always larger than those derived
from the reversal field of the remanent magnetiza-
tion. For example, in CuMn 1.35 at. % at T (& T,
and for the maximum remanent magnetization, the
following values of H& have been obtained:
H& =445 6 from ESR, H& =375 G from NMR. '
In contrast, the analysis of the hysteresis loop' of a

(D 1)

In this Appendix we show how we extract from the
experimental data the anisotropy energy of the
CuMn„T~ spin-glass alloys given in Table I and Fig.
1. For T =Ti, Fe, Co, Ni, and Pd the experimental
data come from electron spin resonance (ESR) exper-
iments. 4 For T =Pt, they come from magnetic mea-
surements

The relation between the shift of the ESR in the
spin-glass state and the macroscopic anisotropy field
acting on the remanent magnetization (magnetostatic
model) has been clearly shown by Monod and
Berthier. ' These authors have found that, in the
low-frequency and low-field limit, the ESR frequency
of CuMn alloys in the field-cooled spin-glass state is
well described by the relation

QJ gr—= Hp+ H~
y p., +XHp

(D2)

By using Eq. (D2), we can relate the macroscopic an-
isotropy energy to the resonance shift in the follow-
ing way:

E, =g„H„=——H—p (p,, +XHp)
,

'y
(D3)

Kith this relation the rate of increase of the anisotro-
py energy with concentration of nonmagnetic impuri-
ties y is related to the rate of increase of the reso-
nance shift by

dE,

, expt

'1

d cd= ( p,„+XHp) Hp
dy

(D4)

The values of (dF.,/dy), „„,in Table I and Fig. I
have been derived (i) by taking the experimental
values of (d/dy)(~/y —Hp) at 4.2 K given in Table
II of Ref. 4 for several types of nonmagnetic element
T, and (ii) by estimating the factor (p,„+XHp) to be
approximately 0.07ps (+0.02SiMs) per Mn atom for
the experimental conditions given in Ref. 2. The fac-
tor (p,„+XHp)cannot be accurately derived because

I

CuMn 1 at. % alloys leads to only H& = 170 G, as
will be explained below.

Let us now consider the ESR measurements on
CuMn„T~ alloys; x =2 at. %, y ( 2 at. %. Okuda and
Date4 found that, in the spin-glass state, there is a
shift of the resonance which is proportional to y.
This shift can be used to determine the anisotropy
field H& and the macroscopic anisotropy energy but,
as the measurements were not made under the low
frequency and low field conditions as the measure-
ments of Monod and Berthier, ' the relation between
the resonance shift and the anisotropy field does not
have the simple form of Eq. (Dl). It is necessary to
take into account the significant magnetization X Hp
which supplements the remanent magnetization p,
According to Hurdequint et al. ,

' this leads to replac-
ing Eq. (Dl) by the following relation
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the experimental conditions of Ref. 2 are not precise-

ly known. Thus relative values of the anisotropy en-

ergies induced by various types of nonmagnetic im-

purities are more reliably known than their absolute
values. This is one of the reasons why in Sec. III we

attached more importance to the variation of the an-

isotropy energy with the type of nonmagnetic impuri-

ty than to the absolute values.
For T =Pt an experimental value of dE, /dy can be

derived from the work of Prejean, Joliclerc, and
Monod' who studied the hysteresis loop of
CuMn, Pt~ alloys (with x =0.01) at 1.45 K after cool-

ing in 28 kG. For y &( x, they observed a steep re-

versal of the remanent magnetization at a negative
field 0, proportional to y. When the field is in-

creased back to positive values, there is an opposite
reversal of the remanent magnetization at about zero
field. The absolute value of the negative reversal
field iH, i amounts to about 170 6 in "pure" CuMn
1 at. % and increases with y at the rate of 34 x 10' 6
per at. % Pt. When these results are analyzed in the
magnetostatic model of an anisotropy field, 3'9 the

half-width of the hysteresis loop (——, iH, i) has to be

identified with the uniaxial anisotropy field 0, and

the displacement of the loop (-—, iH, i) is identified

with the displacement field Hd. This leads us to con-
clude that

and

Hg = Hd —+ H,„=i H, i (DS)

dE. d diH„i"p, .
expt

(D6)

By using the experimental data of Prejean et at. ' on
CuMn„Pt~ alloys, i.e. , diH„i//dy =34 x 10' CJ and

p, , =0.03@,q per Mn atom, we have calculated the
value of (dE, /dy ),

„„

for T = Pt which appears in

Table I and Fig. 1.
As we mentioned above, the anisotropy energies

derived from the hysteresis loop generally turn out to
be smaller than those derived from ESR or NMR ex-
periments. This could explain way the experimental
point for Pt in Fig. 1 lies somewhat below the expect-
ed line. ESR and NMR measurements on CuMn Pt~
alloys probably yield larger values of dE, /dy which
would be in better agreement with the variation
predicted by our theory.
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