
PHYSICAL REVIEW B VOLUME 23, NUMBER 9 1 MAY 1981

Classical statistical mechanics of the sine-Gordon and $~ chain. II. Dynamic properties
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We present and discuss the classical statistical mechanics of the dynamic properties associated

with a discretized sine-Gordon and $ system by using the molecular-dynamics technique. To

calibrate the interpretation, various approximate expressions for the dynamic form factors of in-

terest are derived on the basis of an interacting phonon gas and an ideal kink gas. On this basis,

kink, phonon, and second-sound excitation branches are identified. The occurrence of the kink

excitation branch turns out to be restricted to small ~ave numbers and frequencies and to lo~

temperatures. Evidence for breather features, distinct from anharmonic contributions, is also

given.

I. INTRODUCTION

In a previous paper, ' we studied the static proper-
ties associated with a discretized sine-Gordon (sG)
and $4 system, to clarify the relevance of the associ-

ated soliton features in thermodynamic properties
and static form factors, to identify soliton-sensitive

properties, and to test the validity of approximate
treatments. The present work extends this study to

the statistical mechanics of dynamic properties. %e
shall concentrate on molecular-dynamics (MD)
results for dynamic form factors which are the most
revealing properties to unravel the excitation spec-

trum. Because of the lack of a firmly based theory

for the classical mechanics of dynamic properties in

these systems, 2 the present work provides a solid

basis for a confrontation with approximate treat-

ments. 3 7

The following results are obtained:
(i) Confirming our previous results, ' '0 in both the

sG and $ chains, we find a kink excitation branch,
exhausting the spectrum of the displacement dynamic

form factor for small wave numbers and low tem-

peratures. In the sG case, the MD results agree rath-

er well with the predictions resulting from an ideal

kink (soliton) gas approximation, exhibiting pro-

nounced relativistic effects. The importance of a-

thermal kink energy renormalization turns out to be
crucial. For the $4 chain, the agreement is less quan-

titative and becomes even worse on the inclusion of
thermal renormalization.

(ii) An ideal kink-gas approximation is formulated

to estimate dynamic form factors at low tempera-
tures. Consistency with the corresponding exact stat-

ic form factors, as derived with the aid of the transfer
integral method, requires a particular decomposition
of the displacement field in terms of kinks. The
decomposition, consistent with this requirement,
turns out to be fundamentally different in the sG and

Q4 systems, and reflects the fact that in the $' case,
kink and antikinks can occur pairwise only. As men-

tioned above, the results agree quite well with MD.
(iii) To substantiate the identification of the kink

excitation branch, we also present snapshots of the
displacement patterns and the time evolution of the
signals of a m and sign detector. On this basis, the
existence of thermalized kinks and large-amplitude
breatherlike soliton features is clearly demonstrated.
These patterns also reveal the creation and annihila-

tion channels, and illustrate the fundamental differ-
ence in the motion of thermalized kinks in the sG
and $4 chains. In the sG case, the relativistic effects
are clearly seen, while in the $~ chain, the kink mo-

tion turns out to be random-walk-like.
(iv) For larger wave numbers and low tempera-

tures, or for intermediate temperatures and all wave

numbers, the dynamic displacement form factor is

found to be dominated by an optic-phonon branch.
These results are explained in terms of a high- and
low-frequency approximation, appropriate for an in-

teracting phonon gas.
(v) The high-temperature behaviors of the two sys-

tems turn out to be fundamentally different. In the
limit T ~, the sG chain tends to a weakly interact-

ing phonon gas, because the nonlinear single-site po-
tential becomes irrelevant. In view of this, it can be
understood that the dynamic form factor associated
with the energy fluctuations exhibits a well-defined
second-sound resonance, not only at low and inter-
mediate but also at high temperatures. The @~ chain,
ho~ever, in this limit becomes equivalent to a set of
independent quartic oscillators. This fact explains the
absence of kink features, and less well-defined
second sound in the MD results for high tempera-
tures.

(vi) The MD results for dynamic form factors, ex-
pected to be kink insensitive, are partially explained
in terms of anharmonic perturbation theory and
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breatherlike features.
(vii) The critical slowing down in the $4 chain, as-

sociated with the displacement fluctuations and q =0,
is elucidated in terms of the kink excitation branch.
The softening of the gap of the optic-phonon branch
turns out to be incomplete.

(viii) Exact results for the frequency moments and
relations between dynamic form factors are derived.

In Sec. II, we summarize the definition of the
models and of the associated quantities of interest.
Fxact results for the frequency moments and rela-
tions between dynamic form factors are derived in
Sec. III, while in Sec. IV, we summarize approximate
calculations of the dynamic form factors of interest to
calibrate the discussion of the MD results. They in-
clude: a high- and low-frequency approximation, ap-
propriate for an interacting phonon gas, heat diffu-
sion, and second sound, two-phonon approximation
for kink-insensitive dynamic form factors, valid at
low temperatures, high-temperature approximations,
an ideal kink-gas approximation. In Sec. VI, we
present and discuss some MD results of the sG
chain, while Sec. VII is devoted to the $4 results.

We trust that these results have opened a door on
nonlinear, solitonlike phenomena, which are absent
in nearly linear systems.

Ã =Da Jl dy —'$2+ —$)+cu02 V($) (6)

with the associated equation of motion,

Q
—cp pyy+top =02dV

dQ
(7)

The kink solitary wave solutions, as obtained from
Eqs. (3)—(7), and the associated kink energies, "

' —1/2
Q

2

Ea = HEI'
Cp

are listed in Table I. The parameter d is defined by

Cpd=—
OJO

and ( denotes

where

b =cop, B =b(op2 2

In the continuum limit, Hamiltonian (1) reduces to

g=y —ut (10)

II. MODELS AND DEFINITIONS

In this section, we briefly summarize the definition
of the models and the associated quantities of in-
terest. For a more detailed discussion, we refer to
Ref. 1.

The sG and @4 chains belong to the general class of
Hamiltonians of the form

1

2

X= XDa —+tuoV(yi) + (ye+i yi)
Cp

I 2 2a

where yi is a scalar dimensionless displacment on a
one-dimensional reference lattice of points (labeled
by I) with lattice constant a. The system can be
viewed as an elastic chain, subjected to a superposi-
tion of single-site potentials V(y, ). A characteristic
velocity is ep, and esp is.a characteristic frequency of
the system. The energy scale is set by D and is given
by

D =Ma

where v is the kink velocity. The "relativistic"
dependence of the kink energy and the kink solutions
reflects the Lorentz invariance of Hamiltonian (6)."

III. EXACT RESULTS: FREQUENCY MOMENTS
AND RELATIONS BET%EEN DYNAMIC

FORM FACTORS

In this section, we derive exact results including
frequency moments of and relations between dynam-
ic form factors. These results represent a useful

TABLE I. Kink solution $k and kink rest energy Ek for
the so and qh4 system. (From T. Schneider and E. Stoll,
Springer Series in Solid-State Sciences 23, 1981, p.76.)

The single-site potentials considered here are given
by

'2
22b 2 1 O

cop V(y) =cop—y ——
4 b 4b

2=—h~ +—y4, $4 chain
2 4

V(y) = I —cosy, sG chain

(3)

(4)

EP

1 —cos$

4tan 'exp+~
d

8Do)pcp

b 2 1 1f2
4 b 4b

1 ~f b
&/2

~ tanh+
d 2

2 D olpcp
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basis to test and interpret approximate treatments

and numerical results. Assuming the establishment

of thermal equilibrium, dynamic form factors are the

most revealing properties to unravel the excitation

spectrum. They are defined by

S„„(q.l) = (A (q, l)A ( —q, 0)) (12)

Sxx(q, ca) = J) dt [exp( —idiot) lS»(q, t), (11)

where

tions, we have

S„„(q,l) =S„„(q, l)— (15)

Sqx(q, t) being analytic for l 0. It then follows that

dll
S„„(q,l) =0,

dh" IW

if n is odd. Another important property follows from

the translational invariance of the correlation func-

tions, namely,

(A (l) B(l + r) ) = (A (0)B(r) ) (17)

A (q, l) = X(expiqal)SA, ,
I
N I

SAc = Ac —(A()
(13)

A. Frequency moments

Al is a dynamic variable related to the basic variables
entering the Hamiltonian [Eq. (I)]. The wave num-

ber is q, the frequency eo, and I labels the sites of the
rigid reference lattice with lattice constant a. Next,
we derive various expressions for the frequency mo-

ments of Sxx(q, ce) and finally, determine relations
between some dynamic form factors.

so that

—(A(l)B(r+r)) =0,d
dh

(A(0)B(0)) = (A(0)B(0))
—(A (0)B(0)) = (A (0)B(0))

where

dA (l)
dh

(18)

(19)

(20)

Using the properties listed in Eqs. (16) and (19), it is

now easily seen that

S»(q) =Sx& (q) =S»(q, r =0)

To derive useful expressions for the frequency rno-

ments

S»(q, l) = (i)"Jt
""ce"S„„(q,eI), (14)

AA

we summarize some properties of S»(q, l) For a.
classical system evolving according to Newton's equa-

ie+oo
= J S»(q ca)

S„"„'(q)= S„„(q,l =—0) = (A (q)A (—q))

d GQ= J ca'S»(q, ce)

Sxq (q) =Sqq(q, l =0) = (A (q)A ( —q) )
re+oo

=J

(21)

(22)

(23)

TABLE II. Definition of some dynamic variables for the sG chain and notation of the associated diagonal dynamic form factors.

Variable

Dynamic
form factor

y(q) = X(expiqal)yc
1

N

1s(q) = X(expiqal) sinyc
N I

c(q) = X(expiqal)(cosy& —( ))1

N I

'2 2

H(q) = g(expiqal) Da —+«Iezv(y, )+ . [(y,+c
—yI) +(yc —yl+c) I

1 2

N 4a

Sy(q, o))

S„(q, o))

S,,(q, o))

Szz(q, )
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TABLE III. Frequency moments Sitz) (q) =i f cu"(dcu/2rr)S&ziq, ra) for the sG chain.

S„~4~(q)

s„(q =0)

g (2)(q)

g (2)(q)

SH~ (q)

kgT
Da

2Cp
roc (cosy, ) + (I —cosqa) = rs]

a

AT
(cosy, )

Da cup2

kBT
((cosy, )2)

Da

kgT
(isiny&)2)

Da

Dacp k8 T
2'2

—X (~ y(q')
~ ) [cosq' —cos(q —q') + (cosq) —I ]2

2
2 Cp—yi =~o»nyt+ (2yt+—yt+t yt I)—

4f
(24)

or

The extension to higher-frequency moments is

straightforward.
To obtain explicit expressions for these frequency

moments, we use the equations of motion. Specifi-
cally, we treat the so chain only, because the deriva-
tion is quite analogous for the @4 chain. The classical
equation of motion of the sG chain is, according to
Eqs. (1) and (4),

where, according to Eq. (13),

y(q) = X(expiqal)y&
1

N
(26)

s(q) = X(expiqal) sinyI
1

N /

(27)

(yy;) = 2'
pDa

N/2 t+- . . ~
' PDay,

y;j&j exp — dy;
l 1 i

A list of variables of interest are given in Table II.
Noting that

c2—y'(q) = ra2cs(q) +2—(1 —cosqa)y(q), (25)
0

AT
Da

(2g)

TABLE IV. Definition of some variables for the P4 chain and notation of the associated diagonal dynamic form factors.

Variable
Dynamic

form factor

1
y(q) = ~ Xexpiqal y,

VN

1
y (q) = = —

/ex piqal( y, —(y, ) )
N I

S (q, cv)

$, 2(q, co)

1lf(q) = X(expiqal)Da —+rao2 —y12 —— ——+ [(yi+t —yt)2+(yt —
y~ t) ]

I 2 P4 I b 4b

1y3 = ~- Xexpiqal y&3
v'N

&eH« ~)

s 3 3(q, ~)
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TABLE V. Frequency moments Sqtqt (q) = J(dcu/2cr)cu"S„„(q, cu) for the @4 chain.

4635

kgT
Da

2 2
2 2 2

2Cp
cup+ 3b cup (yc ) + (1 —cosqa) = —5 + 3 B ( y, ) + (1 —cosqa ) = cu]

a a

S„H (q)
Damp

2'2 .

a2 Da A'
—X (~ y (q')

) ) [cosq' —cos(q —q') + (cosq) —I j~

we obtain from Eqs. (22), (25), and (28)

—(y(q)y( —q) ) = (y(q)y( —q) )

S(2)(q)
Da

= ~p(s (q)y( —q) )

on the interaction and the single-site potential. This
is also true for the higher-frequency moments.

This approach also yields frequency moments of
S„(q, cu) and S„„(q,cu) as summarized in Table III.

In the $' chain, we shall concentrate on the vari-
ables listed in Table IV. Some frequency moments
are given in Table V.

2Cp+ (I —cosqa) (y(q)y( —'q) )a

2c= cupS„( q) +, (1 —cosqa )S» (q)
a

(29)

This result reveals that the second frequency moment
does not depend on the details of the interaction and
of the single-site potential. Nevertheless, Eq. (29)
provides a useful relation between the static form
factors S»(q) and S,y(q).

To derive an expression for the fourth frequency
moment, we consider the first time derivative of the
equation of motion (25),

—'y'(q) = cupS(q) + (1 —cosqa )y(q)
2Cp

Q

B. Relations between dynamic form factors

Since the equation of motion (25) relates the time
evolution of y(q, t) and s(q, t), the dynamic form fac-
tors S»(q, cu) and S„(q, cu) will not be independent.
The relationship might be obtained as follows'. From
Eq. (25),

—(y'(q, t) s(q, 0) )

= cu(') (s ( q, t) s (—q, 0) )

+ (1 —cosqa) (y(q, t)s(q, 0)) (32)
2Cp

or

2c
Sy, (q, t) =cup—S„(q,t)+ (1 csoqa) S(yq—, t) . (33)

1= cup Xe""cosytyt
v'N

2cp+ (1 —cosqa )y (q)
a

It then follows from Eqs. (23) and (28),

—(y(q) y( —q))

(30)

On Fourier transforming, we find

2

cupS„(q, cu) = cu — (1 —cosqa) Sy, (q, cu) . (34)
2Cp

a

Using the equation of motion in the form

c2
~csup( tq) =y'(q, t) +2—(1 —cosqa)y(q, t), (35)

a

it then follows
= (y'(q)y'( —q) ) =S,',"(q)

t

kg T 2 2cp
cusp (cosyc) + (1 —cosqa )

Da a
(31)

revealing that the fourth frequency moment depends

2

cupS„(q, t) = S»(q, t) +4—,(1 —cosqa) S»(q, t)
a

2
Cp+ 2—(1-cosqa) S»(q, t) (36)
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so chain

2Cp
fa)QS&s (qp 0J) Syy (q, cu ) ao — ( 1 —COSqa )

a i

2

o)pSsv(q& o)) Sys(q~ cu) o) (1 —cosqa )
a

S (q, cv)S„(q, eo) =[S,(q, eo)]2

@4 chain

2Cp
8 S 3 3(q, a]) =S (q, e)) o) —5 — (1 —cosqa)

a

2Cp
BS (q, co) =S (q, cv) co —5 — (1 —cosqa)

yy a

S (q, o))S 3 3(q, ao) =[S 3(q, co)]

''2

TABLE VI. Relations between dynamic form factors. to a harmonic system, while the 4t4 chain becomes
equivalent to a set of independent quartic oscillators.
At low temperatures (ks T ((Eio), the kink-insensi-
tive properties are well described by anharmonic per-
turbation theory. For kink-sensitive properties, kink
effects are restricted to small q values, and on physi-
cal grounds also to small co values only. In the
intermediate-temperature regime, these approaches
fail, because they are valid only in the corresponding
temperature limits. From the dynamic point of view,
one has also to consider the occurrence of the hydro-
dynamic mode, associated with energy conservation,
namely, heat diffusion or second sound.

Taking these constraints into account, we shall
develop high-frequency approximations for the kink-
sensitive S»(q, ru), by neglecting the kink contribu-
tion occurring at small q and eo values. The kink ef-
fects will be taken into account in terms of the
soliton-gas approach. For low temperatures and
kink-insensitive dynamic form factors, we use anhar-
monic perturbation theory. In the sG chain, this ap-
proximation is also applied to the high-temperature
behavior, in terms of a high-temperature phonon
basis.

A. High-frequency approximations

and on Fourier transforming,

2
', 2

ruoS„(q, co) =S»(q, ru) rn —.—,(1 —cosqa) . (37)4 2 2CP

Q

%hen one uses the resolvent representation of the
retarded Green's function, ' ' the Green's-function
matrix G~+„(z) for n-dynamic variables,

(39)

Combining Eqs. (34) and (37) it is seen that

S„(q, rn) S„(q,~) = ( S„(q,~)j', (38)

can be written as

G„+„(z)= —Pa(za —0+'.F) '( 0+iF), (4—0)

which, in general, only holds as an inequality. These
results are summarized in Table VI, where we also
list relations for the d4 chain, following from the
corresponding prescriptions outlined above. These
relations are obviously very useful to test approxi-
mate and numerical results for the dynamical form
factors. "

where

0,, = I (i, lw, ) =—I (i (q)w( —q)—),
a;, = (A, ld;) = (A (q)A ( —q))

IFj= A;Q QA)

(41)

(42)

(43)

IV. APPROXIMATE TREATMENTS OF
DYNAMIC FORM FACTORS

To examine and interpret the resonance structure
of dynamic form factors, it is useful to derive approx-
imate expressions, including dispersion laws for the
peak positions in S»(q, co). Moreover, these deriva-
tions may also shed light onto the physical origin of
the possible excitation branches. In the formulation
of a strategy, it is necessary to be consistent with the
behavior of the static properties, discussed in detail in
Ref. 1. The essential features might be summarized
as follows: At high temperatures (ks T )E~ ), the
kinks become irrelevant. In fact, the sG chain tends

(44)

(45)

The Green's functions introduced here are related
to the dynamic form factors [Eq. (11)] by

Xgs(et)) = llm Ggs(z = Ql+ I e)
~~p

Xss(cn) = rrfamSas(m)

(46)

(47)

X" being the imaginary part of the susceptibility X.
At high frequencies, in S»(q, co) we expect reso-

nances due to an optic-phonon branch. To derive an
approximate expression for S»(q, ca) in this regime,
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we consider the variables

A =(y(q),y(q))

According to Eqs. (40)—(45), we obtain

(48)

sions might be derived by setting

(60)

where

S„c'&(q)

( y(q}y( q})Dc—z

F,,(q, z) = y'(q) Q Qy'(q)

G„'(qz) =P~r(y(q)y( q))—
c

x z'+iz F (q, z") —(orz
Da
k, T &

(49)

(50)

(51)

and by neglecting the imaginary part X", giving rise
to a shift. In fact, from Eqs. (46), (47), (59), and
(60), we then obtain

S»(q, $.)
S„(q, )=

X'(q) [~g(q) —~2r(q) ) ~'r(q)
[~2~2(q)]2~2+$2(q)[~22(q))2

(61)

In the high-frequency regime,

(y I+ I y)
(yly)

(52)
this expression reduces to

Neglecting the memory function F in Eq. (4"9), we

have poles at z =+as~. Because aor is related to
S»(q), being proportional to the isothermal suscepti-
bility, we do not yet have the correct high-frequency
behavior. For this purpose, we rewrite Eq. (51) in

the form

where

r
(~2 ~2 )2 + ~2rz(q)

GO
—QJgl( )

A r
2

(62)

~ ~ I ~ ~

yy
= y1 y1

z —Li

where

yc=Qy. Lt=QLQ .

and introduce the projector

(53)

(54) ~(&X
Eq. (61) reduces to

(64)

Provided, that for small values of ao and q, there is
no additional pole, from Eq. (61) we may also derive
a low-frequency approximation. For

Pc = lyt)
(yc lyt )

so that

F„,= i(yclyc)lz+ i

(yc yc)

(55)

(56)

S
rc(q}~r(q}

(~z -~r }'+rcz(q ) cu

where

2

r(q)=
X'(q)

(65)

(66)

where

(ytlyc) = ~H q) —~'r(q»

(y'(q)y'( —q) ) S '(q)

(y(q)y( —q })
Substitution of Eq. (56) into Eq. (49) yields

(57)

(58)

G„'(q, z} =P~r(y(q)y( q})—
2 2

OJg —
CO T

2 —MT —z
z+

iFcc&(y'eely'i),

(59)

For sufficiently large z, Fcc/(yt l
y'c) is expected to

become small. In this high-frequency approximation,
we have poles at z = +co„(q). More useful expres-

5 siny& = cosyl byl (67}

and replacing cosyt by its ensemble average, we ob-
tain in the sG case the linearized equation of motion

2c
y(q) =~o(cosyc)y(q)+, (1 —cosqa)y(q), (68)

Clearly, Eq. (65) is expected to be valid only at high
temperatures, where a kink contribution is not ex-
pected. In this regime, Eq. (62) predicts a resonance
close to co =+au& for large co values, and a peak close
to co =+eoT in the low-frequency regime. From
Tables III and V, it is seen that the excitation branch
co = +caA (q) is the expected optic-phonon branch, be-
cause co& (q} also results from a Hartree linearization
of the equation of motion. In fact, considering the
variation of the nonlinear term in Eq. (24),
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so that

2

cu~(q) =rap(cosyi) + (1 —cosqa)
2co

a
(69)

where

I (II(q) H( —q) ) I'

(H(q) H( —q) ) (II(q) II(—q) )

&v~2(q) corresponds to the ratio between the fourth
and second frequency moments of S»(q, ru) (Table
III), satisfying

6',t"(q) =cu„(q) ~0 . (70)

Thus the associated phonon branch is an optic one,
with a gap given by ruz (q =0). Similarly, we might
derive the corresponding expressions for the P4

chain, with co4 listed in Table V.

B. Hydrodynamic modes: Heat diffusion
and second sound

Considering the continuum limit, the Lagrangian
associated with Hamiltonian (1) reads

dy L

where

L = Da $2 —cap2 V($—) ——$2
2

(72)

In this limit, where umklapp processes are neglected,
not only energy, but also the field momentum are
conserved. The conservation laws read

m„being an estimate for the second-sound frequen-
cy. Equation (78) might be further simplified, with
the aid of Eqs. (73)—(76), yielding, in the limit
q~o 14

(Dcp la)' $a'q'&
I
y(q') I'&

r

ru,2, (q) =a'q'
Dacv T

(X(q) X(—q) )
(X(q)X(—q) )

Here we replaced (X(q) X(—q) ) by

(X(q) X(—q)) =cyksT'

(79)

(80)

for q 0, where cv is the specific heat at constant
length. Owing to the neglect of the memory func-
tion, we assumed second sound to be an extremely
well-defined excitation. Second sound, however, is a
more delicate phenomenon, expected to occur only in
a temperature window. At the upper limit, it be-
comes overdamped due to umklapp processes, and
goes over to heat diffusion. At the lower limit, there
are no more sufficiently dissipative processes to
maintain local thermal equilibrium. " Consequently,
a full discussion of second sound would require an
evaluation of the memory function matrix. Here we
adopt the predictions of phonon hydrodynamics,
where the second-sound resonance is given by'

H = JK, JK = cp pp —DaB

By

II = ——.Jn, Jn = L + Dacp2 gy2
By

where

(73)

(74)

P SKK(q. ~)
SKK(q fP)

S ( 0)

2fp,2, (q) I"(q)
2~2(q)2+212(q) (81)

COH = Da ~+a)p2V($) +—py2

i

(75)
The half-width I'(q) is related to the phonon relaxa-
tion time for normal (rK) and umklapp processes

) by14

II= —Dad d (76) I'(q) =r„'+a), (q)2rK (82)

These conservation laws are easily verified by inspec-
tion, and are a consequence of Noether's theorem.
Energy conservation also holds in the discrete case,
while the conservation of field momentum is approxi-
mate only, because umklapp processes are not taken
into account. Nevertheless, the neglect of these
processes is justified at sufficiently low temperatures.

To estimate the second-sound frequency, we con-
sider the energy density H and the field momentum
as dynamic variables. ' Neglecting in a first step the
memory functions, we obtain from Eq. (40),

GKK(q, z) = —P(H(q) H( —q) ) ", (77)
ss

Equation (81) is certainly an approximation, because
only the damping part, and not the shift associated
with the memory function, is taken into account.

C. Low-temperature approximation for kink-insensitive
dynamic form factors

Our discussion of the static properties revealed
that, in the low-temperature regime, kink-insensitive
static form factors can be well described by anhar-
monic perturbation theory. Here we extend this ap-
proach to the corresponding dynamic form factors.
First, we treat the sG chain.
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1. sG chains

Using the Hartree "harmonic" approximation, we
have

small, we replace cosyi by

cosyc = 1 —yt /2

so that

(87)

y, (t) = ——Xexpiqai
1

Jzx,
x [B,expi cn, t + B,' exp( i cn,—t ) ]

~here

(83)

kgTS.(q, c«) = —m
Da N

t

x X, , [8(cp+ (c«, +ca ))
t Ct) t Cll

+ 8(c«+ (c«, —cp, )) ]
q q —q

(88)

(BqBq) = &Bc"Bc')=o (84)

(BB', ) = 8 (85)

cp,
' = c«2p (cosy ) + 2—(1 —cosqa ) (86)

Assuming the magnitude of the displacements to be

The associated static form factor S„(q,t =0) is cor-
rect in the limit T 0 to leading order. ' For finite q

values, Eq. (88) predicts a low-frequency resonance
due to the difference process, and a high-frequency
resonance associated with the sum process.

This approximation can also be applied to
SttH(q, cp), by replacing the single-site potential by
c«2«yc2l2. The result is

t

t

CO Cd

SHH( q, N) = AT —X —3+4 +, 8(~ + (~ —~ ))q q q q

8 Da N, 2 q q q
q q

c c

OJ t Cd
2

+ —3 —4 ' ' + ',' 8(c«+(cp, +cp, ))
q q —q

q

(89)

The resulting static form factor SttH(q, t =0) is again
correct to leading order in the limit T 0.' lt should

be kept in mind, however, that in these approximate
expressions [Eqs. (88) and (89)] lifetime effects have

been neglected, so that the establishment of local
equilibrium, in terms of phonon normal processes, is

not guaranteed. It is important to emphasize this

point, to avoid a possible confusion in the interpreta-
tion of the low-frequency resonance due to the first
term in Eq. (89) and second sound [Eq. (81)].

2. th chain

To derive the corresponding results for the $4
chain, we start from the equation of motion, result-

yI =yo+syi (91)

where yo denotes the mean displacement in one of
the wells. Substitution of Eq. (91) into Eq. (90) then
yields, by taking the average,

yp =
B 3(8') (92)

and by invoking the Hartree linearization of (8y&),
C2

cp, =2d 6B ((8yt) )+——2(1 —cosqa) . (93)
a

Using Eqs. (83)—(85) and (92), we then obtain

ing from Hamiltonian (1) and single-site potential (3),
C

tt yc + Byc +
2

(2yc YI+c yc 1) (90)—a'
Following Ref. 1, we introduce

S»(q, c«) =4n —X [8(c«+ (cp, +cp, )) + 8(cp + (cp, —cp, )) ]AT ) j

c c q q

+4yp2
2 n[( 8'ca+ c)«+8(c« —cp )]AT

Da coq2
(94)
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where

yo = ——3((~yl)'&B

high-temperature expression for S»(q, i =0),

$»(q, r =0) = kg Ta

2Dc02 (1 —cosqa )
(97)

r 2' 1/2
3 AT 1+2—

B 2 Da a
(95)

D. High-temperature approximations

As noted above, in the limit T ~, the sG chain
behaves in a particularly simple manner, because the
periodic single-site potential becomes gradually ir-
relevant. That is to say, the harmonic approximation
becomes exact in this limit, with the important
feature, however, that the amplitude of the oscilla-
tions becomes very large. The $4 chain, on the other
hand, tends to a set of independent quartic oscilla-
tors.

1. sG chain

As a consequence, for PEk « I, the sG chain
behaves as a weakly interacting phonon gas, associat-
ed with nearly harmonic large-amplitude oscillations.
Here, kinks no longer play a role, so that the dynam-
ic form factor S»(q, ra) should be well approximated
by the high- [Eq. (62)] or low-frequency [Eq. (65)]
approximation. From the ratio

Syy(q, ~r) X'(q) (~] —~r)
Syy(q ~s)

X'( q) co~0 (cosy )
2(co2/a2) (1 —cosqa )

(96)

as obtained from Eqs. (61), (50), Table III, and the

and a&, is given by Eq. (93). In contrast to the sG
case [Eq. (88)], S 2 2(q, a&) does not exhibit two-

phonon contributions only. Due to the nonvanishing
mean displacment in one of the wells, there is also a
one-phonon contribution. As in the sG case, the
static form factor S 2, (q, t =0), resulting from Eq.

(94), is correct up to second order in Tin the limit
T 0.' For finite q values, Eq. (94) predicts a low-

frequency resonance due to the difference process
and two high-frequency peaks, associated with the
one-phonon branch resonance and the two-phonon
processes. We also note that for small q values,
SHH(q, ra) is given by Eq. (89) also in the present
case, but with ru, replaced by Eq. (93). As in the sG
case, the low-frequency resonances appearing in
S q 2(q, a&) [Eq. (94)] and S//H(q, co) due to the two-

phonon difference process, should not be confused
with second sound.

it is seen that the low-frequency regime will apply for
small, and the high-frequency approximation at large
wave numbers. In fact, the ratio (96) becomes large
for small wave numbers.

Since the amplitude of the nearly harmonic oscilla-
tions becomes very large, for PEI, ((1, the evalua-
tion of other dynamic form factors, such as $„(q, ca),
is quite nontrivial. Nevertheless, y, (t) evolves al-
most according to the harmonic approximation [Eq.
(83)], so that $„(q, cu) can be evaluated numerically
on this basis.

2. $ chain

The high-temperature behavior of the qh~ chain is
more complicated, because the system tends to a set
of quartic independent oscillators, with Hamiltonian

H = XDa —+ —y,
'B 4

2 4
(98)

Nevertheless, Syy(q, co) can be calculated exactly in
this limit. The result is'

1 32+2 1 M
Syy(~) =—

~~t m cosh~me/2 ri~~

odd

4
x exp ——, , (99)

g4k~T

where
/ ' 1/4

7r B
r2K ( I /J2)

2v 2K ( I/v 2) I'(3/4)
(Da) t/2111/4

(100)

(101)

E. Ideal kink-gas approximation

The idea of using an ideal gas of kinks to con-
struct approximate expressions for dynamic form fac-
tors has been employed by various authors. From
the behavior of the static properties, we know, how-
ever, that this approach at best, is valid only at low
temperatures and for kink-sensitive properties.

In this subsection, we formulate an ideal kink-gas
phenomenology to derive the kink contribution to

K(k) being the complete elliptic function of the first
kind. For T ~, where Eq. (99) applies to the Q
chain, the resonance due to the energy-dependent os-
cillation frequency, becomes very broad.
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kink-sensitive dynamic form factors. For this pur-

pose, we have to evaluate the kink contribution to
the correlation functions

S»(y, t) = (SA [P(y, t)]SA [P(0,0)]), (102)
E, = E, y, + X, = (E)~' + P c ' ) ' 2 + X,

and momentum

(104)

Assuming N indistinguishable kinks of energy
[Eq. (8)l,

where
PI Mio„i Eo Mloe (105)

SA = A [y] —(A [y]) . (103)

The variables A of interest are functions of the field
the kink contribution to the Eq. (102) can be estimat-
ed by

(V

S'"'(y t) = X, ff J dy, Jl dP; p( PE, )g—A [gk(y, t)]5A [4k(0, 0)]ZkgoN!, I vL
(106)

where

a=(2n)' (l3Da)' Na, L =Na

X, = —
2

kq T lnPDa ~o —kq To.1 2

oo ) N

Z,. = X,Q —
J dP, exp( —PE, )

w-oN', ] v"

(107)

v being a temperature-independent phase-reduction
factor, and X, [Eq. (104)] the change of the phonon
free energy in the presence of a kink. For a complete
discussion of the ideal kink-gas approximation and its
application to static properties, we refer to Currie
et al. "

To perform the summation and integrations in Eq.
(106), we have to specify the dynamic variable A [Q]
and its decomposition into kink solutions. This
decomposition should be guided by the following re-
quirements: (a) In integrable systems, it should be
consistent with the solution of the initial-value prob-
lem. (b) The static form factors S»(y, t =0) should
reproduce the exact transfer integral results to leading
order in the limit PEk && I, where the ideal kink-gas
picture is expected to apply. Because the second con-
dition can be verified only by quantitative cornpari-
son, we next consider the sG and qb4 systems
separately, and concentrate on kink-sensitive vari-
ables A.

It is important to emphasize that Eqs. (109) and
(110) are equivalent only if A is a linear function of
$, i.e., A =$, @„,@„etc. Before substituting Eq.
(110) into Eq. (106); we make the further approxi-
mation

which is in the spirit of the ideal kink-gas picture,
where kink correlations are neglected.

Substitution of Eq. (111) into (106) then yields for

PEP » I (112)

S~~ (q, t)

J dud'exp( —PyEko)lA(qy ')I'y 'e""'
=nk(T)

J)d u y' exp( —PyE„')

(113)

where

A (Q) = Jl' exp( —({?y)A [q4(y)]dy (114)

A [y, (y, t)]A [y„(0,0)]
= XA [4(y, (y —y,

—v, t)) l[A P( —y, y, )], (111)

1. sG system

p' ' '1/2

( ) ~ 2Ek 2~
vL eo PE

j

exp[ —|3(E(, + Xk)]

We suppose, as is justified for fully integrable sys-
tems, that for arbitrary initial conditions, the time
evolution of the field $( y, t) can be decomposed into
a superpositon of solitons, as t ~. The kink con-
tribution can then be expressed as

dk(y, t) —XC~, (y;(y —y, —v;t)) . (109)

The further ansatz is usually adopted,

A [@ (y. t)1= XA [Q;(y;(y —y; —,t))] . (110)

= (2n ) ' —(PE )' exp( —PEO).
d

(115)

In deriving the total kink density n~. , we used Eq.
(108) with v = I and cr = In2. " The kink form factor
associated with the variable A is denoted by A (Q).
Introducing the velocity distribution of an ideal rela-
tivistic kink gas, defined by

(116)P(v) = v'exp( PE('y)— —I

0
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where Pp is given by

+Cp

P(v) du=1
p

Eq. (113) may be rewritten in the form

Sg„(qr) =n„(T) —
Jl P(v)y 'lA(qy ')l'e""'dv .P.

(118)

so that the static form factors and dynamic form fac-
tors are given by

SAA (qi 0) SAA(q)

=,(r) Jl P( )y-'lA(qy ')l'd-
p

(119)

Sgg(q, N)
Sgg(q, M) =

( )S~~ q ~=0
2

.0

a 12
CL

O
CL 0.8—

0.4

I I I

PEK
——15 / ~——2 075

4.846
l

/

/ l

2 77 Ql QJP-
Npqcp q q

Aqy'— 04 0.8 'l.2

where

(120) co
FIG. 1. Temperature dependence of the relativistic veloci-

ty distribution (Eq. (116)].
+1

,
P(x) IA (qy '(x)) I'y '(x»» (121)

In the limit PEI, && 1 and T 0, the relativistic
velocity distribution (116) reduces to

p
'1/2

p

P(u) = — —exp —
2

v2, (122)PEk t PEk,
27K cp

and Eq. (120) simplifies to

p
'1/2 'p 2PEk 1 P~k ~

S~~(q. ~) = —exp — . (123)
277, cp 2cp q

This expression is independent of the form factor
A (Q) and predicts a central peak (a resonance cen-
tered about au =0 for fixed q) due to the kinks. At
higher temperatures, however, where Eq. (120) ap-

plies, this central peak may split, as the temperature
dependence of the velocity distribution, shown in

Fig. 1, reveals.
Before discussing the dynamic form factors in more

detail, it is necessary to check the validity of the
resulting static form factors by comparison with the
corresponding transfer-integral results, in the limits
PFka ))1, and T 0, where Eq. (119) reduces to

(124)

Some of the relevant kink form factors are listed in
Table VII. Substitution of these form factors into
Eq. (124) in the limit q 0, yields the results sum-
marized in Table VIII. For comparison, we included

TABLE VII. Kink form factors fEq. (114)] for the sG
system, with @k =4 tan 'exp(+y/d), d =cp/cop.

costi

Sill ljbk

2'
sech(m/2) Qd

2m y sech(Q vrd/2)

(~/2) gd
sinh (m/2) Qd

(~/2) gd
cosh(m/2) Qd

the corresponding leading term of the transfer-
integral expression. It is seen that the ideal kink-gas
approach reproduces the correct results for S@&(q)
and S& & (q) but fails for S„(q) and S„(q), which

are not sensitive to kinks in leading order and where
A [P] is nonlinear and periodic (A [P] =cosP, sing).
These comparisons then indicate that the ideal kink-
gas picture, in the so system leads to the correct
kink-dominated properties, such as S»(q). For
S„(q) and S„(q), where A is a periodic and non-
linear function of P, this is not the case, because
phonon and anharmonic contributions dominate the
low-temperature behavior.
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yields in the limit

PEk' &»,
S~q(y, r) =st(yr),

f+Cp= —exp —
Jl du M„y'[exp[ —P(E~y+X„)]}2(y —ur) coth(y —ur)

VL 'p
i

(131)

(132)

for that for T 0,

S~ (y, 0) = —exp-o

2n„
(133)

1/r
S»(q, ) =

QJ +1 T
(140)

On Fourier transforming [Eq. (138)] we obtain the
approximate result

This result for the static correlation function agrees
with the transfer-integral result, because with

] AT
2 nk 2 I primp

(134) Syy(q) =—I 2nk

6 q'+(2nk)'
(141)

where to is the tunnel splitting, and g» denotes the
correlation length in the limit T 0. According to
Eqs. (108) and (115), the kink density is given by

n„=(2n) ' '4( —', ).
' '—(PEP)' 'exp( —PE~), (135)

rst g = 1/r (142)

in agreement with Eq. (133). Equation (140)
predicts a kink central peak with heights, growing ex-
ponentially as we lower the temperature [Eq. (139)],
and a half-width

where we used'

cr =in[4( —,')'~'], u=2 (136)
becoming narrower with decreasing temperature.
Comparison with the numerical results shown in Fig.

Having justified the ansatz (129), we return to the
time-dependent correlation function [Eq. (132)],
which is fundamentally different from the sG case
[Eq. (112)]. Because it is cumbersome to evaluate
the integral and to perform the Fourier transform, in

Fig. 3 we present numerical results for the resulting
dynamic form factor S~~(q, co), for

cop=005 ep =05 b =—

I I I I I I I

t

2000--

Ek = Da ~pep —=0.0224
242

3 b

(137)

and a, X, and u given by Eqs. (107), (108), and
(136). For a definition of the units, we refer to Eq.
(127). As in the sG system, the ideal kink-gas ap-
proximation predicts a kink resonance, restricted to
small q and co values. In contrast to the sG case,
S~, (q. ru) is well behaved in the limit q 0, since the
particles are localized in the double-well single-site
potential. Some analytical insight might be obtained
for T 0, ~y~ ~, t ~, and 8(y —ur) )) 1,
where Eq. (32) reduces to

3
«3

&CO

'}000—

——0.002
——0.006

S»(y, t) = —[exp( 2nq}y})] exp —— (138) 0.002 0.008 0.014

where

nk Junco

Jn (Eko) u

4(-,')'";
exp( —PEko) . (139)

FIG, 3. $&&(q, co) resulting from Eq. (132) for some
fixed q values and k& T =0.00344 (pFk =6.5) for the @
system.
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3 reveals that this approximation is quite good for
q =0 but fails to account for the strong q depen-
dence. As in the sG case, it should be kept in mind
that, in the ideal kink-gas approximation, lifetime ef-
fects are neglected.

V. MOLECULAR-DYNAMICS TECHNIQUE

8XMx, =- rMx, +~,-(t),
QX,

(143)

In the conventional molecular-dynamics tech-
nique, "' one solves the set of coupled Newton's
equations associated with a given Hamiltonian ac-
cording to a set of difference equations with a time
increment. This set of difference equations approxi-
mates Newton's equations. Starting from given ini-

tial conditions for the positions and velocities, the
particles are then allowed to move, and the time evo-
lution of their canonical variables (X~,x~) are calcu-
lated. Assuming the system is ergodic, estimates for
microcanonical ensemble averages may be obtained
in terms of time averages.

It would be preferable to have a molcular-dynamics
technique, simulating a canonical ensemble, as most
experiments are performed at constant global tem-
perature. This was achieved by considering, in place
of the Newton's equations, the coupled set of
Langevin equations

(147)

where ~,. denotes the characteristic time of the
dynamics. This guarantees that the excitations do
not become overdamped owing to the friction term.
Another important constraint on I evolves from the
energy conservation of a Hamiltonian system. Since
our system evolves according to the Langevin equa-
tion, it follows that

"~=X '~. Mx, + '~x,
QMX ~+I

= - g [rMX, -x,&,(t) ] .
I

(148)

Consequently, energy is not conserved because the
Hamiltonian system is in contact with the heat bath.
To avoid artificial features due to the random-noise
pulses, the mean time between two pulses must be
small compared to r, In this case, we may average
Eq. (148) over some pulses. This leads to

reach equilibrium. After this interval, the subse-
quent 10' steps are used to perform time averages
representing canonical ensemble averages.

From the Langevin equations (143), it is obvious
that the dynamic properties will be modified, in par-
ticular, owing to the damping term. To reduce this
modification, I" must be chosen in such a way that

where

(~,(t)~, ,(t')) =2Mrk, rs(t —t')8„, . (144)

dX== —r(2E„,„(t) Nk, T] = 8—E„(t) . —(149)
df

%ith the ansatz

Here, it is assumed that the particles suffer collisions
with much lighter ones which represent the heat bath
defining the temperature T. The collisions are
described- by the friction 1 MX~ and a random force
rtt(t) It may be. shown that the stationary solution
of the associated Fokker-Planck equation is the
canonical distribution function

5E& (t) = u exp( —t/r) (150)

and

d5E& d~ dT d5E&. 2cv d5Ek

dt d5E& dt dT d5E& dt kB dt

(151)
1

1
P„q(X, , . . . , Xjt,xt, . . . , Xg) =exp — X

B

(145)

we find

Cy }
kB I" (152)

x,(t), xt(t), xt(t). (146)

For a detailed description of the algorithm and the
random-force generation, we refer to Ref. 20. The
system is then allowed to age, or, in other words, to

Starting from initial values for positions and veloci-
ties, the particles are then allowed to move under the
influence of the computer-generated random force.
The temporal evolution of the variables are then cal-
culated with a set of difference equations approximat-
ing the Langevin equations '(143). On this basis, one
obtains

where &v is the specific heat. Accordingly, energy is
almost conserved within the characteristic time ~, ,
provided that

~v 1—)& w,
kB 1

(}S3)

(154)

Moreover, owing to the fact that the system evolves
according to the Langevin equation, the time interval

~,h over which the evolution is followed, must be
larger than v so that
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Combining inequalities (153) and (154), we finally
obtain

1.10
I I l I I I [ (

Cy
&ch )) && &c (155)

o~
'l.05

From this relation, it becomes evident that energy
can be almost conserved provided I and the chain
length ~,h are chosen appropriately. An exception is
very close to T„where the characteristic time v, be-
comes very long.

In the calculations presented here, we have con-
sidered systems of 1000 particles subjected to periodic
boundary conditions. In the time interval, where
time averages were performed, I was chosen as

1.0
0 10 20 50

B
40

FIG. 4. Temperature dependence of the specific heat for
the sG chain with parameters given by Eqs. (125)—(127).
The arrows mark the particular temperatures, where MD
studies of the dynamic form factors have been performed.

r=0.004 . (156)

VI. MOLECULAR-DYNAMICS RESULTS:
sG CHAIN

In this section, we shall present and discuss some
results for the dynamic form factors characterizing
the excitation spectrum of the sG chain. - The data
will be given in terms of the reduced dynamic form
factors

(157)

where S~~(q, co) was defined in Eq. (11). For a de-
finition of the variables A and the notation, we refer
to Table II. Choice of the model parameters was
given in Eqs. (125)—(127). This choice guarantees
that, for

k& T ((~paa — =29.22,d
a

(158)

the system belongs to the strong coupling regime,
where the static properties can be estimated in terms
of the pseudo-Schrodinger equation, to which the

TABLE IX. Gap frequencies co&(q =0) fEq. (69)l
transfer-integral estimates for {cosyl) and estimates for the
second-sound frequency [Eq. (79)].

kgT
gp

(cosy') cuz (q =0) cu„(q„d =0.002)
B

8.924 4.85
12.5 3,46
20.86 2.07
43.244 1

0.566
0.354
0.133
0.033

0.75
0.60
0.36
0.18

0.032
0.033
0.034
0.034

For a discussion of the algorithms we refer to Ref. 20.
transfer-integral equation reduces. The temperatures
to be considered are listed in Table IX and marked by
arrows in Fig. 4, where we show the temperature
dependence of the specific heat to illustrate the low-,
intermediate-, and high-temperature regimes. The
approximate treatments discussed in Sec. IV are ei-
ther valid in the low-temperature regime, k~ T & 5,
or at high temperatures, k~T & 20. Accordingly, in
the intermediate regime, where the specific heat ex-
hibits the maximum (Fig. 4), the predictions of the
approximate approaches must be treated with caution.
In order to guarantee thermal equilibrium, it was not
possible to perform MD for lower temperatures, be-
cause the kink density is too small in a system of 10'
particles.

According to the kink-gas picture (Fig. 2), at low

temperatures and small q and co values, we expect, a
resonance due to the kinks. It will be a peak cen-
tered about zero frequency, which is expected to split
with increasing temperature, due to relativistic effects.

Numerical results for S»(q, ru) are shown in Fig. 5
for k~T =8.924, and in Figs. 5 and 6 for k& T =12.5.
For small wave numbers and frequencies, the spec-
trum (Figs. 5 and 6) is dominated by a low-frequency
resonance, which is seen to split with increasing tem-
perature. There is also a high-frequency peak,
becoming stronger with increasing wave number (Fig.
6) and persisting up to the Brillouin zone boundary.
Before turning to this feature, let us compare the
low-frequency resonance with the predictions of the
ideal kink-gas phenomenology. For this purpose, we
calculated the kink contribution to S»(q, ru) with the
aid of Eq. (120), by taking the renormalization of the
kink energies into account. In fact, for finite T, not
only the anharmonic contributions to S»(q, co) be-
come important, but also the kink energy is reduced
from its bare value according to '

p 1 1 Ek0
Ek(T) =Ek — k&T ——ksTin 8 . (—159)

2 2 AT
1
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er and E. Stoll, Springer Series in Solid-State Sciences 23,
1981, p. 84.)
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Vk =+4a. This value agrees with the group velocity
derived from the peak positions of the low-frequency
resonance in Fig. 5. Other important features are the
collisions allowing kinks and antikinks to be identi-
fied. According to Figs. 9 and 10 the event marked
by 0~corresponds to a collision of a 0-2n kink with a
2m-4m kink, propagating with opposite velocity. With
the aid of Figs. 9 and 10, the event at t =110 and
marked by in Fig; 8 is identified to be a kink-
antikink collision. It is important to emphasize that
the kink-kink and kink-antikink collisions are associ-
ated only with a phase shift (small shift of the trajec-
tory) without changing the velocity. As a conse-

FIG. 9. Schematic sketch of the trajectories and the dis-
placement patterns. (a) 0-2~ 2~-4m and a kink-kink
collision; (b) kink-antikink collision.

quence, these collisions are not dissipative.
So far, we have concentrated on the kink features

in Fig. 8, characterized by the line patterns. Closer
examination also reveals the occurrence of bubbles,
which must be attributed to large-amplitude breath-
ers. The breather solution of the sG equation [Eqs.
(6) and (7)] reads~t

no' n(/ —uy/co ) ~() (y —~/) (1 —&'/&o) '"
O'B(y /)

j f) 1 g/ y )t/P (1 2/ 2 )1/2
I!

(163)

with rest energy

Fa =2Ego(1 —0'/Qo) '/', Qo = coo (164)

Note that 0, the oscillation frequency of the breath-
er, lies below Oo. For 0 =0, the rest energy Eq is
equal to that of a kink plus antikink; the breather
amplitude approaches 2m and the breather extent ap-
proaches twice that of the kink. For 0 Ao, the
breather is very extended, whereas its envelope am-
plitude and Eq approach zero. Since the breather ac-
tivation energy can be very small, and even almost
zero, we can expect the breather to be important
even for k&T &(Ek.

From Eq. (163), .it is seen that a breather can pro-
duce two separated m signals at a time. As time

evolves, the amplitude of the breather changes due
to the internal oscillation. Accordingly, the two sig-
nals collapse if the amplitude becomes m, and will
disappear for smaller amplitudes. The resulting bub-
ble will again appear, however, if the amplitude be-
comes equal to —m. Figure 8 clearly demonstrates
the occurrence of such large-amplitude breathers, and
reveals their importance in the decay and creation
channels for kinks. In fact, the kink-antikink colli-
sion marked by Os leads to a breather creation, and
0+ marks the decay of a breather in a kink and an-
tikink. These collisions limit the lifetime of the kinks
and are further illustrated in Fig. 11. These lifetime
effects are not taken into account in the ideal kink-
gas phenomenology, and partially explain the slight
discrepancies in Fig. 7. A more quantitative conse-
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t= 40
p~

~F

t =110

quence has been found in the context of the scaling

properties of S»(q, co) revealing that lifetime effects
lead to an increase of the exponent 6 [Eq. (162)].

From these results, including the comparison with

the ideal kink-gas picture and the signal patterns of
the m detector, one is naturally led to the conclusion

(e)
FIG. 10. Instantaneous displacement patterns of the sG

chain. The kink-kink collision (f =40) and the kink-

antikink collision (t =110) are marked by arrows

(k~ T =12.5).

S»(q, o)) =q bS»(1, co/q") (165)

This interpretation of the low-frequency resonance in

terms of a kink excitation branch is also consistent
with the temperature dependence of the static form
factor S»(q, t =0) for T 0.

For higher temperatures (ks T ) 12.5), however,
the ideal kink-gas picture and the renormalization
concept of the kink energy breakdown. In fact, in

the ideal kink-gas picture, we assumed PFk &) 1,
and the WKB approximation on which the kink-

energy renormalization relies, only holds for
ks T « 29.22 [Eq. (158)]. Moreover, the transfer-
integral results for S»(q) clearly indicated that al-

ready for k~T & 20.86, the high-temperature expres-
sion (97) for S»(q, t =0) holds quite well. As a
consequence, kinks are no longer expected to play a
role and the high-temperature approximations [Eqs.
(62) and (65)] are expected to apply, predicting a

resonance at cu = +cur(q) for small q and for large q,
close to ru = +co~ (q) [Eq. (69)]. According to Eqs.
(50) and (97), coj is given by

2

cur = 2—(1 —cosqa)
CO

0
(166)

that the low-frequency resonance in S»(q, ao) (Fig.
5) is due to. kinks. The strength of this resonance
depends sensitively on q, as expected from Eq. (120),
or more precisely, from the scaling property [Eqs.
(160) and (162)]

(a)

tp
E & 2EK

(b)
For intermediate q values, one expects a crossover
between the low- and high-frequency behaviors [Eq.
(96)].

To test these expectations, we now turn to the MD
results for kq T =20.86, shown in Figs. 12 and 13.
The frequencies cu~(q) and cur(q), as obtained from
Eqs. (69), (166), and Table IX, are marked by ar-
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FIG 12 Syy (q o)) fol fixed 1ntc1 mcd1atc and la1 gc
values at k&T =20,86. )co&(q) [Eq. (69) and Table IX];

(q) (Eq. (166)].
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rows. For large wave numbers, the peak positions
agree very well with coq. The split peaks at about
qaln =0.04—0.08, however, reveal a crossover from
the high-frequency [Eq. (62)l to the low-frequency

regime [Eq. (65)]. In fact, for smaller wave

numbers, the peak positions are very close to coT, as
shown in Fig. 13. For comparison, we also included
the Lorentzian profile [Eq. (65)], resulting from a fit
to the peak position cop and the peak height of the
MD results. The corresponding results for
k& T =43.244 are shown in Fig. 13. The peak posi-
tions and the fitted half-width are listed in Table X,
revealing that I I decreases with increasing tempera-
ture. This behavior simply reflects the fact that the
periodic single-site potential becomes gradually ir-

relevant in the limit T ~, so that the system tends
to a harmonic chain, with infinitely long-lived pho-
nons.

From the excellent agreement between the
molecular-dynamics results and the low- and high-

frequency approximations, we then conclude that the

FIG 13 Syy (q, fltI ) for small fixed q values. For com-
parison, we included a Lorentzian profile (dotted) resulting
from a fit to the peak position and peak height. The param-
eters are listed in Table X.

excitation spectrum for k~ T «20.86, seen in

S»(q, au), can be fully understood in terms of in-

teracting phonons and the crossover from a high- to a
low-frequency regime. For small wave vectors, the
low-frequency approximation is adequate, while for
large wave numbers, the high-frequency approxima-
tion holds.

Finally, we revert to the weak high-frequency reso-
nance in the low-temperature regime, as seen in Figs.
5 and 6, According to the high-frequency approxima-
tion, such a resonance is expected to occur close to
ru~(q) [Eqs. (62) and (69)]. These frequencies, as
obtained from the gaps co„(q =0) listed in Table IX
are marked by arrows. The excellent agreement
between ru„(q) and the MD results clearly indicates
that this excitation branch must be attributed to the
optic-phonon branch with dispersion roz = razz (q).
From Fig. 6, it is also seen that the optic-phonon
resonance dominates the excitation spectrum of
S»(q, ru), except for very small wave numbers. Here
the spectrum is exhausted by the kinks, that is to
say, as a function of the wave number and at low

temperatures, we have a crossover from a kink to an
optic-phonon-dominated spectrum. This crossover is
also illustrated in Fig. 14, showing the dispersion laws

resulting from the peak positions observed in

S»(q, ro) at ks T = 12.5. Except for very small q
values, where the kink resonance dominates, the
spectrum can be fully understood in terms of the
optic-phonon branch.

To summarize, we have found clear evidence for a
kink excitation branch for k& T & 12.5, exhausting
the spectrum for small q and co values. With increas-
ing wave number, a crossover occurs to an optic-

TABLE X. Parameters resulting from fitting a Lorentzian
profile [Eq. (65)] to the MD peaks shown in Fig. 13 in

terms of the peak position cup and the peak height. For
comparison, we included the corresponding values of coT

[Eq. (166)].

qa/m Citlp Ctlp

0 0.5
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0.006

kgT
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0.068
0.102

0.033
0.063
0.096

20.86

0.024
0.026
0.033

0,035 0.010
0.070 0.011
0.100 0.010

43.244

FIG. 14. Dispersion laws resulting from a fit to the peak
positions observed in Syy(q, cu) at ka T =12.5. The full line

corresponds to the estimate eo„(q) [Eq. (69)] for the optic-
phonon branch, as predicted by the high-frequency approxi-
mation [Eq. (62)].
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phonon-dominated spectrum. The ideal kink-gas ap-

proximation, with renormalized kink energy turned
out to be a surprisingly good approximation for the
kink resonance. For k&T & 20.86, however, the
kinks were found to be irrelevant, and the spectrum
was understood in terms of the low- and high-

frequency approximations, appropriate for a weakly

interacting phonon gas.

s. s„(q, ~)

The dynamic form factors S„(q, cu) and S»(q, co)

are closely related, because (Table VI)

co|S„(q,a) ) =S» (q, co)

2
2Cpx cu2 — (1 —cosqa) . (167)
a

For

qa (&1, co(& cpq

Eq. (167) reduces to

«)(4)S„(q, o)) = S»(q, a)}(coq)

and for

co )& cpq

~(~)S„(q, ~) =S„(q,~}~' .

(168)

(169)

(170)

Recalling then that at low temperatures and small q
values, we see that S»(q, &o) is dominated by the
kink excitation branch, occurring close to cu =0 (Fig.
5), it follows from Eq. (168) that this resonance will

be very weak in S„(q, co), due to the q4 prefactor.
This fact is nicely illustrated in Fig. 15, revealing very
weak kink resonances for small q values. As expect-
ed from Eq. (168), its strength increases with q.

For large frequencies, S»(q, co) exhibits a weak
phonon resonance (Figs. 5 and 6). According to Eq.
(170), this peak will not be suppressed in S„(q,cu)

because ru„=1 (Table IX). Due to the cu4 prefactor,
the peak position will be shifted, however, to slightly
higher frequencies. These expectations are con-
firmed by the MD results shown in Fig. 15.

To summarize, for small wave nu'mbers, S„(q, co)

is dominated by the phonon peak. Due to the 0)4

prefactor, its position is slightly shifted to higher fre-
quencies. The kink excitation branch, occurring at
small frequencies and low temperatures, is sup-
pressed due to the q4 prefactor, but its strength
increases with q. In the high-temperature regime
(ksT & 20.84), essentially the same reasoning is
found to apply, but with the kink resonance replaced
by the low-frequency phonon resonance (rur).

C. s„(q, ~)

This dynamic form factor is of particular interest,
because the cosines of the displacements might be
particularly sensitive to breathers [Eq. (163)] with an
amplitude of about m. To substantiate this conjec-
ture, it is important to recognize that the breather
amplitude [Eq. (163)] can adopt both signs. Accord-
ingly, cosyI —(cosyI) is maximum for y, = +nm
This fluctuation is small, however, for kinks and
phonons, because yI = +2mn, with the exception of
the kink wall. We expect, therefore, that S„(q, cu)

will be particularly sensitive to large-amplitude
breathers. ' The occurrence of such breathers is

clearly demonstrated in Fig. 8 in terms of the bub-
bles. On the basis of these arguments, for small q
values we expect two resonances in S„,(q, ru). A
low-frequency resonance, associated with the pro-
pagating breather envelope, and a high-frequency
peak due to the internal breather oscillations. From
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Fig. 8, it is seen that the breather velocities vg are
istributed around vg = +1.6a at k&T =12.5. T

double-
bution

u e-peak structure of the breather-vel 't d'- eoci y istri-
ution may be understood in terms of the relativi

Boltzmann- as
o e re ativistic

breat
-gas picture. Accordingly we expect th

i wi increasingeat er-envelope resonance to split with i

temperature. Such features are indeed observed in
the molecular-dynamics results shown in Fig. 16, in-
c uding a cutoff at ~ =200=2 [Eq. (164)] of the
high-frequency resonance.

On the other hand, one expects that the low-

temperature behavior of S„(q,m) can be understood
in terms of two-phonon processes [Eq. (88)]. For
his rea~n, we also calculated S„(q, co) on the basis

of Eq. (88). The results are shown in Fig. 17 for
T 0. Comparing these results with Fig. 16, it is

seen that the two-phonon approxim t'ima ion accounts al-
most quantitatively for the low-frequency resonance.

ignificant discrepancies are present for the high-
frequency peak. In fact, the two-phonon sum process
has a cutoff at eo & 2, while the MD results agree
much better with the breather cutoff at ~ & 2. In
this context, it should be kept in mind, however, that
the two'-phonon approximation for S„(q, co) at best is
valid only for T 0. For k~T =8.924, not only the

ig er-order normal phonon processes, but also um-

klapp processes and lifetime effects becomecome impor-

the h' h-fre
he higher-order phonon processe 'll h'f

e ig - requency resonance to lower frequencies
with increasing temperature, and will give rise to ad-
ditionai high-frequency peaks around eu =4cu (0),CiO = OJg
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An additional difficulty in the interpretation of
S„,(q, co) stems from the coupling between the
cosx/ —(cosxf ) and the energy fluctuations. That is
to say, that S„,(q, co) does have a contribution from
SH/f(q, ~). Because SIrH(q, co) is found to be ex-
hausted by a low-frequency second-sound resonance,
this contribution affects the low-frequency structure
of S„(q, o&) only. As noted above, this part of the
spectrum is quite well described by the two-phonon
approximation, becoming exact in the limit T 0.

In view of this, an unambiguous identification of
the low- and high-frequency resonances appearing in

S„,(q, u&) at ks 7'=8.924 and 12.5 is not possible (Fig.
16). The dominant contribution must be attributed
to two- and higher-phonon processes which them-
selves may form breathers. This possibility is clearly
supported by the presence of breather features, seen
by the n detector (Fig. 8).

Let us then turn to the high-temperature regime,
where anharmonic perturbation theory is gradually
becoming exact. The molecular-dynamics results for
k&T =20.86 and 43.244 are shown in Fig. 16. Even
though the overall features are qualitatively similar to
those found in the low-temperature regime, the in-
terpretation must be quite different. In fact, for
k&T ~20.86, the excitation spectrum seen in

S»(q, co) could be fully understood in terms of a

weakly interacting phonon gas. Clearly, the associat-
ed oscillations will have large amplitudes, so that
cosyi can no longer be expanded, even though y~(r)
evolves almost according to the harmonic approxima-
tion [Eq. (83)]. On this basis, we evaluated S„(q, ru)

numerically, with the aid of Eq. (83). The results are
shown in Fig. 17 for AT =20.86. Comparison with
the MI3 results given in Fig. 16 reveals that the low-

frequency resonance is well described by the harmon-
ic contributions. The high-frequency resonance seen
in MD, is however, much broader. Finally, we turn
to the integrated intensity of the low-frequency reso-

nance (cp), defined by

~t S„(q =0, ru) des
77 cP

(171)

D. s«(q, ~)

Due to energy conservation, SHH(q, ru) is expected
to exhibit a resonance associated with a hydrodynam-
ic mode (Sec. IV). At low temperature, where also
the field momentum will be nearly conserved, heat
diffusion will be underdamped and propagate in
terms of second sound. Assuming well-defined
second sound, we expect a resonance close to

4

ru„(q) =�-qcp I

aTcq N

x X(1—cosq'a) (~y(q') ~') . (172)

because the main contribution is expected to arise
from the two-phonon difference process at low tem-
peratures, and from the harmonic contributions for
T ~. A comparison between these predictions and
the MD results is given in Fig. 18, revealing that the
approximate treatments describe surprisingly well, the
observed temperature dependence.

To summarize, the low-frequency peak in S„„(q,co)
can be explained in terms of the two-phonon differ-
ence processes at low temperature, and by means of
the harmonic approximation at high temperatures.
There is no clear evidence to attribute part of the
low-fequency peak to the breather envelope. The
high-frequency peak, however, is not well accounted
for by these approximations, while the breather in-
terpretation is consistent with the high-frequency cut-
off observed.
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Here we replaced q'~az in Eq. (79) by 2(1 —cosq'a).
The resulting estimates for co„are listed in Table IX,
where the specific heat c~ and the last term in Eq.
(172) have been calculated with the aid of the
transfer-integral technique. According to phonon hy-

drodynamics, the resonance should be a Lorentzian,
approximately given by Eq. (81), where the lifetime
effects are taken into account. Such lifetime effects
are not included in the two-phonon approximation:
As a consequence, the difference phonon peak is not
in general, Lorentzian, as illustrated in Fig. 19 by the
rather sharp high-frequency cutoff.

(The molecular-dynamics results for SHH(q, ru) are
shown in Fig. 20. For comparison, we also included
the peak positions resulting from Eq. (172) and Table
IX. They are marked by arrows. Obviously, the peak
positions observed agree well with the estimates, and
depend linearly on the wave number. The slight
overestimate by the peak positions by co„can be at-
tributed to neglect of the imaginary part of the
memory function, leading to a shift. More important
is the fact that the resonance shapes are nearly
Lorentzian and differ in this respect from the shape
of the low-frequency peak in the two-phonon approx-
imation (Fig. 19). Owing to the nearly Lorentzian
shape of the resonance and the good agreement
between ao„and the observed peak positions, we con-

elude that the resonances shown in Fig. 20 are due to
second sound. Given this identification, it is remark-
able that second sound persists in being well defined
over an extremely broad temperature range. In fact,
from k& T =8.924 up to 43.244, there is no significant
change in the shape of SHH(q, co). This feature re-
veals that the sG chain does have an exceptionally
large temperature window where well-defined second
sound exists. This property is consistent with the fact
that in the high-temperature regime, the interactions
of the sG phonon become weaker with increasing
temperature.

VII. MOLECULAR-DYNAMICS RESULTS:
P4 CHAIN

In this section, we shall present and discuss some
dynamic form factors of the @4 chain, which, in its
d-dimensional formulation, represents a useful model
for distortive phase transitions. In the terminology of
critical phenomena, the model belongs to the Ising
universality class. The choice of the model parame-
ters in the Hamiltonian [Eqs. (I) and (3)] is sum-
marized in Table XI, with units defined by Eq. (127).
For dimensions d & 1, the system undergoes a ferro-
distortive phase transition at T = T, provided the
single-site potential has a double-well structure,
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TABLE XI. Model parameters of the $4 chain. . 1.2

Model 5 =OJO2 5/2cp2 B =bcop2 pp
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1
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1
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1
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5.657
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which is guaranteed for

h&0 . (173)

FIG. 21. Temperature dependence of the specific h f
model III as

i ic eat or
as obtained from a numerical solution f th

tr
o e

ansfer-integral equation, Arrows m k thar e temperatures
for which MD results wi)l be presented.

(x)r~ 8
is nonvanishing at T =0 only. Thus, T =0 may be
vie~ed as the transition temperature.

The system is a lattice dynarrtic realization of a
model for ferrodistortive phase transitions, which

covers the two limiting classes of real systems, the
order-disorder and the displacive regimes. By ap-
proaching the displacive limit (5/2eot =0), the wells

of the single-site potential become shallo~. This re-
gime corresponds to the strong coupling limit. In the
order-disorder limit (4/2c02 » I), the potential
wells are very deep and the partition function'be-
comes equivalent to that of the Ising model. Adopt-
ing this terminology, models II and III (Table XI)
then belong to the displacive regime, whereas model
I is an order-disorder system. Here, we shall concen-
trate on model III but to explore the 5 dependence,
locating a system on the displacive-order-disorder
scale, we shall also consider models I and II, to eluci-
date possible differences in the excitation spectrum.
Particular emphasis will be placed on the 4 depen-
dence of the relaxation time of critical slowing
down

(174)

rye llm Syy ( q Oi (tl )
cga ~p

(175)

Here, we consider d =1 only, where the order param-
eter which is expected to diverge by approaching T =0

[Eq. (140)].
To identify the low-, intermediate-, and high-

temperature regimes, in Fig. 21 we show the tem-
perature dependence of the specific heat for model
III. The particular temperatures for which MD
results will be presented are marked by arrows.

A. S„(~,~)

According to the ideal kink-gas picture, for small q
and co, we expect a resonance due to the kinks. It
will be a peak centered around zero frequency (Fig.
3 . In contrast to the sG case, S~(q, co) will be well

behaved for q 0, because the particles are localized
in the double well. In fact, the system can be visu-
alized as an elastic linear chain subjected to a
double-well potential, where v(y~) ~ for y, +~.

Numerical results for S~(q, co) are shown in Fig. 22
for model III at kg T =0.00448, 0.00747, 0.0224, and
0.224, respectively. For comparison, in Fig. 23 we
included the corresponding predictions of the ideal
kink-gas picture. These results have been obtained
by Fourier transforming Eq. (132) numerically.

Figure 22 clearly reveals that for small wave
numbers, the spectrum is exhausted by a low-
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3
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FIG. 22. S (, co) at~ q, ) some fixed q values for model III. (From T. Schneider

ences 23, 1981, p. 82.)
rom . chneider and E. Stoll, Springer Series in Solid-State Sci-
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frequency resonance. Its strength and q dependence
agree reasonably well with the peak predicted by the
ideal kink-gas picture (Fig. 23), with unrenormalized
kink energy. Inclusion of renormalization effects
[E„Ek(T) ] leads to a considerably worse agree-
ment. Accordingly, the underestimate of the peak
height, and the overestimate of the half-width must
be attributed to lifetime effects. Nevertheless, the
reasonable agreement, as obtained without any adju-
stable parameter, clearly indicates that the low-
frequency excitation branch seen in Fig. 22 must be
attributed to the kinks. Similar agreement is ob-
tained at ks T =0.00747 (Fig. 22), so that the kink-
gas picture rather quantitatively describes the relative
temperature dependence of the peak height, which is
seen to decrease with increasing temperature, where-
as the high-frequency resonance becomes stronger.
In fact, at k~T =0.224 and higher temperatures, the
kink excitation branch is no longer visible (Fig. 22).
The disappearance of the kink branch also occurs at
low temperatures with increasing wave number (Fig.
22). With the exception of small q, the low-

temperature excitation spectrum is seen to be ex-
hausted by the high-frequency resonance. Its posi-
tion agrees well with the marked frequency ~&

corresponding to an optic-phonon branch predicted
by the high-frequency approximation [Eq. (62) and
Table V], yielding

2c2
ta] = —8 +3B (yP) + (I —cosqa) . (176)

0

Transfer-integral estimates for (yP) are listed in

Table XII. Accordingly, we attribute the high-
frequency resonance seen in Fig. 22 to the optic-
phonon branch. The temperature dependence of the
gap ta(q =0) shown in Fig. 24 reveals, however, con-
siderable deviations from the high-frequency estimate
a»(q =0) for ks T )0.00747. This discrepancy is
also illustrated in Fig. 22. According to the tempera-

600

qQ

0.08

N

0.043

0
0 0.01 0.02

I

0.05 0.04
kBT

FIG. 24. Temperature dependence of the gap of the
optic-phonon branch. ~ MD, co„(0) (Eq, (176)],
———o)~(0) [Eq. (177)].

ture dependence of the specific heat (Fig. 21),
k& T =0.00747 exceeds the location of the maximum
and belongs, therefore, to the high-temperature re-
gime, where the low-frequency approximation [Eq.
(65)] predicting a resonance close to [Eq. (50)]

AT
DS( r —0)

(177)

is more appropriate.
From Figs. 22 and 24, it is seen that the aoq esti-

mates, as obtained with the aid of Table XII, are in
excellent agreement with the MD data for k~T)0.00747. Figure 24 also reveals that the softening
of the gap of the optic-phonon branch is incomplete,
because it reaches its minimum close to kq T =0.01.

Interpretation of the low-frequency resonance, oc-
curring at low temperatures and small values of q and
ta (Fig. 22), can be further clarified by considering
the time evolution of the displacement patterns. For
this purpose, we used a sign detector. It marks parti-
cles with positive displacement by a black dot, and
particles with a negative displacement are not shown.
Propagating kinks will then be represented by a line
separating black and white regions. Figure 25 shows
the time evolution of the sign signals for k~T
=0.00448 and model III. The occurrence of line
patterns clearly demonstrates the presence of pro-
pagating kinks. The propagation properties are seen
to be distinctly different from those of the so kinks
(Fig. 8). In fact, Fig. 25 reveals that there are a
number of events where $4 kinks reverse their velo-

400 -i
3
CX'

&co 200—

0
——0.005'I
——0.0062

TABLE XII. Transfer-integral estimates for (ytt) and

Syy (p 0, t =0) and the second-sound frequency [Eq.
(172)] for model III.

ksT E„/ksT (y, ) S (q =0, t =0) ru„lq =0.002a/tr)
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FIG. 23. Sy(q, ao) as obtained from the ideal kink-gas ex-

pression Eq. (132) for model III and k~T =0.00448,

0.00448
0.007 47
0.0224
0.224

5 0.121
3 0.095
1 0.099

10 0 322

10,14
2.95
0.91
1.04

0.0038
0.0041
0.0043
0,0039
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FIG. 25. Time evolution of the sign signals at

kz T =0.00448 for model III, Particles with positive instan-

taneous displacement are marked by a black dot, and parti-

cles with negative displacements are not shown. The
marked events denote: O~ kink reverses its velocity,
creation of a kink-antikink pair, 0& kink-antikink collision
and decay into "phonons, " 0+'kink-antikink collision, 05

breatherlike features. (From T. Schneider and F. Stoll,
Springer Series in Solid-State Sciences 23, 1981, p. 85.)

city. An example is the event marked by Ol; the

slope occurs at t =3920. This feature is further illus-

trated in Fig. 26, showing the instantaneous displace-

ment pattern of the chain at this time. The lower

kink, which we consider as an antikink, is nearly sta-

tionary in the time interval considered here. The
upper kink separates from the lower one, stops at
3920 and reverses its velocity. The chain patterns
also reveal that the wall thickness of the kinks is

rather small. Moreover, in Fig. 25 one can identify

breatherlike patterns in terms of bubbles. It should

be kept in mind, however, that the $4 system is not

exactly integrable. The kink solutions are solitary

waves only, and there will be no exact kink-antikink

bound state, corresponding to the sG breather [Eq.
(163)].

JI S„(q=0, ~) "=f(a, T), (178)

Nevertheless, Fig. 25 clearly demonstrates the ex-
istence of rather short-lived breatherlike patterns, ex-
amples being the bubbles marked by Os. Apart from
the nearly ideal kink-kink collision Ot, there are also
dissipative collisions, for example Os, where a kink
and antikink collide with a subsequent decay into
phonons or "small-amplitude breathers. " Another
example is marked by Oa, where a kink and antikink
are created presumably from small-amplitude
"breathers. " Such events will affect the lifetime of
the kinks. More important appears to be the
processes leading to a reversal of the kink velocities.
This feature is completely missing in the sG case,
and leads to a nearly random-walk-type motion of the
kinks (Fig. 25).

These results and discussions then lead to the con-
clusion that the kinks of the @ system give rise to an

excitation branch in terms of a central peak, occur-

ring at low temperatures and small values of q and m.

It exhausts the spectrum of'S»(q, ca) at low tempera-
tures and small wave numbers. In this regime, the
ideal kink-gas approximation leads to reasonable
agreement, provided the kink energy is not renormal-
ized. Moreover, in contrast to the sG case, the rela-

tivistic effects do not play a significant role, because
the motion of the kinks exhibits random-walk

features. For larger wave numbers or for tempera-
tures k~ T )0.00747, the spectrum becomes dom-
inated by the optic-phonon branch, undergoing a

crossover from m& to ~T for small q values. In the
limit T ~, which was not considered here, the sys-

tem leads to independent quartic oscillators, ~here
S»(q, cv) is given by Eq. (99).

So far, we have considered model III (Table XI)
only, belonging to the displacive regime, character-
ized by a shallow single-site double well. To charac-
terize the b, and T dependence of the crucial features
of the excitation spectrum, we next introduce the
line"

t = 5920
for fixed values of 8. Here, the integral extends over
the kink resonance only. Because

dco
S»(q =0, (u) = I

f(&, T) satisfies,
(179)

O~f(a, T) «& . (iso)

Forf(&, T) =0, there is no kin, k resonance, and for

,f(&, T) = I, it exhausts the spectrum. As a conse-
quence

f(&, T') =0.5, (181)
—&.&9 0 0.59 y (4)

FIG. 26. Instantaneous displacement pattern at t =3920
for model III at kz T =0.00448.

defines a "crossover" line where 50% of the normal-
ized weight of S»(q =0, cu) is in the kink resonance,
and 50% in the optic-phonon resonance. Using Eqs.
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(178) and (179), we evaluated

T'= T'(5/2ep') (182)

EO

T'
=const. (183)

numerically for the three models listed in Table XI.
The results are shown in Fig. 27. Below the T' line,
S»(0. co) is dominated by the kink resonance, and
above by the optic-phonon branch. For 5 0, T'
can be estimated from Eq. (139) by observing that T
enters only in the combination PEk. It then follows
that

B1 B (187)

resonance will dominate for T 0, even though the
temperature interval where this happens shrinks itself
to zero by approaching T =0. Clearly, very low tem-
peratures are academic in any case because quantum
effects will modify the picture. Nevertheless, Fig. 27
clearly reveals that, by approaching the displacive
limit, the temperature region where the kink reso-
nance dominates, shrinks to zero. This region ex-
pands by approaching the order-disorder regime.

There, the situation becomes rather clear, because
in the Ising limit, where

When one invokes (Tables I and XI)

~p 2 J2D I
2 42Dg3/pep

3 b 3 8 (184)

the gap of the optic-phonon branch

co] (0) = —6+3B (y') =—5+38—=25 (lgg)8
it then follows that

' 3/2

T =const
2 CO

(185)

This asymptotic form is also included in Fig. 27 with
the numerically estimated prefactor (const =11.3).

Figure 27 then demonstrates that, for displacive
systems and q =0, the kink excitation branch always
exhausts the excitation spectrum for sufficiently low

temperature. For 5 0, however, this temperature
region shrinks to zero, and the spectrum will be dom-
inated for accessible temperatures by the phonon
branch. For b =0, there is no longer a double well,
and anharmonic perturbation theory becomes applica-
ble. Here, the spectrum will be dominated by the gap
of the optic-phonon branch, given by

(186)

which becomes soft, because (yP) 0 for T 0
(I =0). For any nonvanishing 5, however, the kink

also tends to infinity. As a consequence, the optic-
phonon branch becomes irrelevant, and what remains
are kinklike features. " In contrast to those in the
displacive regime, they will exhibit narrower kink
walls. This feature is nicely illustrated in Fig. 27 by
the increase of T' with b, .

B. S ~ ~(q, o))

According to the two-phonon approximation, this
dynamic form factor is expected to exhibit three reso-
nances for 7" 0 [Eq. (94)l. A one-phonon peak, a

low-frequency structure steming from the two-

phonon difference process and a high-frequency peak
due to the sum process around co =2',~. The
molecular-dynamics results are shown in Fig. 28 for
kg T =0.00448.

There is a high-frequency peak, close to ppA (q)
[Eq. (176) and Table XII), corresponding to the
one-phonon peak expected, marked by an arrow.

I «X«

0
0

3 100

OJ

50
P)

I
t

(

I 40
kBT

—0.00448--0.00747
--0.0224

—20

displacive order —disorder

FIG. 27. "Crossover" line [Eq. (182)], where 50% of the
spectral weight of S (q =0, 0)) is in the kink resonance, and

50% in the optic-phonon branch. The crosses mark the MD
estimates. For comparison, we included the asymptotic ex-
pression resulting from the ideal kink-gas approach tEq.
(1&5)].

0
0 0.02 0.2

~- 0
0.6

FIG. 28. S & &(q, co) for some fixed q values for model

III at k& T =0.00448. The arrows mark the positions ~~ (q)
of the expected one-phonon peak. The high-frequency MD
results correspond to q =0.
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FIG. 30. SHH(q, co) for some fixed q values for model Ill.
The arrows mark the estimates for the second-sound fre-
quency (Table XII}.

FIG. 29. Two-phonon difference contribution to
S 2 2(q, ) fEq. (94)] for ka T =0.00448 for model III.

The resonance expected from the two-phonon sum
process [ro =2cuq(0)] is obviously not resolved. To
identify the low-frequency resonance, in Fig. 29 we
show the structure resulting from the two-phonon
difference process, as obtained from Eq. (94) by nu-
merical evaluation. This contribution is obviously
too weak to account for the much stronger low-

frequency peaks in Fig. 28. This failure differs from
the sG case, where this resonance was rather well

reproduced by the two-phonon difference process. In
view of this, an unambiguous identification of the
low-frequency peak in Fig. 28 is not possible, but it is

suggestive that the kink contribution to S, t(q, &o) is

important in the $~ system, while in the sG chain, no

such evidence became apparent. Another important
difference is the strength of the resonance close to
2'„(q =0), corresponding to two-phonon sum

processes or internal oscillations of breatherlike
features. In the sG system, this peak was well

resolved (Fig. 16), while in the present case, it is too
weak to produce a significant structure in the high-

frequency tail of the one-phonon peak (Fig. 28).

or second-sound resonance. Assuming well-defined
second sound, its frequency ao, s might be estimated
with the aid of Eq. (172). The transfer-integral
results are listed in Table XII. MD results for

SHtr (q, ru) are shown in Fig. 30 for ka T =0.00448.
The q dependence of the resonances are obviously
consistent with overdamped second sound for
qa/tr (0.004, becoming underdamped for larger q

values. In fact, fully diffusive energy fluctuations are
not yet present, because S~~(q, cu =0) is inconsistent
with the characteristic q

2 dependence of heat diffu-
sion. As seen from Fig. 30, this is also the case at
ka T =0.224, so that the crossover from second-
sound behavior extends over a rather large tempera-
ture interval, even though second sound is less well

defined than in the sG chain. For kq T & 0.00747,
this discrepancy can be understood in terms of the
fundamentally different high-temperature behavior.
In fact, the sG chain tends to a weakly interacting
phonon gas for T ~, while the $4 chain becomes
equivalent to independent quartic oscillators.
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