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A three-dimensional anisotropic sine-Gordon model, derived as the spin-wave approximation

to the biaxial (m =2) Lifshitz point problem in a uniform magnetic field, is shown to possess

Iin close analogy to the isotropic two-dimensional (2D) sine-Gordon theory which is well known

to describe the critical behavior of the 2D XY model], a surface of infinite-order phase transi-

tions. This critical surface separates a phase characterized by infinite correlation length ( and

power-law decay of correlations, and controlled by a stable fixed line, from one with finite ( and

exponential decay. As the critical surface is approached from the latter phase, ( diverges as

exp(a-t ") where v =1 is a universal number, t measures the distance from the critical surface,
and cr is nonuniversal. On the critical surface correlations decay like r ~(lnr) ~, where g =4
and q =0.88 . Speculations on the occurrence of an infinite-order transition in liquid-crystal

mixtures exhibiting nematic, smectic-A, and smectic-C phases are advanced.

I. INTRODUCTION

The Lifshitz point' (LP) is a special critical point
which, as illustrated schematically in Fig. 1, connects
three distinct phases: (in magnetic language)
paramagnetic, ferromagnetic, and helical or modulat-
ed. The phases are, respectively, characterized by an
order parameter, M(x), which is zero, finite but spa-

tially uniform, and spatially varying. The

FIG. 1. Schematic Lifshitz-point phase diagram as a func-
tion of temperature {T)and the parameter A of Eq. (1).
The paramagnetic (P), ferromagnetic (F), and helical (H)
phases meet at the Lifshitz point (L).

paramagnetic-ferromagnetic transition is typically
second order, as is the ferromagnetic-helical', fluc-
tuations are believed to render the paramagnetic-
helical transition first order. 3

Critical exponents at the LP itself have been com-
puted in e expansion about the appropriate upper'
or lo~er' critical dimensionality for a variety of
values of n, the number of components of M, and m,

the number of spatial dimensions in which M can
vary. The m =2 LP is particularly interesting in that
a precise physical realization of the model exists in
the form of bulk liquid-crystal mixtures which exhibit
nematic, smectic-A, and smectic-C phases, ' ' and in
that its lower critical dimensionality is three": in

any dimension d ~ 3 a simple argument (reviewed in
Sec. II) shows that for n ~2 fluctuations prohibit
long-range order on the phase boundary between the
ferromagnetic and helical phases. This suggests that
for n ~ m = d —1 =2 no LP occurs at finite tempera-
ture ( T) and the phase diagram is as shown in Fig. 2.
Calculations in 3+ ~ dimensions confirm this expec-
tation for n & 2 but indicate that for n = 2 there is a
finite-temperature LP as in Fig. 1. Explicit spin-
waves 9 (SW) computations for n = m =d —l =2
show that, at least at very low T where the SW ap-
proximation is valid, the ferromagnetic-helical boun-
dary is characterized by M =0, an infinite correlation
length, (', and po~er-la~ decay of correlations. '

Presumably this power-law behavior on the phase
boundary persists right up to the LP where a transi-
tion restores the paramagnetic phase and exponential-
ly decaying correlations. As always" the S% approxi-
mation is too crude to provide any information about
the transition itself (that is, about the LP).
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FIG, 2. Schematic Lifshitz-point phase diagram for
n ) m = d —I =2. Fluctuations prevent the existence of a
LP at finite T. The paramagnetic (P), ferromagnetic (F),
and helical (H) phases meet at a T =0 Lifshitz point (L).

The ferromagnetic-helical phase boundary in the
n = m =d —1 =2 LP problem is a three-dimensional
(3D) analog of the low Tphase, lik-ewise character-
ized by M = g

' =0 and algebraic decay, of the 2D XY
model. " Of course the transition to the high-T phase
in the 2D problem is well understood: it is mediated
by vortex excitations omitted in the SW picture. '

Bound in zero-vorticity (neutral) pairs in the low-T
phase, the vortices unbind with increasing tempera-
ture, producing, at the critical temperature, T„a con-
tinuous transition to the high- T state characterized by
unpaired vortices. While paired vortices are ineffec-
tive in screening vortex-vortex interactions —the
screening length is infinite in the low-T phase —the
unpaired vortices give rise to a finite screening
length. This fact accounts for g being, respectively,
infinite and finite at low and high T in the 2D XY
model. '~

The "SW plus vortices" approximation to the'2D
XY model is mathematically represented by a 2D
Coulomb gas" or, equivalently by the 2D sine-
Gordon (SG) theory. '4 Renormalization-group (RG)
analysis of either of these models sho~s"" that g
diverges exponentially as T T, from above. The
free-energy density, f, has, correspondingly, an essen-
tiaI critical singularity': f and all its derivatives are
finite at T, ; the phase transition is therefore designat-
ed infinite order. '

Curiously enough, the pure SW approximation to
the 2D XY model in a uniform magnetic field, h, is
also described mathematically by the 2D SG theory"
(see Appendix A); this approximation therefore
predicts that in finite field the 2D XY model under-
goes an infinite-order transition from a phase with

g = ~, finite M, and algebraic decay of correlations at
high T" to one with finite (', finite M, and exponen-
tial decay at low T. '9 (See Fig. 3.) This is of course
wrong physics: the 2D XY model does not undergo a
transition in finite field. The error results from
neglect of vortices. It is nonetheless intriguing that
the mathematical model —the 2D SG theory —which
correctly describes the infinite-order transition in the
zero-field XY model emerges from as crude an ap-
proximation as SW theory when h ~0.

In this paper we study a 3D anisotropic SG theory
[Eq. (3)] which is the SW approximation to the
n = m = d —1 =2 LP problem in a uniform magnetic
field, h. The field clearly favors the uniformly mag-
netized state over the helical one. For fixed h and
sufficiently large and negative A (the parameter in
Fig. 1) however, the system still undergoes a transi-
tion from the paramagnetic, uniformly magnetized
phase to the helical one. The phase diagram of Fig. 4
results. Our concern here is with the paramagnetic-
helical phase boundary. We show that in this boun-
dary [which is a 2D surface in the 3D (T,A, h)
space —Fig. 5] the 3D SG theory has (like its 2D iso-
tropic counterpart) a line of infinite-order phase tran-
sitions separating a state with finite, uniform M,
g = ~, and power-law decay of correlations at high T
from one with finite, uniform I, finite g, and ex-
ponential decay at low T. As this critical line, say
T = T, (h) (Fig. 5), is approached from below along a
line of constant h lying in the paramagnetic-helical
boundary, g diverges as exp(crt "), where cr is a

FIG, 3. Schematic phase diagram of the 2D XY model in
uniform field (h) in the spin-wave approximation. A line of
infinite-order transitions separates a high-T phase with finite
magnetization and power-law decay of correlations from a
low-T phase with finite magnetization and exponential decay
of correlations.
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A"-0 A

FIG. 4. Schematic phase diagram of the Lifshitz-point
model in a finite uniform field, h. For large enough T the
system is'a uniformly magnetized paramagnet for all values

of A, the parameter of Eq. (1). For smaller T the system

undergoes a transition, for sufficiently negative A, into a
helical state where the magnetization varies spatially.

FIG. 5. Schematic phase diagram of the finite-field
n = m = d —I =2 LP problem in (T,A, h) space. The surface
FOBD separates a phase (I) (behind FOBD) of uniform
magnetization from a phase (II) of nonuniform magnetiza-
tion. In the surface FOBD RG flows, computed in the spin-

wave approximation, are schematically sketched. The critical
trajectory (or line) CE [described by T = T, (h)1 flows into

the critical fixed point C. Points on FOBD above CE [i.e.,
T ) T, (h)] flow into the fixed line CF. Points below

CE[T & T, (h)] flow off to large values of hand A.

nonuniversal constant (it varies with h),
r —= T, (h) —T, and the exponent v=1, is constant
(universal) along the critical line. As h 0along a
line of constant T lying in the boundary below the

critical line, g diverges like i'4' (lnh) "+"'4'.'0
Here x = —1.1 ~ ~ is a universal number and 8' is a
negative function of T, nonuniversal in that it
depends on the details of the ultraviolet cutoff
prescription used in the calculation; 5'~0 as the crit-
ical line is approached from below. " The free-energy
density behaves like g 'near the critical line and so
has the weak essential singularity familiar from the
2D problem. '3 At any point (TA, h) lying in the
boundary and above the critical line the connected
spin-spin correlation function G(r) decays at large
distances like r "'"n (apart from logarithmic correc-
tions). The exponent g assumes the universal value
four along the critical line.

The above results are derived through RG analysis
of the anisotropic SG model. Though more complex
in detail than the analogous 2D calculation, this
analysis has many of the same features. " The por-
tion of the paramagnetic-helical boundary above the
critical line is controlled by a stable fixed line at h =0,
T,(0) ~ T(" (Fig. 5). The critical fixed point at
h =0, T= T,(0) controls the behavior along the en-
tire critical line and is responsible for the universality
of v and q along that line. The fixed line at h =0
persists for 0» T & T,(0), but is unstable with

respect to the cosine operator of the SG theory. The
major new element of the 3D RG analysis is the ex-
istence of t~o operators which are marginal" with

respect to the critical fixed point: the cosine operator
familiar from 2D and a quartic SW operator. 9 IIn this
respect the 3D problem is somewhat reminiscent of
the 2D problem in the presence of a fourfold
symmetry-breaking field, which is also marginal at
the critical fixed point. "' The similarity is superfi-
cial, however, since the quartic spin-wave operator in
3D is marginal with respect to the entire fixed line
whereas the fourfold symmetry-breaking operator in
2D is marginal only at the critical fixed point. This
difference is of course manifest in the recursion rela-
tions for the two problems which [see Eq. (7a) and
compare with Eq. (5.17c) of Ref. 14(b)] differ quali-
tatively. }

The SG theory is, we believe, the first model with

purely short-ranged interactions to exhibit an
infinite-order transition in 3D. As an approxima-
tion to the LP problem in a field it is presumably as
inadequate as is the 2D SG theory for describing the
2D XY model in a field. In both cases the predicted
infinite-order transition is an artifact of the S%' ap-
proximation, that is, of the neglect of topological de-
fects. In the 2D case one knows' that the important
omitted defects are pointlike objects —vortices —and
that the 2D SG theory in fact gives a correct descrip-
tion of the 2D XY transition in zero field when they
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are properly treated. We can at this point make no
such claim for the 3D LP problem, where not only
the nature of the zero-field transition but the charac-
ter of the relevant defects is unclear. The analysis
presented here is at most suggestive that the transi-
tion at the LP in zero field is of infinite order.

The outline of this paper follows' . Sec. II defines
the general LP Hamiltonian, reviews the SW theory
for the n = m = d —1 = 2 case in zero field, and
shows the equivalence between the SW theory in fi-
nite field and the 3D SG model; Sec. III contains the
RG analysis of the 3D SG system and the results;
Sec. IV is devoted to discussion and conclusions; Ap-
pendix A briefly reviews, for comparison, the relation
between the 2D SG theory and the 2D XY model
with and without a magnetic field; Appendixes B—E
contain technical details of the RG analysis.

Thus

G, (x=0) —Ju e~&' e G (i&)

diverges at small q for d «2+ m/2; for m =2 there
can therefore be no long-range order on the phase
boundary in 3D." The obvious inference that for
n «2 the m = d —1 =2 problem has no LP at finite
T (rather a phase diagram like Fig. 2) is confirmed
for n «3 by calculations' in 3+ e dimensions which
also indicate the existence of a LP at finite T for
n =2 (i.e., a phase diagram like Fig. l).

The SW theory for n = m = d —1 = 2 is construct-
ed, as in the 2D XY case, "' by the substitution

S„+iS»= m ' ' exp(iP m ' 8)

with Po2 = ks T/J; the partition function
T, exp( HLp/ksT—) becomes T„exp(—How), where

II. n m d —1 2 LIFSHITZ POINT: SW THEORY

A. Definitions and zero-field SW theory

Hsw ———,
' d'y mo r7,e '+~ V']]~ '+ r7

+2uomo[(Vote)']'] (2)

The general "m, n, d "LP problem is described' by

the Hamiltonian

HLp= — d y[mo ('7gS) +A (7pS ) +('7p S )']
2

Here J is the exchange strength, the parameter A has
dimension (mass)' and will assume both positive and

negative values, the mass mo is inserted only to give
all terms of (l) the same dimension, and the spin S
has n components and fixed magnitude: S = mo~

Of the d spatial dimensions m are arbitrarily denoted
parallel, the remaining d —m perpendicular:

2up = ks T/J, and 8 runs from —~ to ~ in the trace
This model possesses the phase diagram of Fig. 6:
there is, as usual in SW theory, " no paramagnetic
phase. The phase boundary between the helical and
ferromagnetic phases has been studied9 with RG
techniques. There is, of course, no long-range order
on this boundary. The correlation length g is infinite
and spin correlations decay as r v(lnr ) "at large r,

a li 1

e d

(V~S)'—= X $ ('7S )'
a ]i @+1

and
(

N lit

(~2S)2= X X~2S
a 1 i 1

Hamiltonian HLp gives rise to the phase diagram of
Fig. 1. The LP is the critical point connecting the
paramagnetic ((S)=0), ferromagnetic [(S(q =0))
&0], and helical [ (S(qua=0, qp

—
~A [' 2) ) &0]

phases.
Grest and Sak' pointed out that for n ~2, G~(q),

the transverse spin-spin correlation function on the
phase boundary separating the helical and ferromag-
netic phases behaves for small q like [qq + (q~~ ) ] '

whenever long-range order exists on the boundary.

A=O

FIG. 6. Schematic phase diagram of the spin-wave ap-

proximation to the n = m =d —1 = 2 Lifshitz-point model in

zero magnetic field. An infinitely long phase boundary
characterized by the absence of long-range order, an infinite
correlation length, and power-law decay of correlations
separates a ferromagnetic phase (F) from a helical phase (0).
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where g and q are functions of T. Valid at low T, "
the S% approximation provides no information about
the transition into the paramagnetic phase at the
Lp. '4

B. SW theory for h ~0: 3D SG model

In the presence of a uniform field term,

h (ks T) '
Jt d'y S„(y), HLp/ks T takes the form

p,p 0. Specifically, a correlation function,
H(x) —= (O(x}O(0)), for some operator O(x), a
function of 8(x) and its derivatives, is multiplicative-
ly renormalizable if there exist dimensionless renor-
malization constants Z, Z„, Z, Z&, and Z such that
the product ZH(x, up, np, pp, mp, up, A} remains finite
in the limit where the ultraviolet cutoff A ~ when
expressed in terms of the renormalized variables u,
n, P, m, and p, defined by"

HSG l dy ~p + 7II~
2 2

+ —,
' ('7ll8)'+ upmp[(Vll8)']'

—upa 'mp ' Pp' cos(Ppmp ' 8) (3)

0.'p =
Zing&

Mp = ZgQ

Nlp= Z m

p'p=(zpz )-'p',
pp=Zy jx

(4a)

(4b)

(4c)

(4d)

(4e)

in the SW approximation, where a is the inverse of
the ultraviolet cutoff, A, introduced to prevent diver-
gences in perturbation theory, and the dimensionless
parameter up —=mpu'a'h/J. 25 The magnetization, M,
and connected spin-spin correlation function, G ( y ),
are, respectively, defined by (exp(iPpmpu'8)) and

((exp (i ppmp [.8( y) —8(0) ] I) —M ), expectation
values being computed with Hso. Hamiltonian (3)
is, aside from the [('Vll8)']' term, an obvious gen-
eralization of the familiar isotropic SG Hamiltonian
to anisotropic situations wherein the order parameter
may vary spatially in two (the "parallel" ) directions.
The quartic SW operator [(Vll8)2]t has no analog in
the usual 2D isotropic SG theory. The necessity for
its inclusion in (3) is shown in the following section,
~here we point out that even if it is omitted from the
original Hamiltonian it is generated under RG
analysis. The marginality' of this operator with

respect to the fixed line of the 3D SG problem with

0.0 =0 has already been sho~n.

III. RG ANALYSIS OF THE 3D SG MODEL

A. Renormalization program and dimensional
considerations

All Z's are functions of u, a, P, A/m, and A/u, .
Since our. interest is the boundary between the uni-
form (paramagnetic) and helical phases (Fig. 5) we
choose the parameter A [Eq. (3)], order by order in

perturbation theory in u, and o., to locate this boun-
dary; A is therefore treated as a renormalization con-
stant, not as an independent coupling constant.

When 5 = —I + P'/32m is negative one can show by
simple power counting that the theory described
by (3) is renormalizable. For 5 ~0, new divergences
which become increasingly severe as 5 increases ap-
pear and actually render the theory nonrenormaliz-
able. 2 As in the 2D case, 6 however, we assume
that the theory is. renormalizable order by order in a
triple power series in u, n, and 8, 30 verifying the as-
sumption explicitly to second order in these parame-
ters by computing the two- and four-point vertex
functions and hence the Z's. The calculation is sim-
plified by transformation to a new field 8(x) and
new coordinates x defined by

8( yll. yi) = mp '"«xll»J)

XII y j = mpx~

In terms of 8(x ) (note d y = mpd x) Hamiltonian
(3), supplemented by the term u4p8 /2, takes the
form

It is convenient, as in the 2D SG case, ' to employ
the field-theoretic RG techniques of Brezin et al. 2" in

analyzing HsG. The analysis is facilitated by addition
to HsG of a mass term —,p,p$', which suppresses in-

frared divergences in perturbation theory. ' If the
resulting model is multiplicatively renormalizable,
that is, if certain correlation functions can be ren-
dered ultraviolet finite in each order of perturbation
theory through renormalization of 8 (wave-function
renormalization), up, ap, Pp, and mp, one can write27

RG equations for those correlation functions. The
equatioris are, as we shall see, finite in the limit

Hso = J)dx +—('7ll8) +
2 2 2

4g2
+ -' +up[(V 8)']'

—
gapa Pp cos(Pp8) (5)

all explicit dependence of HsG on mp has thus been
removed. Since the two-point correlation functions
g(x) —= (8(x)8(0)) and g(x) =—(8(x)8(0)}
are related by g(xll, xq) = mpg(xll, mph), their respec-
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tive Fourier transforms are related by g(pp, pq)
=g(po pi/ttto). Note that g(po, p~) is com-

pletely independent of mo. Since renormalizability of'

the two-point function was defined as the existence
of Z's such that in the limit A

Z& g(po, pq, up, np, Po, mp, tip) is finite, order by order
in u, n, and 5, when expressed in terms of p[], p~, u,

a, 5, m, and p, [see (4)], it implies that
Z&'g(p oZ p~, Z„u, Z n, (Z&Z ) ' 'P, Zo' p) is fi-

nite, order by order in u, o., and 5, when expressed in

terms of p[], pj, u, o., 5, and p, . Transformation from
8 to 8 thus conveniently eliminates mo, the renormal-
ization of mo being replaced by a renormalization of
p~." (Analogous statements for four-point or higher
functions follow similarly. )

QQ = —P„(u, a, 5)
av

(9a)

where C is Euler's constant, e —= 1.781. . . , and

t/4

J; —= dt t '+"exp 4 (e ~ —1) dy/y
0 0 i

for i =1,2.
The solution of (6) is well known2o; noting that g,

being dimensionless, is a function only of Ax]] Mo,

0/o and 50 one has
t I

'1

g(x~~A, up, ap, Sp) —exp —J y(u, a, 5) dr

where u, n, and 5 are functions of Qo, o.o, 5o, and ~

determined by the RG flow equations '"

B. RG equations: The fixed line = —P (u, a, S)
g7'

(9b)

The explicit computations with Hamiltonian (5) of
g '(p) and 14, the four-point vertex, to second or-

der in u, o., and 5 are straightforward; they are sum-

marized in Appendix B, where first-order expressions
for the Z's which render the theory finite are given.
The correlation function of real interest is the con-
nected "spin-spin" function, G(x) = (exp[iPp[8(x)
—8(0) ] ])„discussed just below Eq. (3). It is tedi-

ous but routine to verify the order-by-order renor-
malizability of G to second order and compute the re-

normalization constant Z, such that Z, G is finite. An

outline of the computation is given in Appendix C.
Strictly speaking it is not G ( x ) which is order-by-

order renormalizable but g(x), a specific linear

combination [see Eq. (C5)], of G(x) and correlation
functions involving all other operators, such as
('7~i8)2, ('7&8)2, and ('72o8), with naive dimension

less than or equal to 4.'7 It follows that g(x) satis-

fies the RG equation '

p„—= Sup/St~, „a =9uii/4rr+4 'mJ2e" ao+ ' ' '

(7a)

P —= Bnp/Bl~ „&=4npSp+161n( —, )apup/ir+ .

(7b)
Po= SSo/5/I .u, p=4 'e4—e(J, J2/32)np2-

+[ln( —,
') ——

24
]uo'/(2m') + '

(7c)

y —=BinZ, /Bt(. „,
= 8 ( I + Sp) + 32 ln ( ,", ) up/n +— (7d)

—+P„+P +Pa +y(up, ap, Sp)
8 8

9l duo 9o.o 95o

" 'ci(xi'. uo ao So. A) =0
~ (6)

where l —= lnA, po has been sent to zero, and we

have, for simplicity, set x =(xo,xi=0). The P's and

y are functions of up, ap, and Bp (Appendixes B and C):

95 = —P,(u, a, B),
BT

(9c)

and the boundary conditions u(r=0) = up,

a(r =0) = np, and 5(r =0) = Bp. Note that Eqs. (7a)
and (9a) imply the necessity of including the
[('7~~8)']' term in (5); even if up = u(r =0) =0, Eq.
(9a) shows that u does not remain zero for subse-
quent ~'s unless oo=0.

Equations (9) have, according to (7), an obvious
line of fixed points (i.e. , simultaneous zeros of the
three P functions) at u =ex=0. The fixed line is

stable as r ~ for 5 )0 (Ref. 33) and unstable for
5 (0, a reflection of the respective irrelevance and
relevance' of the cosine operator for 5 positive and
negative. The (up, ap, Bp) space thus divides into two
distinct regions separated by a 2D critical surface
which includes the point up = ap = Bp = 0 (Fig. 7). All

points in region I of that figure flow under RG
transformation to some point on the stable portion of
the fixed line. Since the line (ilp = ap =0) represents
[see Eq. (5)l Gaussian SW theory wherein spin corre-
lations decay algebraically "'"at large distance, one
infers that tJ(x) decays as ~x~ o (aside from loga-
rithmic correctionso) in region I. The correlation
length is therefore everywhere infinite in this region.
Since the value of q depends on which precise point
of the critical line is reached under RG flow as
l ~, g is a continuous function of the starting
point (up, np, Sp) in region I.

In region II the RG flows do not terminate in any
fixed point accessible to perturbative analysis; one
concludes, '3 as in the 2D case, that correlations de-
cay exponentially in this region: g is finite. (Being
more careful we should emphasize that we have not
proved g finite in region II. It is possible that the
RG flows in this region end in a fixed point or line
with (= ~. It seems most reasonable, however, to
assume that flows which do not terminate in the
fixed line a = u =0 correspond to finite g. )
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&o

K

for Ax][)& 1 This result is universal —valid for any
point on the critical surface. For x& W x]]=0, Eq.
(10) with xII replaced by x2372 is similarly obtained.

The LP spin-correlation function G(x) is a linear
combination of g(x) and other connected correla-
tion functions, one of which [see Eq. (CS)] is
L (x) =—([ 7IItt(x) ] [ 7IIH(0) ] ),. Since ('7IItt) has
naive dimension" two whereas all other operators in-
volved in the linear combination have naive dimen-
sion four, the large-distance behavior of. G(x) is
given by L (x). In Appendix C it is shown that
every~here on the critical surface,

G ( XII) ( AxII) [ ln( AXII) ]

for Ax]] )&1.
The divergence of g as the critical surface is ap-

proached from region II is easily computed by lineari-
zation of the RG equations about the asymptotic crit-
ical trajectory. Details are relegated to Appendix D,
where it is shown that

In -eXp( tr/d"), v =1 (12)

FIG. 7. Schematic drawing of RG trajectories for the an-

isotropic 3D SG theory in {np,up, Sp) space. Critical surface
AOBC divides the space into two regions. In region I
(behind AOBC in the figure) flows terminate in the fixed
line OK. In region II flows go off to large values of the cou-
pling constants. Points in the critical surface flow (as
shown) into the critical fixed point up=up =Sp=0.

C. Critical properties

l

g(xII) —exp —8 [I +[Ap+47r 'ln( —,', )A„]7 I] dr
I

) ]
—8A 8

—32n A„ In(32t27)
(10)

Points on the critical surface flow to the critical
fixed point u =I2= 8=0. [Note that, according to
the RG Eqs. (7) and (9), both u and n are coeffi-
cients of operators marginal with respect to the
critical fixed point. This behavior contrasts with the
2D situation where only a single marginal interaction
term, " the cosine operator, occurs. ] Though the RG
Eqs. (9) are, even in the critical surface, difficult to
solve explicitly, the obvious guess' is that the
asymptotic approach to the critical fixed point as

~ is describable by u —A„/r, S —Ap/r, and
n —A r" for some numbers A„, A, and At] and
some exponent x. Substitution of this ansatz into (9)
yields (Appendix D) A„—1.39.. ., Ap ——0.007
x =- —1.1.. . , A is arbitrary. These numbers, togeth-
er with expression (7d) for y determine the large
—

~
x

~
behavior of 83 ( x) on the critical surface:

Eq. (8) yields

where d represents a small distance from an arbitrary
point on the critical surface in (up, ap, Sp) space, v is
a universal exponent characterizing the critical sur-
face, and 0. is a nonuniversal number which varies
from point to point on the critical surface. The ex-
ponential divergence of In implies that the transition
at any point on the critical surface is of infinite or-
der."'

As o.p approaches zero in region II the power-law
decays characteristic of Hamiltonian (2) must be
recovered. It follows that ( must diverge in this lim-

it, though the divergence is a trivial one, not a mani-
festation of real critical behavior. 3 The result

g —u [(Inn )/4S'] "+""48 '

valid as ap/S" 0, is derived in Appendix E. Here
x = —1.1 and S' is a function (negative in region
II) of Sp and up', S" 0 as the critical fixed point
up = hp = np =0 is approached. This divergence of the
exponent (48 ) ' at the critical fixed point signals a
crossover from the power-law divergence of g as
ap 0 in region II to the exponential divergence of g
along the critical surface. "

Since up, t2p, and Sp are related to J/ks T and
/7/ks T, the two variables of the original LP problem,
by up = 327r( I + Sp) = ks T/J and aIp = mpI 2a4h/J the
plane up =327r(l + Sp) is the locus of points in

(up, ap, Sp) space corresponding to all possible values
of the original LP variables. The intersection of this
plane with the critical surface (Fig. 8) defines the
critical line T = T, (h) of the LP problem.

On the critical line the decay of the LP spin-
correlation function at large distance is given by (11).
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precedent in 2D for this kind of unreliability of the
SW approximation. It predicts (see, e.g. , Appendix
A) that the 2D XY model in a field has a line of in-
finite-order transitions.

The 3D SG theory is interesting not because it
solves the LP problem for h & 0 but because it is to
our knowledge the first mode124 with any relationship
to a real physical system" to exhibit an infinite-
order' transition in 3D,

B. Liquid-crystal realization

4O

FIG. 8. Schematic drawing of the critical surface (AOBC)
of the 3D SG theory in (o,o, uo, 80) space. Points on this

surface flow into the critical fixed point 0 under RG itera-
tion. Points to the right of the surface flow into the critical
fixed line OK. Surface DEFG represents the locus of points
corresponding to all possible values of the temperature and
magnetic field of the m = ri = 2 LP problem on the boundary
between the paramagnetic and helical regions. The intersec-
tion (HJ) of this locus and the critical surface defines the
critical line of the LP problem.

That bulk liquid-crystal mixtures whose phase dia-
grams have (Fig. 9) nematic (N), smectic-A (A),
and smectic-C (C) phases constitute a perfect realiza-
tion of the zero-field n = m = d —1 = 2 LP problem
has been noted by several authors. "' The N, A,
and C phases are respective analogs of the paramag-
netic, ferromagnetic, and helical phases of magnetic
LP terminology. The formal analogy is only perfect
when a uniform magnetic field (tending to align the
directors) is applied to the liquid-crystal system. In
the absence of this field the Landau-Peierls
theorem shows that neither the 3 nor the C phase
can have true positional long-range order (layers)'s;
this complicates the analogy since the 3D LP model
[Eq. (I)] is constructed so as to have long-range or-
der- in the ferromagnetic and helical phases. In prin-

N

As the critical line is approached from the low-

temperature side g diverges like exp(o/t"), where
r = T, (I7) —T.

IV. DISCUSSION

A. LP with h WO

It is worth belaboring the relationship between the
behavior of the 3D SG theory presented here and the
real physics of the n = m = d —1 =2 LP problem in a
uniform field. While the phase diagram of the LP
problem with h &0 presumably does have the two

phases shown in Fig. 4, there is no reason to believe
there really is a line of critical points (infinite order
or otherwise) in the 2D boundary (Fig. 5) separating
the phases. Since the 3D theory describes only the
SW approximation to the LP problem with h ~ 0, the
critical line predicted by that theory need not be
present in the complete LP problem. There is ample

0 cc

FIG. 9. Schematic phase diagram of mixtures of two dif-
ferent types of, liquid crystals showing nematic (N),
smectic-A (A), and smectic-C (C) phases meeting at a LP
(L). Here C, is the concentration of the component which

undergoes a A'-C transition as the temperature is lowered.
The other component undergoes both a N-A and an A-C
transition.
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ciple an arbitrarily weak field restores the long-
range order in the A and C phases and resuscitates
the analogy.

Since there can be no long-range order on the
ferromagnetic-helical phase boundary in the
n = m = d —1 =2 LP problem, there can be no long-
range (layered) positional order on the boundary
between the A and C phases, ' even in an arbitrari-
ly strong magnetic field where the layered order in
the A and C phases is well established. As the boun-
dary is approached from either side the layers are
destroyed by fluctuations: the Bragg peaks in the
density correlation function must turn to power
laws s 9

The nature of the transition at the LP in the NAC
system (say in finite field) is unknown. The nonex-
istence of long-range order on the A-C boundary just
below this point argues by analogy —more seductive
than substantive —to the 2D XY model' that the
transition may be infinite order. ' The fact that the
(however tenuously) related anisotropic 3D SG mod-
el does indeed exhibit such a transition strengthens
the allure of this idea, which also presents formidable
difficulties: the relevant topological defects in 3D are
presumably lines or rings. It is thoroughly unclear
that such objects can, like their 2D pointlike counter-
parts, mediate an infinite-order (or any) transition,
let alone be properly described by the 3D SG theory.
Further experiments may help resolve the question
of the order of the transition at the LP.

C. 3D SG theory and 3D logarithmic gases

The 2D SG theory is mathematically equivalent to
the 2D Coulomb gas —a gas of point charges (or vor-
tices) which mediate the transition in the 2D XY
model. ""Unfortunately, the "logarithmic gas"
representation of the anisotropic 3D SG theory pro-
vides no clue as to which 3D topological defects
might mediate the transition at the n = m = d —1 = 2

LP.
With uo=A =iM0=0 in (5) an expansion of the

partition function ZSG = T,e in powers of oo
(Ref. 41) can indeed be interpreted (as in the 2D
case'4) as the grand canonical partition function for
an anisotropic 3D logarithmic gas —an overall neutral
system composed of positively and negatively charged
point particles interacting with anisotropic logarithmic
interactions. Unfortunately this 3D anisotropic loga-
rithmic gas does not undergo a phase transition. To
see this, recall from Sec. III that for given no one
must choose the parameter A = A (no) to locate the
paramagnetic-helical phase boundary where the
infinite-order transition occurs. Moreover, A is al-

ways negative on this boundary. Enforcing A =0
moves one off the phase boundary into a single (the
uniform) phase. Since the anisotropic logarithmic gas

is equivalent to the 3D SG model with A =0, one
concludes that the anisotropic gas does not experi-
ence a transition: it is always in the "plasma"
phase. For A negative the expansion of ZSG in
powers of oo breaks down; the connection to the log-
arithmic gas is lost. We conclude that the infinite-
order transition in the anisotropic 3D SG theory has
no obvious interpretation as a "metal-insulator" or
"plasma-dielectric" phase transition in a system of
charged, interacting particles. 4'
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APPENDIX A: 2D XY MODEL AND SG THEORY:
A REVIEW

The 2D XY model in a uniform magnetic field h is
defined by the Hamiltonian

= —K XS; Si — XS;
kg T &jj) AT (

(Al)

where the classical spin SI at each site i of a 2D lattice
has unit magnitude and is free to rotate in a (say the
XY) plane. Nearest-neighbor spins interact with ex-
change strength J —= k&TK.

A. SW theory (Ref. 11): h -0

B. SW plus vortices: h 0

The addition of vortices to the SW approximation
provides a complete description of the 2D LY phase
transition. ""Since the vortex-vortex interaction is

With h =0 (Al) can be written Kxt,i&—
il.x cos(8; —8i) with the substitution Sl"+iS; = e

Here —m (8;~m for each I. At low temperatures,
K » 1,. the spins on nearest-neighbor sites are very
nearly aligned; one can write cos(8; —8i) —1

(8' 8J) /2 and let each 8; run from —~ to 00 with
negligible error. The resulting Gaussian SW approxi-
mation is easily solved. " The spin-spin correlation
function G(x) = (exp(i[8(x) —8(0) ] })decays like

}x}" x' at large ~x~; g=~, therefore. This result
is correct for K » 1 and wrong for K (& 1 where
one expects the finite g and exponential decays of an
orthodox paramagnetic stete which the SW theory is
too crude to describe.
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logarithmic the vortex degrees of freedom can be
mathematically represented as a 2D Coulomb
gas" "—a system of positive and negative charges
with overall charge neutrality interacting via the (log-
arithmic) 2D Coulomb potential. The 2D Coulomb
gas is in turn mathematically equivalent to the 2D SG
theory. ' The "SW plus vortices" approximation is
thus describable by the partition function
Zso = Tr exp( —3Cso), where

XsG= d'x —, VV' ' —~ 'a 'cos g A2

is the classical 2D SG Hamiltonian. Here a is the
short-distance cutoff of the associated 2D-Coulomb
interaction, 0'(r) runs from —~ to ~ for each r,
P' —= (2n )'E, and u (proportional to the fugacity in
the Coulomb gas representation) is a complicated
function of E not known in closed form. This func-
tion is schematically shown as the dotted line in Fig.
10.

The free energy, F, and spin-spin correlation func-
tion, G(xj, of the 2D XY model are, respectively,
g1ven by15, 26, 35

F = ksTln Tr—exp( —3Cso)

(A3)
G(x) = exp $2(z,x2) dz

2n

P -ao

2 z, 0 dz

FIG. 10. Schematic diagram of RG trajectories of 2D SG
model [Eq. (A2)]. Critical trajectory AO divides the dia-

gram into two phases or regions (I and II). Trajectories in

region I flow into the stable fixed line OB. Trajectories in

region II flow off to large values of the coupling constant u.
The dashed curve schematically represents the locus of
points corresponding to different values of temperature in

the zero-field 2D JF model. The intersection of this curve
and the critical trajectory OA is C, the critical point of the XY
model. Starting at C one flows into the critical fixed point, O.

in the SG representation. Here x = (xl,x2) and

e 2(+Ii 2) I)4'/tix2

C. RG analysis of the 2D SG theory

Hamiltonian (A2) has been analyzed with standard
RG techniques. """The resulting RG trajectories
in the (u, P2) pline are schematically drawn in Fig.
10. Each temperature (or value of E) in the XY
model corresponds to a point in the (n, P2) plane.
The locus ot; these points for all possible values of E
is schematically shown as the dashed line in the fig-
ure. Trajectory (separatrix) OA divides the figure na-

turally into two regions. In region I, the low-T re-
gime (recall P' —E), flows terminate in a fixed line
at o. =0. Since when o. =0 3CsG becomes a pure SW
Hamiltonian" this region (and hence the low- T phase
of the 2D XY model) is characterized by the algebraic
decay of correlations, G(x) —

~x~
~t S~, and the in-

finite (' predicted by SW theory.
For P2 ( gm the fixed line at n =0 is no longer

stable; region II (the high-T phase of the XY model)
is not, therefore, described by SW theory. Finite ('

and consequent exponential decay of correlations
characterize this region. As any point on the critical
line is approached from a distance d, g diverges' '

g
—1/2

like e'~ as d 0, where the number a depends on

the point in question. In particular g diverges as
exp(at ' 2) as the critical point c (Fig. 10) of the
model is approached along the dotted line from the
high-T side. The free energy, whose singular part
behaves like g

~ thus has only an unobservably weak
essential singularity" on the critical line; the transi-
tion is therefore of "infinite order. "

The critical fixed point 0 (Fig. 10) controls the de-

cay of correlations at all points on the critical line OA.

One finds a critical exponent q of
4 along OA,

D. SW theory. 'Finite h

For h &0 (Al) becomes"

H E 2 h=+—X (e, —e, ) —

jocose,

AT 2
&~J) AT (

(A4)

1

G(x) — 'l4(lnx)v' I + I in(lnx)
16 lnx

for large x.
Finally, it is straightforward to show" that the in-

teractions neglected in deriving the SG representation
of the 2D XY model are irrelevant in the usual RG
sense. '
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in the SW approximation. Simple rescaling of the
variable 8 and use of continuum notation makes this
Hamiltonian identical to Xso of (A2), provided one
makes the identifications a/P2= h/ks T and

P ' = K' 2. The spin variable S„(x)+iSr(x) is given
by e'&+(~ in this representation. It is trivial to rewrite
Sec. IV results of RG analysis of the SG theory in
terms of h and T, A line of infinite-order phase tran-
sition in the lt T(i.e-. , o( —P2) plane separates a high

T phase with power-law decay of correlations and g
infinite from a los( Tphas-e with finite g and ex-
ponential decay. Both phases have finite magnetiza-
tion except at h =0. As the critical line is ap-
proached from the low-T side, g diverges exponen-
tially. The spin-spin correlation function at large dis-
tance decays like x a (Ref. 43) (apart from loga-
rithmic corrections) everywhere on the critical line.
Note that the phase with power-law decay occurs at
high T in this finite-field SW approximation and at
low T in zero field when vortices are included.

It is worth emphasizing that these finite-field
results are artifacts of the SW approximation; the 2D
XY model does not undergo a phase transition for
nonzero h. Inclusion of vortices would make this
point clear.

(.) ~ = ~ + II + (+++...

{b) + I'
,

+ + 0 ~ ~

{c) I

+ ~= + ~ +"~

h +

{d)

where

FIG. 11. Diagrams giving ultraviolet-divergent contribu-
tions to the self-energy X. Each solid line represents a bare
propagator go(p). Each dot (~ ) represents an oo vertex.
Each cross (+) represents a uo vertex. The square ( ~ ) is
defined in diagram (a).

APPENDIX B: SECOND-ORDER COMPUTATION
OF THE Z's

I) ———Jl d x [['7))go(x) ]']' ——ln( —„)Ina/(4m)

(B2)
The computations of g (po), the inverse Fourier

transform of (8(x)8(0) ), and I'4, the four-point ver-
tex, to second order in uo, o.o, and 50 are summarized
here.

A. g '(po)

Writing Dyson's equation, g '(po) = go
' (po)

—X(p()), with g()
' (p) =—p~2 + (p)) )'+ po, and cosPO8

as X„"~(—PO28') "/(2n)! one generates from (5) the

diagrammatic perturbation series for X shown in Fig.
11. Only diagrams divergent as a 0 have been in-

cluded; the Z's are chosen to remove these diver-
gences in each order of the triple expansion. Dia-
grams of Figs. 11(a) and 11(b) are independent of
the external momentum po, they are readily
summed' to yield the divergent quantity

4 4(1+80) 480 4Xa+b(PQ) o(o(tboK) ) a (I —POI) uo)

(B1)

and InK t —= (3 ln2 —2C ) (8 rr ) '.
Expanding (Bl) in powers of 5O we have, to second

order,

4 4(1+80)
Xa+b(PO) t)'0(POK)

x [I + [45O+16rt ' In( —)uo] Ina }

(B3)

In deriving this result we have used the fact that
go(x), the Fourier transform of go(p), is given, for
small Ixl, by

g()(x) —[—In(x~/2I +f ((x)) + a')/(x~I) —C]/8rr

(B4)
Ifl/4

where f(t) —= J dx (e "—I)/x.
0

The O(ao) diagrams of Fig. 11(c) are evaluated in
a straightforward manner:

X, (po) = J d3xe 'o nq~PO2(poK~" ) o sinh[)go2go(x)] —53(x) J d3y cosh[Po2go( y)] (B5)

Expanding e o in powers of po x we find divergent terms proportional to po2, and (po )'. (The term indepen-
II

dent of po is finite" as a 0.) We choose the parameter 2 in (5) to cancel the O(po ) term exactly; this choice
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locates the boundary between the regions with uniform and nonuniform magnetization in LP terminology. Using
(B4) one finds the following divergent O(po ) and O(po ) contributions to X(po):

2e4C
X.(po) — ' (Ina) Jipo'—2.46

J p4

32, ' (B6)

with J; defined below Eq. (7).
The O(uo~ ) term in Fig. 11(d) produces divergent terms of O(po ) and O(po4 ). We again choose A to cancel

II II

the former; the latter is readily evaluated:

Xg(po) ——u(~) [ —,
' —8ln( —', )]po (Ina)/Srr' .

Finally, then, to second order in uo, ao, and So.

g '(po) —po(1+ noE] ' [I + [48o+16uoln( —)/m] Ina })+po [1 —e J&ao(lna)/2(4 ) ]

+(po~ )~(1+ (4 e J a +(Sm ) '[——Sin( —)]uj }Ina)

(B7)

(BS)

The renormalizability assumption demands that the substitutions (4) [with (4c) replaced by po = Z„pz since mo

has been absorbed in po ] and appropriate definitions of the Z 's render the quantity Zag (po) finite. Thus isj.
one is led to the following definitions of the Z 's:

Z, = I + [48+16u In( —)/vr] InA

Za=l+ [4 e J n +(Sn ) '[—', —Sin( —")]u'}InA

(ZaZ~) '=I+ [4 e (J —Jt/32)a +(2n ) '[ln( —) ——]ut}lnA

(B9)

8. I'4

The vertex I'4(pt, pq, . p3, p4) is the amputated
Fourier transform of the connected, single-particle ir-

reducible four-point correlation function. To com-

pute Z„one need only consider the par't of
I'4(p, p, —p, —p) proportional to (p~~)'. Diagrams
contributing to this quantity are shown in Fig. 12.
Since only divergent contributions need be con-
sidered, diagrams 12(a), finite as a 0, can be ig-

nored, as can diagrams 12(b), which are independent
of pii (and whose divergent parts are in any event
cancelled by renormalization of no). Diagrams 12(c)
are easily found to contribute

(a)

(b) liigi

lPcx

+ + ~ ~ ~

h

14(p) ——4(pi) uo(1 —9tlolnA/4w) . (B10)

Diagrams 12(d) produce divergences of O(1),
O(pfj), and O((p fj)~). The first two of these are re-
moved by our previous renormalizations, leaving

(c) +

r4(p) +6me Jp(pii) a lnA/4 (BII)

It follows that the definition= uo = Z„u with

Z„=1+[(4n) '9u+4 7me cJ (~~/u)]lnA (B12)

renders I 4 finite to second order.

~+ XX+
(d)

+ ~ ~ ~

FIG. 12. Diagrams contributing to the four-point vertex,
14. Symbols are defined in the caption of Fig. 11.
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APPENDIX C: RENORMALIZATION OF 6{x)

A. Z, to 0{u,a, 8)

Multiplicative renormalizability of thc connect-
ed spin-spin correlation function 6(x)
= (exp(i pomona'[e(x) —8(0)] }),[in the 8 variables
of (3)] implies the existence of a renormalization
constant Z, (independent of x) such that Z, G(x) is

finite when expressed in terms of the renormalized
quantities u, u, P, and m. Since, in terms of the field

8(x), G (xs,x~) = 6 (xs,x~/mo), where 6 (x)
—= (exp {/po[ 8(x) —8(0) ] })„renormalizability
means that Z, G(x~~, x~/Z ) is finite when expressed
in terms of u, a, P, x~~, and xq. Perturbative study of
6(x) gives Z, ; the calculation to O(u, a, 8) follows.

To zeroth order, G(x) =exp{Pa[g,(x) —g,(0)] }.
Putting x~ =0 for simplicity and using (B4) one finds

-8(1+@0)
60(x) =(xi'/a) (Cl)

In O(uo) all contributions to 6(x) vanish in the

po 0 limit and so can be ignored. In O(ua) there
is a single class (Fig. 13) of diagrams divergent as
a 0, evaluation of which yields

G.(X) = —2uopol~ Go(x)

—32u ln( —„)(Ina)6o(x)/n

To first order in uo, eo, and 80, therefore,

(C2)

6(x) =(xs/a) '(I+[ggo+32rr 'uoln( —,", )]Ina }

whereupon,

Z, = (a/&)-'(I + [gg+32~-'in( —,", )u] lnA } . (C4)

Since (Sec. III) the critical fixed point in this prob-

lem occurs at u = n = 8 =0, this first-order expression

FIG. 13. Diagrams contributing singularly to 6(x), the
spin-spin correlation function, to first order. The wavy line

( ~) represents the factor 60(x)

for Z, is sufficient for a complete computation of the
large-distance behavior of 6 ( x ). [Indeed, even thete™~f 0 (u, 5) in (C4) would not be needed for
such a computation werc it not that both u and 8 are
marginal'6 variables with respect to the critical fixed
point and so determine the logarithmic corrections to
the power-law decay at large } x }.]

8. Renormalizability in second order

Although still higher-order terms in Z, arc ir-
relevant to the determination of 6 ( x ) at large ( x ( it
is important in principle that there exist a Z, (in-
dependent of x ) which renormalizes the theory in
every order. No x-dependent divergent terms should
appear in any order. An attempt to verify this as-
sumption leads to (superficiai) difficulties even in

second order: one finds that while most of the x-
dependent divergences are neatly cancelled by the re-
normalizations of uo, no, and 50 defined in Appendix
8, some are not. This is not surprising. Since the
operator exp[ipoe(x)] has [Eq. (C3)] naive dimen-
sion four when 50 =0, one expects that connected
correlation functions involving not exp[iP08( x ) ]
alone but rather O(x ), a linear combination of
exp[ipoe( x )1 and all other operators with naive
dimension less than or equal to 4, should be rnultipli-

catively renormalizable. It is tedious but straightfor-
ward to verify that in fact the operator O(x) defined

by

O(x) =cos[poe(x)]+a, ['Fee(x)]'+a, ([Use(x)]'}'+a,[72~~8(x)]'+a,[7~8(x)]'

+a5v,
,
e(x)"7;„"7ge(x)+ 6[%; V'g„e(x)][;„Vj,e(x)]

where repeated indices i and j are summed over the
two parallel directions, is multiplicatively renormal-
izable to second order, provided the aj are chosen ap-
propriately in O(a). [The particular O(a) choices
for the a, are not sufficiently interesting to list here. ]
The coefficients aI must be chosen in each order of
the triple perturbation series to ensure the renormal-
izability of O(x) in that order.

{

the renormalization constant ZL which renders L ( x )
finite in low orders. To first order in uo and oo only
one diagram (Fig. 14) produces a divergence. This
diagram represents the analytic expression

C. Asymptotic behavior of L {x )

To compute the asymptotic behavior of L ( x )
—= (["Pate( x ) ]'[V))e( 0 ) ]')„one need only know

FIG. 14. Diagram contributing singularly to L ( x ) in f&rst

order.
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—SuP d X] "7/ 7ggP X X ~ 7f t7kgP X —X ~ 7I 7~gP X ~ )71 7~gP X ~ SgkSltI„+25J~Skg

where repeated indices are summed over the two parallel directions. The divergent part of this expression is

—(6XO('(7777;O(X))( 7; 7OXO(X))(olxll +)oo XO, ) J7'X&( 7O'7 XO(X )1( 7O 7XO(X,O)l

Use of (84) then yields the divergent contribution
{—(4up/2r) [')7' )7'Jgp( x )]2lnA ]. It follows that

ZLL( x ) is finite to first order as A ~, where

ZL = 1 +2up(lnA)/27 (C6)

L ( x ) then satisfies a RG equation like (6), with y
given by 5lnZL/Sl =2up/vr, whereupon (8) and the
fact that u approaches zero, its critical-fixed-point
value, like A„/r for large r imply that on the critical
surface,

L ( x ,))x2=0) I x))l 4(in{ x )) I ) (C7)

APPENDIX D: THE CORRELATION LENGTH, g

The RG flow Eqs. (9) have the structure

for x))A » 1. The large-distance behavior of L( x )
and G( x ) [see (C5)] are identical.

g/a —exp[ o.(5") "] (D5)

I

reached as r ~. Asymptotically, then, u —A„/r,
8 -A, /r, and a —A r", where A„= C333,
A ()

= C222C222, and A = ap(C222up)". Since x & —1,
a « u for all v if ap « up, this justifies the neglect
of the a terms in the u and 5 equations. It is clear
from these solutions that the critical surface is indeed
two dimensional: for given up and ap one need only
adjust Sp so as to make 5'=0 in order to achieve
flow into the critical field point.

For 5' & 0 (i.e., in region II) a grows with r; no
fixed point accessible to perturbation theory is
achieved under RG flow. For infinitesimal 5' & 0
the flows stay very close to the critical surface until v

becomes large, or, more precisely, until a(r) be-
comes comparable to u (r), that is, until r —1/5'.
Recalling that r —ln({ x {/a) one concludes that only
at distances { x { for which ln( { x {/a ) I/5' is one
out of the critical region. This defines g as

8N(
C(lkajak (( . Io 2o 3) o

J4k 1

(D I)
where o- is a nonuniversal number —it typically varies
from point to point on the critical surface —and the
exponent v =1.

Bu 2 bs
BT Q7'

C333u C233 u (D2)

These equations have the solution u = (up

+ C333r) ', 5 = 5'+ C233C333u, where 5" is

an arbitrary integration constant. The n equation,

8A
C1128 Cl)3u )a

a7

then yields [recall C112 ——4 from Eq. (7)]

a=ap(1+C222upr)"e "', (D4)

with x —= —(4C232+ C)13C$33)/C$33 —1.1. . .
%hen 5'=0 the critical fixed point o. = 5 = u =0 is

where al =a, a, =S, a, =u, and the {Cjjf]are nu-
merical coefficients given in (7). Suppose that
a(r =0) =—ap is much smaller than u(r =0) —= up.

Then, at least for sufficiently small ~, the o,2 term
can be neglected with respect to the u' term in the u

and 5 equations, which take the form

APPENDIX E: DIVERGENCE OF g AS ap ~0

In Sec. II A it was remarked that (provided )up is

properly zero) g is infinite when ap=0 in Hamiltom-
an (5). It follows that g diverges as ap 0 in the
(8 & 0) phase where f is finite. The exponent
characterizing the divergence is readily computed
from Eq. (D4). When ap « I for fixed 5" & 0, a
becomes comparable to u when Ap7 e 4~ ' —7 ', or

48 r lnap + (x + I ) In[(lnap)/4S ]

With (see Appendix D) r —In//a this yields

g/a —a' [(lna )/45'] +'

(El)

for small np and 8' & 0. The divergence of the power
1/45" as 5' ~0 signais the exponential divergence of
g at the critical surface 5'=0. Note that to leading
order in up, 8' is related to hp via 5'= 5p

C233up/C333.
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