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Dynamic magnetoelectric couplings in ferroelectric ferromagnets
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A simple dynamical phenomenological theory is deduced from a variational principle with a

view to studying coupled dynamical effects in rigid ferroelectric ferromagnets of the easy-axis

type. In the absence of dissipation the analytical study of coupled bulk modes of wave propaga-

tion allows one to exhibit a resonance type of coupling accompanied by a repulsion of dispersion

branches. The latter is of the order of magnitude of the magnetoelectric coupling constant and

disappears when the bias static polarization and magnetization are either aligned or at right an-

gles to one another. When coupled ferroelectric and ferromagnetic relaxations are taken into

account, then an exchange of relaxation takes place in the neighborhood of the critical coupling

wave number and the repulsion of real dispersion branches is slightly increased while the reso-

nance effect is smoothed out, but still vanishes for an alignment of the bias fields. In all cases

the nonlinear ferroelectric behavior modifies the magnetic anisotropy constant and also renders

anisotropic the high-frequency electric susceptibility.

I. INTRODUCTION

Certain materials, especially compounds, may pos-
sess simultaneously ferroelectric and ferromagnetic
properties. " Among those can be mentioned fer-
roelectric magnet solutions of BaTi03Sro 3Lao 7M n03
with 75—100 mole'/0 concentrations for BaTi03. The
ferromagnetic ordering favors the phenomenon of
collective magnetic-spin oscillations, spin waves or
magnons, ' while the ferroelectric property favors
high-frequency vibrations in the P (electric polariza-
tion) system. The energies and wave numbers of
those two types of coherent oscillations may match
and the problem arises as to the form taken by the
interaction of those high-frequency vibrations. The
coupling will be especially interesting in those fer-
roelectric ferromagnets which possess a sufficiently
large magnetoelectric coupling constant. Recently,
some authors, among those Bar'yakhtar and
Chuppis, 4 have studied this dynamical magnetoelec-
tric coupling with methods similar to those of quan-
tum statistical mechanics (Holstein-Primakoff
transformation, cf. Ref. 5). In the present paper we
first construct a rather simple phenomenological
model of rigid ferroelectric ferromagnets with the use
of a classical variational principle, which follows along
the same line as variational principles developed for
deformable magnetically saturated media. The iner-
tia associated with the electric polarization density,
the nonlinear ferroelectric behavior, the magnetoelec-
tric couplings, and both ferromagnetic and ferroelec-
tric relaxations are taken into account. The fer-
romagnet is of the easy-axis type and ferromagnetic
relaxation is of the type proposed by Gilbert in the

fifties (and not of the Landau-Lifshitz type, even
though both formulations become equivalent for
small ferromagnetic damping, cf. Ref, 7). The
remainder of the paper is devoted to the study of the
propagation of plane time-harmonic perturbations,
first in the absence of relaxation, and next with this
dissipative. effect taken into account. To that purpose
a static, spatially uniform, background solution is first
constructed (i) where static magnetic and electric sus-
ceptibilities can be defined in terms of the initial
magnetization and polarization fields and of the vari-
ous phenomenological coefficients of the theory, and
(ii) on which can be superimposed time-varying, spa-
tially nonuniform perturbations. The nonlinear fer-
roelectric behavior renders anisotropic the high-
frequency electric susceptibility. Magnetoelectric cou-
plings, while bringing interesting dynamical interac-
tions (see below), have also for effect to alter the
value of both magnetic anisotropy constant and elec-
tric susceptibility. Magnetostatic and electrostatic
Maxwell equations are used because of the special at-
tention paid to the long-wavelength approximation
(phenomenological theory). This leads to the neglect
of the interactions between electromagnetic waves
and spin waves on the one hand, and between elec-
tromagnetic waves and oscillations in the P system on
the other hand. This in turn implies that so-called
polaritons (Ref. 8, coupled electromagnetic soft optic
modes) are reduced here to simple oscillations in the
P system which are driven by the electric field and ul-

timately couple with magnons via the magnetoelectric
effect.

The following results emerge from the analysis,
For a propagation along the easy axis of magnetiza-
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tion, the initial polarization field being set along this
axis and the initial magnetization field being set at an

angle tt(0 ( 8 (
2

rr) with this axis, it is shown in

the absence of relaxation that: (i) Transverse polari-
tons travel independently of the other modes with a
typical parabolic dispersion relation whose zero
wave-number value is determined by a combination
of the optical value of the electric susceptibility and
the initial values of the polarization and magnetiza-
tion fields via the nonlinear ferroelectric behavior
and the magnetoelectric coupling; and (ii) longitudi-
nal polaritons present a resonance-type of coupling
with magnons at a certain critical wave number
(which defines a so-called crossover region). The
latter coupling is not without recalling the magne-
toacoustic resonance effect which shows up in the
study of magnon-phonon couplings in elastic fer-
romagnets(Chap. 4 in Ref. 3; see also Ref. 9) or the
resonance effect of the acousto-soft optical type in

elastic ferroelectrics. ' The dispersion branches thus
placed in evidence present a repulsion of which the
magnitude is of the order of the magnetoelectric cou-
pling constant and which vanishes if the initial mag-

netization is set either parallel to, or at an angle —,m

of the initial polarization. The fully phenomenologi-
cal approach thus given yields results which are quite
comparable to those obtained by Bar'yakhtar and
Chuppis. 4 These authors have coined the term "seg-
netomagnons" for those bonded ferroelectric-
ferromagnetic oscillations. In the case where both
ferroelectric and ferromagnetic relaxations are taken
into account, it is approximately shown that (i) the
crossover region is slightly translated as compared to
that of the nondissipative case, and (ii) where the
mixed magnon-polariton dispersion branches behave
like one of the uncoupled branches, the damping of
the coupled branches practically is that of the corre-
sponding uncoupled branch awhile in the crossover re-
gion both branches suffer equal damping which

equally results from ferroelectric and ferromagnetic
dampings. This equal contribution of both dampings
to coupled branches is of the same nature as the
phenomenon observed for magnon-phonon couplings
in presence of viscosity and spin-lattice relaxation. "
The ferromagnetic damping is wave-number depen-
dent. The expression obtained for the repulsion of
branches in the dissipative case shows that this repul-
sion is slightly increased as compared with the non-
dissipative case, but it does not vanish for vanishing
magnetoelectric constant or for an alignment of the
initial magnetization with the initial polarization as a
result of mixed damping. Like in the magnon-
phonon case, the resonance coupling placed in evi-
dence in ferroelectric ferromagnets allows us to en-
visage an energy-conversion process in spatially disuni-
formly magnetized or polarized bodies via magne-
toelectric couplings.

II. BASIC EQUATiONS

In order to arrive at the field equations which
govern rigid ferroelectric ferromagnets we consider
the following variational principle:

8 Jf Zd'x =5X+gtR0 (2.1)

Here 2 is a volume Lagrangian density, SX stands for
a Hertzian nonholonomic variation which allows us to
account for the dynamics of magnetic spins, and SR
is the dissipative contribution which is derived from a
Rayleigh dissipation potential. M and P are the
volume density of magnetic and electric dipoles,
respectively, and dQ/dt and d P/dt are the corre-
sponding time rates. P =

I P I
= (P P ) ' 2 and

M =-
I M I

= (9 9 )'" will denote the magnitude of
the vectors P and M. Let 8~ and Hq denote the fer-
romagnetic and ferroelectric phase-transition tem-
peratures. The range of temperatures 8 considered
herein after is such that 8 is much below both 8~ and
8&. This in turn implies low levels of energy and a
magnetization which has practically reached its sa-
turation va1ue. That is,

M [(t (( ((A, (ts) ] = Ms = const

Therefore, as is also the case in deformable magneti-
cally saturated bodies, 6

I M I
= const implies that the

variation S M necessarily is of the form

SM=SP xM, (2.2)

where See is an infinitesimal angular vectorial varia-
tion.

For the sake of example we consider a ferromagnet
of easy axis pointing in the direction of unit vector d
and we write the Lagrangian 2 as

2 =-a(VM)' ——P(M d)' —M A+ —x-'P
2 2 OO

+ —,'P" + —,') (VP)'
'2

dP
dt

—P K ——,gP'(M d)t (2.3)

83C=JI y
' Scodx)dM

Ch

where E and H are the Maxwellian electric and mag-
netic fields, e is the ferromagnetic exchange con-
stant, (VM)' = MNM;t in rectangular Cartesian com-
ponents, P is the magnetic anisotropy constant
(uniaxial ferromagnets), X is the optical value of the
electric susceptibility, ( is the fourth-order electric
constant (which measures the nonlinearity of the fer-
roelectric behavior), h. might be referred to as the
ferroelectric "exchange" constant (since it accounts
for the ferroelectric ordering), ds is the polarization
inertia, and g is the magnetoelectric coupling constant.

If y is the gyromagnetic ratio of the material, then
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(

$R
B(d M/Bt )

BM + — BP d'x .(2.5)
B(d P/dr )

This contribution reflects the gyroscopic nature of the
magnetic spin. Finally, R being a Rayleigh dissipa-
tion potential describing relaxation effects,

d lsca rded.
Since we shall only consider the long-wavelength

approximation, (2.11) and (2.12) are supplemented
with Maxwell's magnetostatic and electrostatic equa-
tions in insulators:

V (H+M) =0, V x H=O,

(2.6)

Consistently with (2.3) and for the sake of example,
we consider the following potential R, which respects
time reversal:

1
5

dP 5s dM
2 dt

'

o)~ dt

(g+ P) =0, 7 x E=O

III. BACKGROUND SOLUTION

(2.13}

QJ~ = QMO (2.7)

Mo= Ms is a background reference magnetization.
5s and 5~ are two coefficients which account for fer-
romagnetic relaxation (of the Gilbert type)' and fer-
roelectric relaxation, respectively.

%ith vanishing variations 5' and 5P at the regular
boundary of the material body —which occupies the
region 0 of Euclidean physical space —and accounting
for (2.1) through (2.6), we find that M and P are
governed, within the bulk of the material, by the
equations

Mp x [Hp+ (P+$Pp )(Mp' d)d] =0 (3.1)

Ep= [X '+( —, (Pp2 —f(Mp d)2]Pp . (3.2)

Equation (3.1) means that there exists a multiplier
X 0, ~hose dimension is that of a magnetic suscepti-
bility and which is such that

In order to study small perturbations superimposed
on the fields M and P, we assume that there exists a
unique background, static, spatially homogeneous
solution Sp, with fields Hp, Ep, Pp, and Mp= Ms, such
that Eqs. (2.11) through (2.14) are identically satis-
fied. At So (2.11) and (2.12) yield

dM jeff=Q xM, 0-—yH
dt (2.8)

Mp=X p[Hp+(P+(Pp )(Mp' d)d] (3.3)

Heff 5Z 9R
BM B(dM/dr ),

(2.9)

%e generally assume that Mo makes an angle
0&8( —,m with d and Ho makes an angle

0 ( 8 ( p & —,n and d. It first follows from (3.3)
that

Mox d =X,HOX d

where Euler-lagrange variational derivatives are de-
fined by, e.g. , Mp (Apx d) =0 (3.S)

T

d QZs + Qg ~ Qg (2 1 0)
BP dr B(d P/dt ), BP BV P

a similar definition holding true for 82/BM. Thus

Thus d, Ho, and Mo are coplanar. Upon multiplying
scalarly both sides of (3.3) by Mp, we obtain

X,' = (Hp/Mp) cos(tt —P) + (P+gPp2 ) co' st.l(3.6)

=yMx A+(P+gP')(M d)d
dt

(

+ (Bs/~~) d d+~&'M (2.11)
df

d'P +5 dP
dt

+ [X '+ ( —,f)P' —g(M d)'] P —X'72P =0

(2.12)

Demagnetizing and depolarizing effects have been

According to (3.2), Ep and Pp are aligned and we can
define a static electric susceptibility X~, by

x;.'=x-„'+(-,' g)p,'-g(g, . d )'= IEpl/IP, I . (3.7)

The orientations of Po and Mo a priori are not corre-
lated.

IV. EQUATIONS FOR PERTURBATIONS

Now let R(x, r), p(x, r), h(x, r), and e(x, r) be
time-varying, spatially nonuniform perturbations su-
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pcrimposed on the solution So and such ti. .
IR(x, t) I

= IM(x, t) —Mpl « Mo,

Ip(x, t)l = IP(x, t) —Pol « Pp,

Ih(x, t) I
= IA(x, t) -Hol «Ho,

le(x, t) I
= IE(x, t) —Eol « ~o

(4.1)

0 h= —OR, 0&&h=0 (4.2)

From (2.13) and (2.14) the standard Iinearization

procedure yields

In Eqs. (4.2), (4.3), (5.1), and (5.2} we try plane

time-harmonic solutions of thc type

(R, p, h, e) = (m, p, h, e) exp[i (tot —k r )] (5.3)

where eo is a real-circular frequency and k is the wave

vector. m, p, etc. , are the amplitudes. %c set
k = Ill. For the sake of simplicity we consider a

propagation along the direction d, i.e., k = k d, and we

assume that So is such that Po is set along d, i.e.,
Pp P=od A. n orthonormai basis I e„e~, e, ) is

selected in such a way that thc z axis lies along d, the
x axis lies along Mo x d or Ho & d, and the z axis
completes the triad. Therefore,

e= —'0 p, Oxe=0 .

From (2.11) and (2.12) we obtain

(4.3)

=yMox {h+ (/3+gPq )(R d) d —X„,'m
dt

+n'7'R+ (8 /tp ) [(drn/dt) d ld

k=(0, 0,k), P, =(O, O,P,),
Mp = (O, Mo sinH, Mp cosH)

Ao = (O, Ho sing, Hp cosp)

m d=m Pop=pzPo .

%e shall set

(5.4)

+2/(Pp p)(Mo d)d}

d2
ds " +Ss —e+X~' p +(( Pp p ) P o

dh'

(4.4)
tos(k) =to~(Qk +X~0)

tps(k) = «t~[«'+ (Ho/Mo} cos(H —4t)

—(P+gP2) sin'H+1]

(5.5)

Mo i%=0

while from (4.4)

(4.6)

—h. '7 p —2$(Mp d)(R d) P =0

on account of (3.6) and (3.7). From the saturation

condition we have
and

=tp~[nk +X~A+ I —(P+$Po2)], (5 6)

~,'(k) = d {}tk'+ [X-„'+1+(3~/2) p,' gM2 cos'H] —],
(5.7)

dS 0
dt

(4.7)
«js(k) = ds '{Xk'+ [X '+ ( 2 f)Pp —$Mp cos Hl I

(5.8)

V. DYNAMICAL COUPLINGS IN ABSENCE
OF RELAXATION

= yMo x [ h + (P + (Po' ) (R d ) d —X,'R
dt

+ a 7 R + 2g( Pp' p )Mod cosH ] (5.1)

With 5s = Ss =0 and Mp d = MpcosH, Eqs. (4.4)
and (4.5) reduce to

These formulas define the fundamental magnon and

polariton frequency spectra, respectively.
%e call pz that vectorial component of p which lies

in the plane spanned by e„and e„. Noting that
Maxwell's equations (4.2} and (4.3) classically yield

t =-(k m)k/k' e= —(k t-)k/k', (5.9)

we can write the equations satisfied by the amplitudes
m and p as follows. First for pq,

p~[«ts(k) —tp'(k)] =0 . (5.10)
dq —e + X '

p + ((Po p ) Po —XV2 pz d2 e pop

—2fMpcosH(R'd) P p
= 0 . (5.2)

Next for m and p„ for which we have the matrix sys-

tem

cps COSH

ms sinH

—~s cosH

+/OP

&os sinH

—/ C'8

2gds 'PoMo co—sH

tpM/PpMp sin2H

0
0

(tp' —«ts2)
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the compatibility condition for solving nontrivially
this linear system for the amplitudes is obtained by
the vanishing of the determinant of the matrix factor.
That is, after some rearrangement and for ~ & 0:

and

o)[i(k) = o)E(k) = o)E(0) (s.21)

while for large k's we have the asymptotic behavior
2

X)i(cu, k, g) = (cu' —cuE)(cu' —cus) -2
, (k) = (k), ,](k) =C0$(k) (s.22)

—g dE coMmspo~o sin 20

=0, (5.»)

If the transverse component pq is not zero, then
(5.10) implies that transverse polaritons propagate with

a frequency spectrum given by

where we have set

cus (k ) =
cus (k ) [cus (k ) cos20+ cus(k ) sin't) ] . (5.13)

cuE2(k ) —o)g(k) =0~ k = k'(e) (s.23)

There therefore exists a so-called crossover region of
-the two dispersion branches (cv ) 0, k )0) for an
intermediate value of k. This crossover region is de-
fined by the critical value k'(0) given by the inter-
section point of (5.15) and (5.16) at which the energy
spectra of pure magnons and pure longitudinal polari-
tons match, i.e.,

cu'(k) =cuE(k) (s.14)
The repulsion of the two branches cui(k) and ~»(k)
which occurs at k'(t)) is evaluated as follows:

Whenever either the magnetoelectric coupling con-
stant g vanishes or the angle 0 is vanishingly small or
in the neighborhood of —2m, the last contribution in

the left-hand side of (5.12) can be discarded; the sys-

tem (5.11) uncouples for the vector amplitude m and

the scalar amplitude p, . The compatibility condition
for the first system yields the dispersion relation for
pure magnons (coherent magnetic spin oscillations) as

2Ss (cu k ) = cu cus ( k ) = 0 (s.is)

The general systems (5.11) and (5.12), however, in-

dicate a dynamical coupling between magnons and

longitudinal polaritons if 8 differs from zero and —2m

and if g is sufficiently large (of course, dE is sup-

posed to be finite). Let cuc2(k) and cuc2c(k ) be the two

solutions of the biquadratic equation (5.12). We
'have

cu,
' „(k ) = —, {[cuE ( k ) + cos ( k ) ]

i [(cuE+ cuS)' —4(cuEcuS —g'p') ]' ')

(s.17)

where we have set

p2(k, g) —= dE p, ~02 ~M, (k ) sjn22g (5.18)

Equation (5.17) can also be written in the form

-2 2
cue cc(k) = {(cuE+cug) + [(cuE cus) +4/ p, ] ]

(5.19)

for m 4 0, while for p, A 0, we obtain for pure longi-

tudinal polaritons,

(s.i6)

hcu(k") = cute cui =
(cubic cut )/(cui[+ cui) . (5.24)

That is, from (5.19)

Acu(k") = 2gp(k'(t))t))/[c, uci(k") + cui(k') ]

= gp(k" (t)). t))/cus(k")

As co~(k ) is very flat (small k) we have

s(k') =~s«') =~s(0

so that finally at the first order in g

Ao)(k') ='
&dE 'P()M() sin2tI

(s.2s)

(s.26)

(s.27)

Thus for 0 not zero and —, m and finite dE the repul-

sion of branches at k" behaves like g. For finite dE

and prescribed g, as 8 goes to zero Ace(k') behaves
like 8 since, then

hcu(k") =(dE 'O(1)) (s.28)

The repulsion phenomenon disappears whenever Mo

is aligned with Po, i.e., Ace(k'(0)) =0 or when
[0= —,m. In the first case we have

s(k) =~s2(k2

=cuu[~k +(/3+OP«2)+(Ho/~o) cosc]c]' .

(s.29)

Obviously, Ace diverges as dE goes to zero. Note fi-

nally that the repulsion phenomenon is accompanied,
in the absence of dissipation, by a resonance for the
amplitudes. Indeed, on eliminating m~ and m, from
the matrix system (5.11), we find that

Im /p, I
= ('cu(k )cu„cP«Mo sin2tt[cu (k ) —cus(k ) ]

As k goes to zero we have the following typical
behavior:

k) = ~s(k ) = s(0-2 (s.20)

(s.30)

This blows up when co'(k) approaches cuE(k ) in the
neighborhood of k' (with 8 & 0 and —,m, ( finite as
well aS dE).
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In conclusion we have sketeched out a fully

phenomenological approach which is equivalent to
the quantum statistical approach of Bar'yarkhtar and

Chuppis. 4 Our general equations (4.4) and (4.5),
ho~ever, allow us to carry on the study when cou-
pled relaxation effects are taken into account.

and

Og(k ) = ~ (k ) + r'(k ) —2rg(k )r(k ) . (6.6)

Equations (6.4) through (6.6) assume beforehand
that I (k) has been determined, which is not the
case. It is immediately shown that (S.lo) is replaced

by

VI. DYNAMICAL COUPLINGS IN PRESENCE
OF RELAXATION

Now we consider complex eo's with

co=n+ir, O =Re((o), I'=r '=Im((o), (6.1)

p, [( n' n—,')+2I n(r r,—)]=0,

while the corresponding z component reads

p, [(O' —Qs) +2i Q(I' —I j)]

(6.7)

rE = , ( &El d—E),
rs(k, 8) = —,gsms(k) sin'8,

n,'(k ) = ~,'(k) + r'(k) -2r, r(k),
n, {k)=~,(k)+r'(k) —2r,r(k),

(6.2)

(6.3)

(6.4)

(6.5)

where 0 is the real circular frequency and v is the
relaxation time. Both are real functions of the real
wave number k. We set

2dE $PpMO(cos8) m = 0 . (6.S)

For pure transverse polaritons (p~ 4 0), Eq. (6.7)
yields

2 2 —2
I = I g, 0 = Og = o)g —rE (6.9)

For coupled magnons and longitudinal polaritons, in

place of (5.12) we obtain

1)&' ( O, k;g) = [(O~ —Q s) + 2i Q (I' —rs) ][(Q2 —Os ) + 2i Q (I' —rs ) ] —ds '$~P02Ma2 co&ros sin 28 = 0 (6.10)

On separating the real and imaginary parts of this equation we obtain a biquadratic equation determining the real

frequencies O(k ), once I'(k) is known, in the form

(O' —Qs2) (O' —Os) —4O'(I —rE)(I"—rs) —g'p, '=0

where p, is defined as in (5.1S), and the equation determining I'(k) as

(6.11)

r(k) =-rs(n' —Os) +rs(n' —OE')

2O' —(Qs+ OE~)

if O(k) is known.
The solutions of (6.11) are shown to be

(6.12)

n2„,(k) = —,
' {[n,'+ n, +4(r —r, )(r —r, ) ] + [(n,' —n, )'+4[g'l. '+4(r —r, )'(r —r, )'

+2(n,'+n, )(r —r, )(r —r, )]]'~') . (6.13)

Note that if O = QE (6.12) yields

(6.14)

I

This means that in the presence of relaxation the
crossover region is defined by

whereas if 0 = Oq, then from the same equation we

have

(6.15)

Therefore,

(6.&6)

~,' —r,'=~,'(k) —r,'(k) ~k =k"(8) . {6.1g)

Because of the smallness of the I"s involved the crit-
ical wave number k" cannot differ very much from
that corresponding to the nondissipative case [k"; cf.
Eq. (5.23)].

If 0 = Qq in the neighborhood of k", then (6.12)
yields

and r(k) = —,
' [rs+rs(k)] (6.19)

n,'(k) =~,'(k) —r,'(k) . (6.l7) This means that both branches O~(k ) and A]](k ) in
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the crossover region have equal damping which

equally results from ferroelectric and ferromagnetic
relaxations. At k = k" we have thus

O f „=—,
' [(Os2+ Os) —(rs —rs)']

y [g'p, '+ —,
' (I'E —rs)'+4ns(rs —rs)']' ' .

(6.20)

The repulsion of branches at k" is given by

02 —02 02 —02
( s4) II I II I

(6 2I)
0)[+ 0[

That is

5 O (k'")= Os [$2@,'+ —„(rs—I's)

—4n,'(r, —r, )']'~'

or, on account of the smallness of the I 's,

an(k'") =(g&/~ )+—,+4(r, -r, )'(r, -r, )'
2 ~M

(6.23)

As compared to the nondissipative case (and for
() C [0,

2
m], g and dE finite) the value of the repul-

sion is slightly increased. The important point, how-

ever, is that a slight repulsion occurs even when 8
equals 0 or —m.

]

Proceeding as in Sec. V we find that the resonance
condition (5.29) is now replaced by

m„g( O' —I') '~'ru~PpMp sin2t)

[(n'- n,') -4n'(r —r,') ]'~'

In the crossover region, on account of (6.19), we
find that this reduces to the finite value

g'p, '+ (rs —I s)'/4

(6.22)

m, PpMp sin2l)

p, Ir, (k'") - r, I

if I' (k ) does not match with rE.

(6.25)
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