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The influence of the nonlinearity of the spin equations of motion on the dynamic structure
factor of the antiferromagnetic Heisenberg chain in an external field is calculated in the low-

temperature limit. The memory functions for the longitudinal and transverse spin component
are calculated rigorously to lowest nonvanishing order in the temperature. In this limit, only

two-magnon processes contribute to the memory functions. Divergencies in the two-magnon

density of states give rise to resonances in addition to the usual spin-wave peak in the dynamic

structure factor.

I. INTRODUCTION

One-dimensional magnetic systems have received
much interest in the last few years for several
reasons. First of all, many materials are known in

which the magnetic interactions are quasi one dimen-
sional, and much experimental work has been done
on these systems, which show very interesting
dynamical properties. ' ' The most interesting
phenomenon is the existence of well defined excita-
tions, to be called spin waves, despite the lack of
long-range order at nonzero temperature. This is due
to the short-range order, which can support spin
waves in a large temperature range in one-
dimensional magnets.

Theoretical studies have been mainly concerned
with classical spin chains. The static properties of the
Heisenberg chain can be calculated analytically, ' but
the evaluation of dynamic correlation functions is far
from trivial. Therefore, most of the theoretical work

is based on the knowledge of the low-order frequency
moments, and especially continued-fraction methods
turned out to be extremely useful. ' " Conventional
mode-coupling theories are inadequate to describe
the low-temperature region because they lead to er-
roneous static correlations and consequently to non-
vanishing linewidths at finite temperatures. " Recent-
ly, Reiter and Sjolander put forward a theory which

gives the dynamic correlation function exact up to
lowest nontrivial order in temperature. ' Their treat-
ment is based on a low-temperature expansion of the
memory function. The first nonvanishing term of
the memory function could be calculated analytically
for both the ferro- and antiferromagnetic Heisenberg
chain in zero field. Almost all the work mentioned

above is restricted to the zero-field case. Recently,
however, it was found that in applying an external
field the dynamics are changed drastically. From
computer simulations Loveluck et al. found a second
resonance besides the usual magnon peak, in the
spectrum of the z component of a ferromagnetic
Heisenberg chain in a magnetic field. '4 They argued
that this is due to the coupling between the longitudi-
nal spin component and the energy density fluctua-
tions. " However, following Reiter et al. , the second
resonance should be a consequence of a divergence
in the two-magnon density of states. ' The antifer-
romagnetic chain in an external magnetic field was
examined by the present authors. ' The six lowest
frequency moments were calculated with the
transfer-operator method, ' for both the longitudinal
and transverse components. The dynamic correlation
functions were estimated by means of the contin-
ued-fraction technique. '9 The most surprising result
was, that for both spin components, the spectrum
showed resonances in addition to the usual spin-wave
peak, even at fairly low temperature. For the longi-
tudinal component, it could be ruled out that the
coupling with the energy density fluctuations is solely
responsible for this phenomenon. Therefore we con-
cluded that many-spin-wave resonances show up in

the spectrum, even at relatively low temperatures. A
complete physical understanding of the observed
features is still lacking at this moment.

A different starting point to treat classical spin
chains is the continuum description. In the continu-
um limit it is possible to take the nonlinearity of the
equations of motion fully into account. Fogedby
showed that the spectrum of the continuum Heisen-
berg ferromagnet is exhausted by spin waves and sol-
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itary waves. For other systems like the planar spin
chain" and the Heisenberg chain in an external
field, "solitary solutions exist. The influence of non-
linear solutions on the dynamic structure factor how-
ever is not clear. At this moment, no satisfactory
treatment of the thermodynamics of these solitary
modes exists. Nevertheless some experimentalists
claim to have found soliton contributions in the spec-
tra of one-dimensional magnets at low tempera-
tures. "" In our opinion, a reliable description of
the effects of the nonlinearity of the equations of
motion on the dynamic structure factor at low tem-
peratures, must start from a spin-wave picture for
two reasons. At zero temperature, only spin waves
contribute to the spectrum, and consequently the
nonlinearity is completely negligible. Furthermore,
nonlinear solutions of the equations of motion can be
represented as multimagnon states. Obviously, at
low temperatures two-magnon processes will be more
important than three-magnon processes, and there-
fore, instead of taking the complete nonlinearity of
certain solutions into account, one should rather con-
sider all two-magnon processes, because it is this part
of the nonlinearity which will affect the spectrum at
low temperatures. The method of Ref. 13 seems to
be most suited for this purpose. In the case of the
Heisenberg chain in zero field, the main influence of
the two-magnon processes, consists in a broadening
of the spin-wave excitation. As we will show, this is
not the case anymore when a field is present, because
apart from a broadening of the spin wave, the two-

magnon processes give rise to additional resonances
in the spectrum. The weight of these resonances
seems large enough in a number of cases to be able
to be detected experimentally.

In the present work we investigate the same system
from a different starting point. In order to calculate
the memory functions we follow the method, pro-
posed by Reiter and Sjolander, ' and extend it to the
nonzero field case. In this way, two-spin-wave
processes are taken into account, and these should be
responsible, at least in part, for the unusual behavior
of the dynamic correlation functions.

In Sec. II we discuss the harmonic approximation.
For the direct evaluation of the dynamic correlation
functions, the harmonic approximation is not very
useful, because it only gives the trivial T =0 limit
correctly. However, we need the harmonic approxi-
mation for the calculation of the memory function.
In Sec. III we use Mori's projection operator formal-
ism in order to express the dynamic correlation func-
tions in terms of their second frequency moments
and their memory functions, and we discuss the low-

temperature expansion of the memory functions. In
Sec. IV we present the results for the longitudinal
and transverse components and we make a compari-
son with our previous work. The conclusions are
summarized in Sec. V. The explicit calculation of the

memory function is given in an Appendix because it
is rather technical.

II. HARMONIC APPROXIMATION

The Hamiltonian of an antiferromagnetic Heisen-
berg chain in an external magnetic field is given by

/Y

H = J X (S„S„+|—hS„')
n I

(2.1)

with J )0, and where h = g p, aB/J is the magnetic
field in reduced units. In the following we put J =1
and we always consider the range of magnetic fields
for which 0 ~ h ~4. Keeping in mind that we only
consider classical spins of unit length, we may intro-
duce spherical coordinates

S„"= (—1)"sin 8„cos(„

Sg = (—1)"sin8„sing„

S„'= cosO„

(2.2a)

(2.2b)

(2.2c)

%e can now minimize the Hamiltonian, and we find
that the ground state is determined by

8„=8 =cos '(h/4); n =1, . . . , N

n=l, . . . , N

(2.3a)

(2.3b)

where g may be chosen arbitrarily. It is important to
note that in the ground state, the longitudinal spin
components order ferromagnetically, whereas the
transverse components order antiferromagnetically.
To obtain the Hamiltonian in the harmonic approxi-
mation, we introduce the new coordinates

$„=8„—8, P„=sin8((„—g)
and we can write

e = E, + ,
'

X [y„' —2 cos(28) 4 —„y„„

(2.4)

X [a (k) /k'-k + b (k) 4k/ —k]
k

a ( k) = 2 [1 —cos(28) cosk]

b(k) =2(1 —cosk)

(2.6a)

(2.6b)

(2.6c)

where we have omitted the ground-state energy and
we rewrite Eq. (2.6) as

X [ QkQ-k/m (k) + m (k) ~'(k) QkQ „],(2.7a)
k

m (k) = 1/a ( k) (2.7b)

~'(k) =a(k)b(k) . (2.7c)

+y.'„+(y. y.„)'], (2—.5.)

Eo= —N(1+2cos'8) = —N(1+ —,h2) . (2.5b)

After Fourier transformation, the Hamiltonian reads
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We also want to examine the spin equations of
motion. In their exact form, these look like

s„'=s„",s»- s~,s„.—s„"s~, +s~s„"„, (2.8a)

where we used S„+=S„"+iS„"Co. mbining Eqs. (2.2)
and (2.8) we obtain

tt„= —[sintt„ t sin(g„ t
—g„)

S„=i(—hS„++S„*,S„+—S„+ tS„' —S„'S„++t + S„+S„'+()

(2.8b)
~0~ ~ ~3

h=0
h=1
h=2
h=3
h=4

r
r

I

I
II ~ r ~gal 1W

I ~rIII
I

II~'
I

1'I
I—sintt„+t sin(g„—g„+t) ] (2.9a)

yk h(k)4k 4k a(k)4k (2.10)

g„=—h +costi„ t + costi„+)

+cott)„[sine„ t cos(g„ t
—(„)

+sinH„+tcos(g„—g„+t)] . (2.9b)

We can expand H„and („ to lowest order in P„and
and if we then perform a Fourier transformation,

0

we get the linearized equations of motion 0
mi4 m/2

k

3'./4

We are interested in the dynamic spin-correlation
functions

Ck(t) —= (Sk(t) S"„(0)) + (S)(t)S~k(0) ) . (2.11a)

FIG. 1. Dispersion relations for the longitudinal spin
component for different magnetic fields. The dispersions for
the transverse component are obtained by replacing k by
k"= n —k.

Ck ( t) =—(Sk ( t) S*
k (0) ) —N (S') Sk 0 (2.11b)

where P= I/T(ka =1). We then have

Ckk(t) = Ci(0) cos[Q(k) t]

Ck(t) = C„*(0)cos[ru(k) t]

with

(2.13a)

(2.13b)

We obtain these correlation functions in the harmon-
ic approximation by using Eqs. (2.2) —(2.4), expand-
ing Eqs. (2.11) up to lowest order in P and $, and by
using the well-known results

(2.12a)

(2.12b)

in a more complicated manner on both normal coor-
dinates @q and P, it also oscillates harmonically for

T 0. Its frequency Q(k) is not identical to the
harmonic frequency cu(k) but it is shifted over a
wave vector n. Physically speaking this is a conse-
quence of the antiferromagnetic ordering of the
transverse component in the ground state.
Mathematically it is expressed in the transformation
Eq. (2.2) by the factor ( —I)", which leads to a shift
over m after Fourier transforming. In Fig. 1 we have
plotted co(k) for different magnetic fields.

III. DYNAMIC CORRELATION FUNCTIONS

(2.14b)

n(k')= (k),
k =m —k

(2.15)

(2.16)

Ckk(0) =—[cos28/a(k") + I/h(k")], (2.14a)
p

Ck (0) = sin'e/pa (k)

For the calculation of the dynamic correlation func-
tions we use Mori's projection operator technique as
.a starting point. ' We start with some basic defini-
tions. The time evolution of a dynamic variable A is
determined by the Liouville operator L in the follow-
ing way:

The main results of this section can be summarized
as follows. In the limit T 0, the longitudinal spin
component Sf, performs a harmonic oscillation with

frequency given by Ot(k). This is easily understood,
because at low temperature Sf, reduces to the normal
coordinate pk as can be seen from Eqs. (2.2c) and
(2.4a). Although the transverse component depends

(AB) = (A+B) —
, (A+) (B) (3.2)

The time-dependent correlation functions can then be

LA = —iA = —i (AH]

where the curly brackets are the Poisson brackets. It
is convenient to define
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written as

Ca(t) =($a(t),sa(0)) =(Sa,e 'Ltsa)

and after Laplace transforming we find

C (z) = —i t Cte'"C (t)e q

(3.3)

contribution is equivalent to omitting the Q operators
in the time evolution. Thus we have

(QL2$ a ( QLQ) 2nQL 2$ a) ( QL 2$ a L 2nQL 2$ a)

+ O( T'), (3.11)

or, equivalently,

=(S, , (z —L) 'Sq); z=ru+ie . (3.4)

where (cq2)q is the second frequency moment and

Xq (z) is the memory function and the explicit ex-
pressions read

(Lsq, LSq ) (Sq, Sq )

(Sa Sa) (Sa Sa) (3.6)

Xq(z) (LSq Lsq )

x (QL'S, , (z —QLQ) ' QL'S, ) . (3.7)

The second frequency moments can be calculated

rigorously for all temperatures and wave vectors by

means of the transfer operator method. ""The
main problem in the evaluation of the memory func-

tion is that its time evolution is determined by QLQ,
where Q is the projection operator which projects on

the nonsecular variables and which is defined by

Following Mori we can write C, (z) as

z+X;(z)
C, (z) = Cq (t =0), , (3.5)

Z +ZXq Z et) q

Ma(t) =(QL $ae', 'QL$,a) yo(T ) . (3.12)

In Ref. 13 a detailed proof of Eq. (3.12) is given in

the case of a Heisenberg chain in zero field. The ad-

vantage of Eq. (3.12) is that we can use the harmonic
approximation for the evaluation of the lowest-order
term. The explicit evaluation of Mq (t) is given in

the Appendix. It is worth noting that the relation
(3.12) can be obtained directly in frequency space.
Defining

Aa(z) = —(LS,LS ) '(QL'S, (z —L) 'QL'S )

(3.13)

one can derive the exact relation

(Z2 (N2) a) Xa(Z) = (Z2 (K2) a) Aa(z)

+ z A, (z) X, (z) . (3.14)

Knowing that

Xa(t =0) =Aa(t =0) = („4)a/(„2) a („2)a~ T

(3.15)

(Lsq, Aq) (Sq, Aq)
A =A — LS, — Sq . (3.8)

(LS,LS ) (Sq, Sq )

and expanding in the temperature one finds

X, (z) = Aq (z) + 0 ( T'); z = u+ Li e . (3.16)

Let us write the memory function in time space as

X;(t) = (LS;,LS;) 'M;-(t), -

M (t) =(QL S,e to ~'QL S )

(3.9a)

(3.9b)

We can show (see Appendix) that in the limit of low

temperatures (LSq, LSq ) cn, Tand Mq (0) ~ T2. Con-

sequently Xq (t) vanishes proportional to T For non-.
zero times we write the Taylor expansion of M, (t):

M (t) = X (QL S, (QLQ) "QL'S )
(2n)!

(3.10)

Now each term can be expanded in a temperature

series, and to lowest order it must be quadratic in T.

It can be shown that keeping only the lowest-order

Strictly speaking, Eq. (3.16) only holds when the
lowest-order term of Aq (z) is not too large. Howev-

er, if there are points in frequency space where this
term becomes very large or even divergent, an ex-
pansion is not allowed anymore and the Q operators
in the time evolution should be taken into account.
The results (3.12) and (3.16), can therefore be con-
sidered as being exact only in the following sense:
The Taylor expansion of Eq. (3.12), or equivalently
the asymptotic expansion of Eq. (3.16) gives all the
expansion coefficients exact to lowest nonvanishing
order in the temperature.

We now turn to the discussion of the result for

Xq (z) for the special case h =2J2 for which we can

give the analytic result. For this purpose we must
take the Laplace transform of Eqs. (A29) and (A32)
glvlng

XL (z) = —4T l(c,u)(z' —2)) 'i'+ I( cu)(z' —)i2,) ' '—
3-cosq

t n

——(3+4c —4c )u +2 — u +2, , uq1 4 2 5 —C —C 4 1+e
Z I —c2 ( I 2)2

(3.17)
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X'(z) = —2T(1 —cosq) K(e,u)(z —)t2) ' +K(—e, u)(z2 —)t ) '/'+ —2(3+2e')u —2 u41 (1+6e'+ c')
Z (1 c2)2

t .

(3.18)

z
u =—;)tt =2hcos —;h.2=2hsin —;c =cos—;h =2&2I]' 4' 4' 2' (3.19)

1(e,u) = [(1+c) (1+e —c') —(2 —c) u2]2+ c-
1+c

r

K(c,u) = 2 —c —— u
1 —c
1+c

(3.20)

(3.21)

We see that the memory functions diverge for z = A.] and for z = ~2. This is a consequence of a divergence in the
two-magnon density of states

dk

dO~
(3.22)

where 0+, given by Eq. (A26), now reduce to

0+(k,q) = )tt sin —;0 (k, q) = h.zcos-k k
(3.23)

The quantity of interest however is the dynamic structure factor Cs («t), which is the imaginary part of Ca (z) and
which is given by

(~2) aXa (~)
C, («t) = C, (I =0)

[~2 (~2) +Xa ()]2+ [~Xa (~)]2
(3.24)

I II
where X4 («t) and X4 («t) are the real and imaginary

part of Xs (z). In Fig. 2 we have plotted Xst (ta) and
C42(«t) for q =3rr/4 and h =242. From Eq. (3.24)

II
we see that C42(«t) is zero when X42 (ru) diverges and
in this way a second resonance near «t = )t2(q") orig-
inates. The effect of the divergency at to= h.t(q')
on C42(«t) is too small to be seen on the same scale.

For h =242 we have «t(q) = h ~sin(q/2) ~, and there-
fore we have for all wave vectors

«&(q) -)tt(q); «t(q) -)t2(q); h =242 . (3.25)

Consequently, for h =242 only the high-frequency
part of the spectrum is affected by the divergencies in
the memory function. For h =0 we reobtain the
result of Reiter and Sjolander' for the antiferromagnet

Cq (ta)) h 2 W2

——Z~" l~) q=3~W.
)I
(I
(I
)I
I

Il

I

) I

I
C

I
I

I

I I
I
I
Ir~ t

~ «'aIS»» ~ala+ I I

3 I. 5

FIG. 2. Dynamic correlation function and imaginary part
of the memory function of the transverse component for
h =242 and q =3rr/4. The ordinate differs for both curves.

X (z) = ——[z —(z' —f22)' '+ —' IIf(z' —02) ' ']

(3.26)

with Dt and 02 given by Eq. (A28). We now have

~(q) =2~stnq~; ~(q) f)t(q);
«t(q) ~ I)2(q); h =0 (3.27)

IV. NUMERICAL RESULTS

In Eqs. (A17) and (A18) the results for the
memory functions in time space are presented. The

For a detailed discussion of this case we refer to Ref.
13. We only remark that as for h = 2J2 divergencies
in the memory function only occur at frequencies
larger than the spin-wave frequency.
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where P stands for principal value, we can write
G(z) =R(co) +il(r ) with

1 1R («)) = P—de (k)
rr «co+ 0(k)

1(cu) =- Jt dkA (k) 5(«) + 0(k))

(4.3)

(4.4)

In order to integrate Eqs. (4.3) and (4.4) numerically
we used the linear analytic method as proposed by
Gilat. " The method essentially consists in dividing
the Brillouin zone in small intervals. In each interval
A (k) and 0(k) are replaced by a linear approxima-
tion and the integral over the interval is evaluated
analytically. The advantage of the linear analytic
method is that it allows a simultaneous high-accuracy
calculation of R («&) and 1(ca).

%e now turn to a discussion of the results for
h =1. Let us first reconsider Eq. (4.4). If we change
the integration variable from k to 0(k) we see that
l(r«) diverges whenever d 0(k)/dk =0, or equiva-

integration over the Brillouin zone can easily be done
numerically by replacing the integral by a sum over
discrete points k„=2rrn/W I.n this way Xg(t) can be
determined to any desired precision. As an example
we have plotted X;(t)/Xq(0) for q = m/2 and h =1
in Fig. 3. However, for the calculation of frequency-
dependent quantities, another numerical technique is
required. If we take the Laplace transform of Eqs.
(A17) and (Alg) we end up with integrals of the
form

1F
1G(z) =— de (k) z = co+ i « . (4.1)

m' z+0(k) '

Using the well-known identity

lim- j.
i ~g(—~+ 0(k)),

~ «+ co + 0 (k) +i e co + 0 (k)

(4.2)

h=1

q =3m/4

'0 m/2

k

3m/4

FIG. 4. Two-magnon dispersions 0+(k,q) for A =] and

q =3m/4 and as a function of the wave vector k.

lently whenever the density of states ~dk/d 0(k)
~

diverges. Let us demonstrate this effect by a specific
example. In Fig. 4 we have plotted 0+ and 0 as
defined by Eq. (A26) for q =3m/4 and as a function
of k. If we define the two-magnon density of states
by

dk

d 0+(k) (4.5)

we see from Fig. 4 that n diverges for co =0.6 and
co =3.6 and n+ diverges for co =3.8. Figure 5 shows
X,* (ru) for the same parameters. Besides the three
divergencies we observe a broad resonance around
ao =2. This is due to a decrease of the slope of 0+ in

1.0

E'(t)/E lo)

2.0

III
$q tM)

1.5-

h=1
q =3m/4

-05-

il i) il gtj
1.0

0.5

-10
0 10

t

I

15 20
00

FIG. 3. Time-dependent memory function of the longitu-
dinal component for // = I and q = m/2.

FIG. 5. Imaginary part of the memory function of the
longitudinal component for h = j. and q =3m/4.
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this frequency region. We conclude that we can

understand the main behavior of Xq (co) from the
two-magnon dispersions 0+, altho gu h for an explicit

P&R S,evaluation the knowledge of the functions
F, and G, Eqs. (A20) —(A25), is required. In igs.
6—9 the dynamic structure factor for both com-
ponents is shown for T =0.1 and T =0.2 and for
q =15rr/16, q =7rr/8, and q =3rr/4. We observe

densit of statesthat divergencies in the two-magnon dens' y
give rise to additional peaks, besides the usual spin-
wave resonance. It is important to note that two-
magnon resonances also show up in the low-

frequency part of the spectrum. This is not the case
for h =0 and h =242 as already discussed in Sec. 111.
Resonances that occur at frequencies lower than the
spin-wave frequency have generally more weight than
resonances that occur at higher frequencies and
therefore they should be more accessible for experi-
mental measurement. Another important point is the
fact that the two-magnon resonances are present at
any nonzero temperature, although the spin-wave
resonance gains more weight when the temperature is
lowered.

In Ref. 17 we examined the antiferromagnetic
Heisenberg chain in an applied field, starting from
the continued-fraction method and the exact
knowledge of the six lowest-frequency moments for
b h th longitudinal and transverse component. We

in thefound second resonances for both components in

low-frequency range even at fairly low temperatures.
Obviously these peaks correspond to the two-magnon
resonances at the left of the spin-wave peak in Figs.
6—9. The quantitative agreement between the two
approaches is very poor because the continued-
fraction method gives only a rather crude approxima-
tion for the dynamic structure factor and fine details
are smeared out in this approach. On the other
hand, the continued-fraction method is not restricte

10

8.
Cq ((II)

h=1
T=02

2 I/

q = 15'/16——- q= 7m/8
———- q= 3m/4

II
II
jl

I
II!i
! i
I

! i
! i! i
! i

i
j I

j I

j I

I

I
I
I
I

I
I

~OP
1s

IC I
00 05

' '10
Itjl

1.5

FIG. 7. See Fig, 6 but now T =0,2.

h = g psH/lilS(S +1) (4.6)

and a simple calculation shows us that h =1 corre-

to low temperatures because it also takes many-spin-
rocesses into account. The present theory

con aitains only two-spin-wave processes an pro a y
dbthe sharp two-magnon resonances will be rounde y

higher-spin-wave processes.
We have restricted the numerical results to one

particular value of the magnetic field (h =1, be-
cause as far as we know there exist no experimental
studies of the dynamics of a one-dimensional isotrop-
ic antiferromagnet in an external field at the mo-
ment. A substance for which such experiments are
possible in principle is TMMC [(CD3)4NMnC13].
This one-dimensional antiferromagnet has a spin
S = —and an exchange parameter J =-13 K. As the2

spin value is rather large, one may expect a classical
approach to give good results. The reduced magnetic
field is defined by

15- h=1
T =0.1

Cq ((I))

10-

]rl
~ a& I

0
0.5

q = 15m/16——— q= 7m/8-- —— q= 3m/4

i
jl
II
II
II
II
II
I

I

Ii!i!
I

; i

j I
I

I I
I! I
I i
I I! I

I
'I

4-

Cq (jI))

3

rrr
~ r

saw~

'0 0.5

h*1
T =0.1

q = 15m/16---- q= 7a/8——-" q= 3m/4I i
I

\

I I
I I
I

ll

I I
I II

I
j I

I I I

I
i

I
I i

I ! 'i i
'I .I U!

.r .
I

I

1Q 1.5 20

FIG. 6. Normalized dynamic structure factor of the z
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FIG. 9. See Fig, 8 but now T =0.2.

tion, oscillating undamped at zero temperature, can
be calculated with this method and the result is exact
to the extent that it gives all the frequency moments
exact up to lowest nontrivial order in the tempera-
ture. Therefore, the following conclusions are not
restricted to one particular system. Our results clear-
ly show that one should try to understand nonlinear
effects, sho~ing up in the dynamic structure factor,
in terms of two- (or multi-) magnon processes, in
particular if these effects are observed at low tem-
peratures. A theory starting from a continuum
description and some particular nonlinear solutions of
ihe equations of motion (like solitons or breathers),
cannot give a reliable estimate of the influence of
these specific solutions on the dynamic structure fac-
tor. Figure 7 demonstrates that one should be care-
ful in interpreting quasielastic peaks as being due to
solitons.

sponds to a magnetic field H =250 kG. As the ex-
perimental limit lies around 50 kG or maybe 100 kG,
we should consider values of h =0.2 or h =0.4, to
get results that are also accessible experimentally.
One can however easily discuss any h value more
closely, by examining the two-magnon dispersions
0+(k,q), as given by Eq. (A26). Indeed, the loca-
tion of two-magnon resonances in the spectrum, is

simply given by those frequencies for which

haft+(k,

q)/ek =0. Obviously, two-magnon reso-
nances will occur in the spectrum at frequencies
lower than the spin-eave value for any nonzero mag-
netic field, although the effects will be more prom-
inent for larger magnetic fields.
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APPENDIX

In Sec. III we found that the functions

it(a(r) =(QL&Sa e ~«QL&Sa) ~'=J g (AI)

V. CONCLUSIONS

%e have presented a detailed account on the low-

temperature dynamics of the antiferromagnetic
Heisenberg chain in an external field. At zero tem-
perature the longitudinal, as we11 as the transverse
spin component exhibits undamped oscillations, be-
cause the memory function, which is responsible for
damping effects, vanishes proportional to the tem-
perature for T 0. More explicitly, to lowest non-
vanishing order in the temperature, only two-spin-
wave processes contribute to the memory function.
Two-magnon resonances show up in the spectra at
those frequencies where the two-magnon density of
states diverges. Mostly, the weight of these reso-
nances is rather small. Ho~ever when they occur at
frequencies, smaller than the spin-wave frequency,
which is the case for moderate magnetic fields, their
~eight may be large enough to be detected experi-
mentally.

It is obvious that other one-dimensional magnetic
systems can be treated with the same method, which
was first employed by Reiter and Sjolander for the
zero-field case. ' In particular, any correlation func-

need to be evaluated to lowest nonvanishing order in
the temperature. This means that the time evolution
exp( —iLt) may be replaced by the harmonic time
evolution, which is determined by Eq. (2.10), and
that the expectation value may be evaluated with the
harmonic Hamiltonian (2.6a). In QL~S, we must
take the full Liouville operator L into account, but
we can expand QL'Sg in the normal coordinates Pq
and $k and we must only retain the lowest-order
terms, which are quadratic in the normal coordinates.
The projection operator Q can be worked out explicit-
ly

Q 2SLaL2Sa (~2) aSa (A2)

QL2SZ L2SS ~2(q)Sz (A4)

To get the explicit expressions we need the equa-

and the second moment (oP) g can be replaced by its
zero-temperature value, because the first correction is
proportional to T, which leads to higher-order terms.
Thus we have, consistently to lowest order

QL~S a =LtS a —cu (q)S a; a=xy; q =7r —q
ig lg

(A3)
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tions of motion (2.10) to be extended to second order in the normal coordinates. The results read

1

1
LI}tq = —Ib(q)fq+2I cotH X cosq cos k + I}tkyq/IQ k+q/I

N

L $q =kt (q) IIIq
—2/ CotH r X Cos COSk —COS —$k+q/I$

vN k 2

+ (I cos cosk stn H cosq) I}ltr+q/II}I k+q/I—

With Eqs. (A3) —(A6) it is straightforward, although very tedious, to obtain

QL'6'"q = ~ X[&(kq)4k+q/I4 k+q/I+v-(kq)4k+q/24 k+q/—I]
vN

QL'6'" = —X~«.H)e. +./I4 k+, /I . -I
N

(AS)

2 sQL ~q = ~ X [f (k.q) ItIk+q/IIII k+q/I +g(-k It) I}tk+q/II}I k+q/I]-

r

u(k, q) =SsinHcos —cos——cosk 1 —cos—cos—+cosk
2 2 2 2

r

v(k q) = 8 slnH cos cos—sin + I + 2 cos Hsln —cosk cos(2H) cos—cos k
2 2 2 2 2

I

k 0 . k 0 . C k
Iv(k, q) =16sin(2H) cos—sin ——— sin ———cosk —sin —cos ———

2 2 4 2 4 2 2 4

(Alo)

f(k, tt) =4cosH(l -cosq) cos'k -cos— (A13)

I

g(k, q) =4cosH(1 —cosq) 2sin H —cos—+cosk cos——cos(2H) cosk2

2 2

The reader might be surprised that in combining Eq. (Al) with Eqs. (A7) and (AS) one finds Mq(t) 4 M, (/)
This is because Eqs. (A7) and (AS) were obtained by expanding around / =0. Evidently we might have chosen

any other direction in the xy plane, because of the continuous symmetry in this plane. Therefore one can use

EBLIS. (A7 and AS) only for the calculation of quantities that are fuliy symmetric themselves, such as M~~(t)

=Mq(t) +MqI'(t) In orde.r to get the memory functions comPletely we see from Etl. (3.9) that we also need the
quantities (LS~,LS~ ) To lowest order . in the temperature one finds

(LSD,LSD ) =2T[ cos'H(1 —COSH) +1 cos—(2H) cosq]

(LSq', LSq) = 2 T sin'H(l —cosq)

Using Eqs. (A7) —(A16) and the results of Sec. II we finally obtain for the memory functions (3.9)

(A15)

(A16)

X~q(t) = —Cq—X [[(P—Q)I+ (R +S)I]cos(ft+t) + [(8+Q)I+(R —5)I]cos(II t) }
1

X,'(t) = —C,—X [( FG+) Ic(osItI) +(F—6)'cos(II t)]I (AIS)
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with Cq, C„P, Q, R, S, F, G, and II+ given by

Cq=4Tsin'tt(1+cosq)/[cos'tt(1 —cosq) +I —cos(28) cosq]

C, =2Tcot20(1 —cosq)

(A19a)

(A19b)

q qP = j. -cos—cos—+cosk
2 2

t t

Q =2 cos—sin —+ I +2cos csin —cosk —cos(28) cos—cos~kq

2 2 2 2

1 i/2

a k+ —a k ——
2 2

(A20)

(A21)

t

R =2cos8 sin-k
2

S=2cosH sin-k
2

t

q k q——cosk —sin —cos ———
4 2 2 4

q k+—cosk +sin —cos —+—
4 2 2 4

t i/2

a k+-q
2

1/2
qa k ——
2

(A22)

(A23)

F =cos—+coskq

2

a k+ —a k ——
2 2

G = 2 2 sin'e —cos—+ cosk cos——cos(28) cosk
q

'

q

t 'I ' t i/2 r t &/2

k q q . k0+=2sin —+—a k+ — +sin ———a k ——
2 4 2 2 4 2,

1/2

(A24)

(A25)

(A26)

In two special cases the integrals in Eqs. (A17) and (Alg) can be done analytically. In the zero-field case h =0
we obtain

, q J&(Ott), q
X~(t) = —8T sin2 — +cos4—Jp(02t)

Art 2
(A27)

A~ =4 sin —;02 =4 cos—2' 2
(A28)

where X=(M~+M')/[(LS~, LS~) +(LS',LS*)], and where Jp and Jt are the Bessel functions. This is the result
of Reiter and Sjolander, which they have discussed extensively. " For h =2&2, the spins make an angle —w with

the z axis in the ground state. For the transverse component we have

X~,(t) = —4T(1+cosq) [1(c,u) + I( c, v)]/(3 —cos—q) (A29)

d2
1(c,u) = (1+c)(1+c—c2) +2(1+c)(2—c)

dEl
t

1 'I

d2 d2—2(1+c) c+2 Jp(Q)
dy2 dp2

(A30)

t 1

c =cos—;u = 2h cos—t; v= 2h sin —t; h =2%22' 4
'

4
(A31)

and the longitudinal component reads

Xp(t) = —2T(1 —cosq) [K(c,u) +K(—c, v)]
t

K(c,u) = 2 —c'+2(1 —c) Jp(M)
dQ

(A32)

(A33)
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