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Phenomenology of first-order phase transitions

Solomon Gartenhaus
Physics Departtnent, Purdue University, West Lafayette, Indiana 47907

(Received 11 December 1980)

A phenomenological description of first-order phase transitions is proposed in terms of the
solution of a certain linear, first-order, partial differential equation suggested by Fisher. In the
asymptotic region of the critical point, the coefficient functions of the equation are uniquely

determined by the scaling laws. The imposition of the further requirement that the phase boun-

dary coincide with a characteristic curve of this equation is shown to lead to solutions that can

reproduce the singular behavior —for example, the density and entropy discontinuities for the

case of the liquid-gas transition —along the entire vapor-pressure curve. The important role

played by the characteristic curves is stressed and confirmed for the special case of the ideal, d-

dimensional, Bose gas. New relations involving discontinuities in the second derivatives of the

thermodynamic functions are derived and shown to be useful in obtaining the coefficient func-

tions near the phase boundary. Details are presented for the case of ferromagnetic and fer-

roelectric systems and include a comparison with experiment.

I. INTRODUCTION

A few years ago, Fisher' proposed a new way to
approximate the singular behavior of thermodynamic
functions in the region around a multicritical point.
In this method, which is a multivariable generaliza-
tion of the "D log" Pade technique, ' the critical
behavior of the system is approximated by the ap-
propriate solution of a certain linear, first-order, par-
tial differential equation with polynomial coefficients,
the multicritical point itself being defined by the
simultaneous vanishing of those polynomial coeffi-
cients which multiply the derivatives of the thermo-
dynamic function. As a point of interest, Fisher
called attention to the fact that in the asymptotic re-
gion of the singular point, this partial differential
equation bears a strong resemblance to equations of
the "scaling" type, familiar in renormalization-group
analyses of critical behavior. 4

The purpose of the present work is to show that, in

a slightly modified form, Fisher's equation also lends
itself to a phenomenological description of first-order
phase transitions, in a region near the phase boun-
dary. For the case of the liquid-gas transition of a
one-component system, for example, the proposed
phenomenology is intended to be applicable in the
low-temperature region around the vapor-pressure
curve, and to extend upward to that around the criti-
cal point and beyond. That the thermodynamic
behavior of the system at the critical point itself can
be correctly described by this method was shown by
Fisher. Hence, to obtain a phenomenology applica-
ble throughout the larger region including that
around the vapor-pressure curve, it is necessary to

establish that the equation also has solutions which
have the appropriate discontinuous derivatives along
the phase boundary. As will be seen in Sec. III, this
feature is easily achieved but requires a further as-
sumption. The assumption that we choose here in-

volves the coefficient functions and restricts their
form so that one of the characteristic curves of the
equation coincides with the vapor-pressure curve.
That this somewhat unusual assumption is not entire-
ly random will be seen in Sec. II where the ideal Bose
gas is considered from the present point of view.

The critical point, which is the only point of the
vapor-pressure curve associated with long-range ther-
mal fluctuations and thus with infinite values for the
specific heats, the isothermal compressibility, etc. ,
will be seen to play a central role in our considera-
tions. It constrains, in significant measure, the allow-

able forms of the coefficient functions in the equa-
tion and exerts a strong influence on the geometrical
properties of the characteristic curves and of their as-
sociated solutions. Of particular interest is the fact
that the analyticity requirements that we impose on
these coefficient functions are not compatible with
different values for the critical exponents of corre-
sponding quantities above and below T, If, for ex-
ample, experiment were to show that any critical ex-
ponents, say y and y' for the isothermal compressi-
bility above and belo~ T, , respectively, were dif-
ferent, then the phenomenology as here proposed
would require significant modification.

Another distinctive feature of the proposed
phenomenology is associated with the fact that the
solutions of the underlying partial differential equa-
tion involve, in general, an undetermined function of
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a single variable. As a consequence, all formulas for
thermodynamic functions obtained by its usage are
incomplete and generally require additional data for a
full specification. In the asymptotic neighborhood of
the critical point, this incompleteness is not unex-
pected and is naturally identifiable with the scaling
function. The fact that outside of the critical region
the solutions also involve an undetermined function
is not as readily interpretable. Nevertheless, the ex-
istence of undetermined functions in the solutions
of the equation seems to be an inherent part of our
scheme, and may be responsible in large measure for
the "washing out" of details that makes the proposed
phenomenology possible at all.

The details of the phenomenology are presented in

Sec. III and follow an introductory discussion of
some of the underlying ideas in terms of the ideal
Bose gas in Sec. II. Section IV contains details of the
key arguments regarding the discontinuities in the
derivatives of the thermodynamic functions. The
problem of determining the coefficient functions is
considered in Sec. V, where it is shown how this can
be achieved in terms of a knowledge of the discon-
tinuities of the second derivatives of the Gibbs func-
tion along the vapor-pressure curve. Finally, in Sec.
VI we apply this method to ferromagnetic and fer-
roelectric systems and are able to make a direct com-
parison with experimental curves for the spontaneous
magnetization and the spontaneous polarization for
particular materials.

with s a suitable parameter. Given any initial point
with coordinates (xp,yp, Fp), then in terms of running
parameter s, the solution of Eq. (2) defines a charac
terisric curve, (x(s),y(s), F(s)) in the space with

coordinate axes xyF. For future reference it is con-
venient to recast the first two of Eqs. (2) into the
simpler form

ay R (xy)
dx Q(x,y)

(3)

whose solutions are the projections of the characteris-
tics into the xy plane.

Consider now the ideal Bose gas. It is well known
that if the temperature of a fixed amount of this gas
is lowered isobarically (or isochorically) then at a cer-
tain temperature T, (P) [or T,(n)] the gas particles
find it more favorable to condense into the ground
state. Macroscopically, this manifests itself in a

phase transition with phase boundary along the curve
T = T, (P)' [or T„(n)]. Figure I shows schematically
some of the isotherms of the Bose gas which is
known to have discontinuities in the second deriva-
tive (BzP/Bnz) along the phase boundary (the dotted
curve). The physical significance of this plot is that if
along a given isotherm the density n = 1/ Vis in-
creased to values of n ) np(T), where np(T) corre-
sponds to the dotted line, then the added particles go
into the ground state and do not contribute to the gas
pressure P.

The thermodynamics of the ideal Bose gas can be
calculated in the conventional way from

II. IDEAL BOSE GAS kT
V

gin(1 —ze a') (4)

To introduce some of the main concepts underlying
the proposed phenomenology in this section we con-
sider a formulation of the ideal Bose-Einstein gas in

terms of Fisher's partial differential equation.
Consider a physical system whose thermodynamic

description involves two independent variables. Let
us recall that for this case, Fisher's equation has the
form

Q(x,y) +R(x,y) =P(x,y)F, (1)9F 9F
8x

'
8y

where x and y are the two independent variables,
F = F(x,y ) is the sought-for approximation for a

thermodynamic function, and where Q, R, and P are
appropriate polynomials in x and y, to be determined.
The multicritical point is defined by the simultaneous
vanishing of Q and R; that is, by the condition

Q = R =0. It is generally convenient to assume that
the multicritical point is at the origin at x =y =0.

By contrast to the linear form of Eq. (I), the
characteristic equations associated with Eq. (I) are in

general nonlinear. They are defined by the system of
ordinary differential equations.

—= Q(xy); —=R (xy); = P(x y) F, (2)dx dy d'F

ds
' '

ds
' '

ds

n= —X
1 z

V e' —z

where P, n, and V are the gas pressure, density, and

Jt

p

V= I/n

FIG, 1. Schematic of the isotherms for the ideal Bose-
Einstein gas. The dotted curve represents the phase boun-

dary.
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volume, respectively, k is Boltzmann's constant,
P= I/kT, and z, the fugacity, is related to the chemi-
cal potential p, by p, =kTlnz. %'e assume that the
single-particle kinetic energy is g'q'/2m and that in

the thermodynamic limit, sums may be replaced by
integrals in the usual way6

J)ddq(2')" (6)

where the exponent "d" signifies the dimension of
the system. Since there is go Bose Einstein conden-
sation for dimension d ~2, it is of particular interest
to carry along the parameter d in order to see how
this fact manifests itself in the present formulation.

To obtain, for the Bose gas, an equation of the
Fisher form in Eq. (I), imagine eliminating the fuga-
city z between the two formulas in Eqs. (4) and (5)
to obtain an explicit formula for the surface
P —= P(n, T). If we make use of Eq. (6) it is straight-
forward to verify that this formula for P(n, T) satis-
fies the equation

2 TgP d BP Pd+2 QT d+2 Bn

exactly! As anticipated, this is precisely of the Fisher
form in Eq. (I), with T and n being here the in-

dependent variables and with the polynomials g, R,
and P having the very simple forms implied in Eq.
(7). In principle, the surface P(n, T) can be ob-
tained directly by solving Eq. (7) subject to appropri-
ate boundary conditions.

That the similarity in form between Eqs. (7) and

(I) is not coincidental can be verified by deriving, for
the ideal Bose gas, the corresponding equations for
other thermodynamic quantities. Thus with T and n

the independent variables, as in Eq. (7), it is easy to
confirm relations such as

we have relationships such as:

TBG 1+ d PBG =G
9T 2 (jP

T + 1+2 9P
BCp d BCp

gT
(13)

dn n d
dT T 2

(14)

and this integrates to

n =CT"" (15)

each of which is also of the form in Eq. (I). Here,
G —= WkT lnz is the Gibbs function, E is the energy,
and Cp is the specific heat at constant pressure. As
for the above case with (nT) ,the independent vari-
ables, these relations are not independent. Thus Eq,
(13) follows from Eq. (12) by differentiation with

respect to T Moreov. er, Eq. (11) can also be ob-
tained directly from Eq. (8) by carrying out the ap-
propriate Legendre transformation. It should also be
emphasized that each of Eqs. (7)—(13) is valid on
both sides of the phase boundary. Thus since
(BP/Bn) r =0 in the region of the condensed phase,
to the left of the dashed curve in Fig. 1, it follows
from Eq. (7) that consistent with known results' in
this region, P = C T '+' with C a known constant.

A very important feature of the above partial dif-
ferential equations follows by comparison with Eq.
(3) and noting that the projections into the nT plane
of the characteristic equations of each of Eqs.
(7)—(10) [or equally of each of Eqs. (11)—(13)j are
indentical. Substitution into Eq. (3), we obtain for
the characteristic equation of, say, Eq. (7)

T93 d QA

9T 2 Qn

T 9S d 9S
QT ~ 2 ()n

(8)

(9)

Co ——(27f mk//)t'~ ((d/2) (16)

with C a positive constant of integration. Of particu-
lar interest is the fact that the phase boundary for the
ideal Bose gas is precisely one of the curves in Eq.
(15). It corresponds to the choice of C = Co where

8Cy d 9Cy+ —n
BT 2

I
8tl

(10)

with A the Helmholtz potential, S the entropy and
C~= T(BS/BT) y the specific heat at constant
volume. It should be noted that these three relations
are not independent. For the derivative with respect
to Tof Eq. (8) yields Eq. (9) and similarly Eq. (10)
can be derived from Eq. (9) by use of the definition
of Cy.

In the same way, with P and T as independent vari-

ables, we can easily show that for the ideal Bose gas

As noted in Sec. I, it is just this feature, namely, that
the phase boundary coincide with one of the charac-
teristics, that we find essential for our treatment of a
real gas. The-characteristics and the phase boundary
in the PT plane, are P = CT"+"~ ' and can be ob-
tained in a similar way by use of Eqs. (11)—(13).
These are only of passing interest here and will no
longer be referred to.

Figure 2 shows schematically some of the charac-
teristics in.Eq. (15), in the nT plane. Part (a) depicts
the situation for d ) 2 and part (b) for d ( 2. Since
both n and T are inherently positive, the characteris-
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FIG. 2. Some of the characteristic curves of the ideal

Bose gas in the nT plane for dimension d & 2. (a) and

d &2 (b).

ties are, as shown, confined to the positive quadrant
of the nT plane. Particularly noteworthy is thc fact
that each characteristic is associated with a eonstant-
entropy process. For reference to Eq. (9) shows that
its most general solution is

with. fan arbitrary (differentiable) function. Thus, as
the system traverses along the characteristic, n = CT~~2,

its entropy does not change. Equivalently, this can
be described by the statement that maximum entropy
changes are associated with traversals along the
orthogonal trajectories of the characteristics; that is
along the concentric ellipses of eccentricity
[1—(2/d) I'/z for d & 2, or [1—(d/2) ]'/' for d ~ 2.

Also of interest for our more general discussion in
the ensuing sections are the solutions of the partial
differential equations (7)—(10). As typical, consider
Eq. (7). By direct substitution, it can be confirmed
that its solution is of the form

P(g T) T(1+4/z)f(~/Td/z)

able to gloss over some of the details included in the
undetermined function, f.

Another point of interest associated with the above
analysis has to do with the fact that even though Eq.
(7), say, may describe a physical system correctly, it
does not necessarily follow that its solution must of
necessity have discontinuous derivatives along a
characteristic. Nor indeed that the system undergoes
a phase transition at all! For as wc know, thc
phenomenon of Bose-Einstein condensation for the
ideal gas takes place only in dimension d & 2. Yct
the formulas above fail to make any significant dis-

tinction between the cases d ~ 2.

In connection with this last point it is of interest to
note that an analysis of the above type but for the
ideal Fermi-Dirac gas shows that each of the Eqs.
(7)—(13) is also valid for this system of Fermions!
And yet we know that for the ideal Fermi gas there is
no phase transition in any dimension. The explana-
tion, as above, is that the use of, say, Eq. (7) to
describe the thermodynamic behavior of a system
does not necessarily mean that it must undergo a
phase transition. But only that if it does, then the
phase boundary must lic along a characteristic.

Although not directly germane to the present dis-
cussion, it is also of interest to point out that the
ideal Boltzmann gas is also described correctly by
Eqs. (7)—(13)l Thus, each of the partial differential
Eqs. (7)—(13) is applicable to each of the three
types —Bose-Einstein, Fermi-Dirac, and Boltz-
mann —of physically significant ideal gases. The
difference between these gases manifests itself only
insofar as the undetermined functions which appears
in the solution of these equations are different.

III. GENERAL FORMALISM

where f is an undetermined function. For the partic-
ular case of the Bose gas, this undetermined function
can, in principle, be uniquely determined by use of
Eqs. (4) and (5). For from the latter we find by use
of Eq. (6)

P(Tz) = T""/"h, (z), n(Tz) = T"'h,(z),

%ith the above discussion as background, in this
section we detail thc proposed phenomenology as
specialized to the case of the liquid gas transition of a
onc-component system.

A. Preliminaries

with h~ and h2 known5 functions. The explicit for-
mula for f in Eq. (18) is then easily calculated to be
f(x) = ht(hz ' (x)) with hz ' the inverse of hz. 1n
other words, since we have availablc the explicit
forms in Eqs. (4)—(6) we can obtain a unique result
with f in Eq. (18) known. By contrast, and this is
the important point, if we begin only with the partial
differential equation (7), we again obtain Eq. (18)
but with f now undetermined. Thus a formulation in
terms of an equation such as in Eq. (1) may be effec-
tive in describing some of the essential features of a
first-order phase transition only by virtue of being

Figure 3 shows schematically a part of the phase
diagram for a single component substance such as
water or C02. The point C, associated with the criti-
cal values T', and P, is the critical point and lies at
the upper end of the vapor-pressure curve tC. At the
lower end, is the triple point, t, where the gaseous,
liquid, and solid phases of the substance all coexist.
The region inside the close dashed curve represents
that region of the PT plane of primary interest herc.
Included in this region is that around the critical
point and on both sides of the vapor-pressure curve
but above and excluding the triple point.
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Pc

Tc

FIG. 3. Schematic of the phase diagram for a single com-
ponent substance. The region inside the closed dashed
curve is the focus of interest.

To simplify the notation, let us select an origin at
the critical point, C, and define the variables t and p
to be, respectively, the dimensionless temperature
and the pressure relative to the point C by the for-
mulas t = (T, —T)/T, and p = (P, —P)/P, . Note
that both t and p are positive for points below and to
the left of the critical point in Fig. 3 and in particular
that both are positive all along the vapor-pressure
curve except for the point C itself.

It is convenient to describe the thermodynamic
behavior of the liquid-gas transition by use of the
Gibbs function, G(t,p). The alternative of a formu-
lation in terms of the Helmholtz potential A ( T, V) is
also of interest but will not be detailed here. The
latter formulation is not quite as straightforward due
in part to the fact that the singular behavior around
the coexistence curve manifests itself as a discon-
tinuity in the second derivatives of A while for
G(t p) the singular behavior along the vapor-pres-

sure curve shows up as a discontinuity in the first
derivative.

Figure 4 shows schematically the Gibbs surface
G(t, p) as a function of the relative temperature and
pressure t and p, respectively. The heavy line on the
surface represents the values of G along the vapor-
pressure curve across which the first derivatives'
G, = S and G~ = —V are discontinuous. Geometrical-
ly, this line corresponds to a crease on the surface.
The projection of this crease down into the tp plane is
also shown, and is the vapor-pressure curve itself;
this time with its end point C at the origin. %e as-
sume that. the equation p = h(t) for the vapor-pres-
sure curve is a given quantity. As is well known,
near the critical point, h(t) has the form~ h(t) ppf=
+ Ct~' with po the slope at t =0, C a constant and
with P =0.32 the critical exponent for the coex-
istence curve and with 5 =—4.5 the exponent for the
critical isotherm.

For later reference, let us summarize some of the

FIG. 4. Geometrical structure of the Gibbs surface
G(t,p) near the vapor-pressure curve. The heavy solid line
on the surface represents a crease whose projection into the
p(plane is the vapor-pressure curve. The critical point is at
the origin.

dh LLS

dt hV
(19)

We shall presume that these quantities h(t), hS, and
5 V are known along the entire vapor-pressure curve
and related in accordance with Eq. (19) at each point.

B. Phenomenology

Following Fisher, we assume that in the region
around the vapor-pressure curve, that is inside the
closed dashed curve in Fig. 3, the Gibbs surface
G(tp) can be fo,und among the solutions of the par-

properties of the Gibbs function in Fig. 4. First G is
continuous and must be singularity-free everywhere
except at the critical point and along the vapor-
pressure curve. The nature of the singularity at C is
known and generally believed to satisfy scaling'
and thus to be describable by a generalized homo-
geneous function. ' Along the vapor-pressure curve,
there are discontinuities in the derivatives of G:
b,S =SL —So and 5 V = VL —V~ where, for example,
SL is the entropy of the substance in the liquid phase,
and is thus the limit of G, as the vapor pressure is
approached from the liquid side. The slope dh/dt of
the vapor-pressure curve is related to these discon-
tinuities by the Clausius-Clapeyron equation
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tial differential equation

u +v =6+3086 86
Bt Bp

(20)

Here t and p are defined above and u and v are ap-
propriate analytic functions of t and p. The quantity

Aa, which is not present in Fisher's Eq. (1) repre-
sents an analytic background term. Thus, we gen-
eralize Fisher's formulation by allowing for the pres-
ence of Ao(rp) and by not restricting the coefficients
u and v to be ratios of polynomials. Our require-
ments on u and v are simply that they be Taylor ex-
pandable in each variable and that in addition they
satisfy certain other conditions as described belo~.

First, as discussed in connection with the ideal
Bose gas, we impose on u = u (t p) and v = u(t p)
the condition that one of the characteristic curves of
Eq. (20) must coincide with the vapor-pressure curve

p =It(r). Reference to Eq. (3) shows that this condi-
tion is satisfied provided u and v are related by

d/t u(r, h (r))
dr u(r, h(r))

(21)

This is a very important constraint and restricts the
forms of u and v but only near the vapor-pressure
curve.

The second important condition to be imposed on
u and v arises from the fact that, consistent with ex-
periment, in the asymptotic. region of the critical
point, Eq. (20) must have solutions which exhibit
scaling. As will be confirmed belo~, a sufficient con-
dition for this is that both of the coefficients u and v

vanish at the origin:

u(0, 0) = u(0, 0) =0 (22)

shows that the condition in Eq. (22) makes the origin
a singular point of the equation. This is exemplified
in Fig. 5 which shows that the slopes dp/dh of the
characteristics are indeterminate at the origin. By
contrast, the characteristics through any points, other
than this singular point, are unique.

Besides the condition in Eq. (22), experiments of
liquid-gas critical behavior ' require that in the
asymptotic region of the critical point, u and v have
the form

1 g Pa(1 —Pg)

P(5+1) ' 5+1 P(8+1) (24)

with po the slope of the vapor-pressure curve at the
critical point and with P and 8 precisely the critical
exponents referred to above. For substitution into
Eq. (21) shows that consistent with our expectations

Reference to the original Eq. (20), or its associated
characteristic equations

—=u(rp); —=u(tp); =F+Aa(rp), {23)dt dp dF
ds

'
ds

'
ds

FIG, 5. Schematic of the projections of the characteristics
of Eq. (20) into the pt plane, Because of Eq. (22), the origin

(0,0) is a singular point. For simplicity the parameter po has

been assumed to be zero. See Ref. 15.

/t (&) pat =——rs . Further, if we use the forms for u

and v from Eq. (24) in Eq. (20) we find' that the
latter has (up to addition of the, here inconsequen-
tial, background term A) precisely the correct scaling
form G =r&Ia+'lf ((p pat)/taa) w—ith f an undeter-
mined scaling function.

To recapitulate, Eq. (20) with the analytic func-
tions u and v constrained by Eqs. (21), (22), and

(24) comprise the essential framework on which we

propose to erect a phenomenology of first-order
phase transitions. Our main task remaining is to
show that Eq. (20) admits solutions with appropriate
discontinuous derivatives along the vapor-pressure
curve. This will be our goal in Sec. IV.

However, before going into this, there are several
features of this formulation which deserve comment.
at least in a preliminary way.

As stated above, in the asymptotic region of the
critical point, where the forms in Eq. (24) are appli-

cable, it is easily verified that the solutions of Eq.
(20) can be expressed in the scaling form

G(r,p) = rats+"f (( p p, r)/ra') +—A (r,p), (25)

with A (r p) an appropriate analytic function and with

f an arbitrary function of the indicated variable.
More generally, we find that this feature, namely,
that the solutions of Eq. (20) can be separated into a
sum of a singular term involving an undetermined
function and an analytic background term, is not res-
tricted to the asymptotic region. By use of theorem
III in the Appendix it is easy to confirm that this
feature carries over to the entire region of iriterest in-

cluding the points of the vapor-pressure curve.
Moreover, as will become clear in Sec. IV, the un-

deterrnined function in terms of which the solution
to Eq. (20) is expressed, need not be the same in

each of the four quadrants. That is, although there is
no particular reason to expect that the undetermined
function will be different in different quadrants, we
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emphasize that this is not mandated in our formula-
tion. It is possible to satisfy the physical condition
that the Gibbs function and each of its derivatives be
continuous across the t and the p axes without this
constraint. Note, however, that because u and v are
analytic, the analytic background function, for exam-
ple, A (t,p) in Eq. (25) must be the same in each
quadrant. We shall return to this matter again in Sec.
IV.

An extremely important point that comes up in this
connection is the following. Even though the forms
of the undetermined scaling function, for example, f
in Eq. (25), can vary from one quadrant to the next
(within limits as discussed in Sec. IV), the parame-
ters P and 5 appearing in this solution cannot, This
follows, since the asymptotic forms for u and v are
uniquely fixed in Eq. (24), and these two functions
are analytic and thus must have exactly the same
form in all four quadrants. We cannot have one for-
mula for u and v in one quadrant and a different one
in another without violating the analyticity assump-
tion above. It follows that if experiment were to
show that the critical exponents for the specific heat

C„, or for the isothermal compressibility K~, were
different above and below the critical point, then the
proposed phenomenology would not work. Thus, a
necessary condition for the 'validity of the formula-
tion here proposed is that the critical exponents for
C~, Kr, etc. , are the same above and below T,

Finally, it should be mentioned that we have impli-

citly assumed in all of the above that the corrections
to scaling predicted by Wegner, "and subsequently
confirmed experimentally will not significantly affect
the situation outside of the asymptotic region.
Should such "confluent" singularities play an impor-
tant role, say along the vapor-pressure curve, then it

will be necessry to modify Eq. (24) or possibly to
alter the structure of Eq. (20) itself.

IV. SINGULARITY ALONG THE
VAPOR-PRESSURE CURVE

In this section we consider the problem of obtain-

ing, for Eq. (20), solutions with discontinuous
derivatives. Specifically, we shall establish the ex-
istence of solutions that are singularity-free every-

where, except along the vapor-pressure curve, and
that there they can be selected to have discontinuities
corresponding to values for hS and 5 V given by the
experimental latent heat and coexistence curves,
respectively. Our discussion relies on the mathemati-
cal theorems listed in the Appendix but includes de-
tails of the crucial arguments. '

As noted above, the characteristic curves associated
wtih Eq. (20) play an extremely important role in the
analysis of this equation. Accordingly, before pre-

senting the analysis itself it is worthwhile to digress

briefly to describe some of the key properties of
these characteristics.

Let us first note that since u, v, and Ao are each
analytic, it follows from Eqs. (23) for the characteris-
tics, that through any fixed initial point (ro, po, Gp)
there exists, in general, one and only one characteris-
tic curve. The only exceptions to this are the points
along the G axis for which according to Eq. (22), u

and v vanish simultaneously so that the slope dp/dr is

not uniquely determined for these. Figure 5 shows
schematically some of the projections of these charac-
teristics down into the tp plane. " The similarity
between these curves and the corresponding ideal
Bose-gas characteristics in Fig. 2(a) should be noted.
In the present case, however, the independent vari-
ables t and p are not restricted to positive values so
that now there are characteristic curves in each of the
four quadrants.

It is possible to make the case that the characteris-
tics are important not only for purposes of analyzing
the solutions of Eq. (20) but also because they may
have a direct physical significance. For the ideal Bose
gas this is clear since according to Eq. (17) the
characteristics are precisely the isentropes. For the
case of an interacting gas, the potential importance of
the characteristics was first emphasized by Bengui-
gui. ' This author pointed out that in the asymptotic
region of the critical point where the form in Eq. (25)
is applicable, the derivatives of the Gibbs function
(i.e. , V, S,C„, etc.) along the characteristics p pot-
= Ct~~ vary simply as a power of I or equivalently of
p. For example, it is easy to confirm from Eq. (25)
that along a given characteristic we have V —I,
= C~t& with C~ a constant coefficient depending only
on the particular characteristic selected. Furthermore
analyses such as those of Ho and Litster, ' of Levelt
Sengers et al. ,

' and Green et al. ' —which produce
scaling functions in the form of measured curves-
are direct experimental confirmation for the physical
importance of characteristic curves.

Returning now to the analysis of Eq. (20), we shall
establish that this equation has solutions with discon-
tinuous derivatives along the vapor-pressure curve by

actually showing that through each of its characteris-
tics there are infinitely many solutions. Then from
the fact that we have selected the vapor-pressure
curve to be the projection into the tp plane, [Eq.
(21)], of a characteristic, it follows that we can easily
find solutions continuous everywhere but with the
necessary discontinuous derivatives along the phase
boundary.

Consider in Fig. 6 an arbitrary space curve C and
let Co represent its projection down into the tp plane.
Let the curve C be representable in terms of a
parameter v by means of the three functions
(ra(r), po(r), GO(r)) so that as r varies, the point
specified by the coordinates (rp(r), pp(r), GO(r))
traces out the space curve C.
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Co

(27)

(with r, = Bt/its, etc.) does not vanish. Making use
of this we can conclude —consistent with theroem 4
in the Appendix —that provided J ~0 along C, there
is one and only one solution of Eq. (20) that contains
the curve C. This is analogous to the situation for a
first order, ordinary differential equation for which a
unique solution follows from the specification of the
unknown function at a single point. Here, for the
two-independent-variable case, it is necessary to
specify the unknown function along a space curve.

The condition J & 0 along C —or equivalently
along Co, since u and v depend only on t and p in our
case —has simple geometrical meaning. For if along
C we set J(0,r) =0, we have

r,p, =r,p„(s =0)

FIG. 6. C represents an arbitrary space curve and C& a

curve that intersects it. Co and the dashed curve in the pt

plane are the proiections of C and C~, respectively, onto this

plane.

Imagine now solving the characteristic Eqs. (23) to
obtain the characteristics that go through each of the
points of the curve C. These characteristics will, in

general, depend on two variables s and ~, and with
the important exception noted below, will collectively
define a surface G(r,p) that solves Eq. (20). Geo-
metrically, we can think of this surface as being
swept out sequentially by the characteristics that
emanate from the various points of C in Fig. 6.

To see in detail how such a surface G(t,p) can be
generated, consider the solutions of the characteristic
Eqs. (23):

r=r(s, r); p=p(s, v); G=G(s, r) (26)

with t(0, r) =ra(r), etc. A formula for the associat-
ed solution surface, G(r p), can be obtained, in prin-

ciple, by solving the first two of Eqs. (26) backwards
to obtain s =s(t p) and r=r(t p) as functions of t

and p and substituting into the third, The result is
the desired function G(t,p) which, on the one hand,
solves Eq. (20) and on the other contains the given
space curve C. As confirmed by theorem 4 in the
Appendix, provided these steps can actually be car-
ried out, we obtain a unique surface G(t p) in this
way.

The crucial step in carrying out this procedure in-
volves our ability to solve the first two of Eqs. (26)
backwards to express both s and 7. in terms of t and
p. The condition for this is well known and is that
the Jacobian J(s, v) of the transformation, defined

and it follows from the first two of Eqs. (23) that the
characteristic through each point of Co is parallel to
the tangent p, /r, at that point. Hence ir must coincide
with Co. Or in other words, Co must itself be the
projection into the tp plane of a characteristic curve.
More formally, since at fixed r, p, = dp/ds and

r, =dr/ds, making use of Eq. (23) we may rewrite the
relation immediately above in the form

ct (s =0)
p r ps cp

(28)

which shows that Co is characteristic. Hence, the
procedure leading to Eq. (26) will yield a unique
solution of Eq. (20) containing a given curve C only
provided that C or equivalently Co is not a charac-
teristic curve.

It is now a simple matter to show that if C is

indeed characteristic then there are an- infinity of
solutions of Eq. (20) that contain C. For if as shown
in Fig. 6 by the dashed curve, we draw an arbitrary
curve C~ ( A C) through an arbitrary but fixed point
of C, then since Ct cannot be characteristic (since C
is presumed to be) it follows from the discussion of
the preceding paragraph that there exists a unique
solution through Ct. But by .theorem I of the Ap-
pendix this same solution must also contain C!
Clearly we can draw an infinite number of curves
through the intersection of C~ and C and for each of
these, the solution of Eq. (20) containing this curve
must also contain C. Hence it follows that through
any given characteristic curve there are an infinite
number of solutions of Eq. (20).

In particular, therefore, since we have forced one
of the charactertistic curves of Eq. (20) to coincide
with the vapor-pressure curve [Eq. (21)1, it follows
that there are an infinity of solutions of Eq. (20) that
contain the phase boundary of the physical system.
Thus on crossing the vapor-pressure curve if we
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transfer from one of these solutions to another, it is
possible to obtain a solution to Eq. (20) that is both
continuous everywhere and at the same time has the
appropriate discontinuous first derivatives along the
vapor-pressure curve. In a sense, this procedure is

simply the famous Maxwell construction but in the
context of Eq. (20).

V. DISCONTINUITIES IN HIGHER
DERIVATIVES

One advantage of the present formulation of first-
order phase transitions is that it is possible to derive
new relations among thermodynamic quantities sim-

ply by differentiating Eq. (20). Relations obtained in

this way are of particular intere'st here since by their

usage we can obtain information on the coefficient
function u and v along the entire vapor-pressure
curve.

For orientation purposes, it is useful to consider
first the problem of how the Clausius-Clapeyron Eq.
(19) comes out in the present formulation. To this

end„consider Eq. (20) in the limits as a fixed point

( hr( ))rof the vapor-pressure curve is approached
from the liquid (+) side and from the gaseous (—)
side. Introducing the symbols hG, and AG, for the
respective differences (G,+ —G, ) and (G„+—G„),
we find by subtracting these two limiting forms of
Eq. (20) the result

uhG, +vhG~ =0 (29)

where u =u(t, h(t)), u=u(t, h(t)) are here evaluat-

ed at the fixed point of the vapor-pressure curve.
Also used in obtaining this relation are the facts that

u, v, and Ao are analytic and thus, ipso facto continu-

ous across the vapor-pressure curve, and that the

Gibbs function G, although not itself analytic, is

nevertheless continuous across the same curve. Note
that the analytic backgound function Ao has cancelled
out in Eq. (29).

As is well known, the Clausius Clapeyron equation
for a first-order transition'follows from the continuity

of G along the phase boundary. Hence it should not
be surprising that it also follows from Eq. (29) when

we make use of AS = AG, and b V = —AG, and our
hypothesis that the vapor-pressure curve is a charac-
teristic, and hence satisfies Eq. (21). Indeed, solving

Eq. (29) for the ratio v/u and equating this to dh/dt

in accordance with Eq. (21) we find that the Clausius

Clapeyron Eq. (19) results. Equivalently, we can
think of the constraint in Eq. (21), namely that the
vapor-pressure curve coincide with a characteristic
curve, as being mandated by Eqs. (19) and (29).

This same method can also be used to obtain new

relations involving the second derivatives of G. This
time, we first differentiate Eq. (20) with respect to r

and then a second time with respect to p with the

result:

uG„+ uG„= (1 —u, ) G, —v, Gp + Ho,

u G,„+v G„=—u„G, + ( I —u„)G, + A a

(30)

Continuing as in the preceding paragraph, we now

take the limits of each of these relations as a fixed
point of the vapor-pressure curve is approached from
the (+) and ( —) sides. Taking the respective differ-
ences, as above, we obtain on using the facts that u,

v, and Ao as well as all of their derivatives are con-
tinuous across the vapor-pressure curve, that

u&G„+ irAGp, = (I —u, )/), G, —u, hG„

uTACp + u—h( Vnp) = (I —u, ) 0 S + u, A V

ub(Vn„) —uh( VK. r) = —u„AS —(I —u„)5 V

(32)

where C„, o.„and K~ are, respectively, the specific
heat at constant pressure, the coefficient of thermal
expansion, and the isothermal compressibility, all

evaluated at the fixed point of the vapor-pressure
curve. In principle, a knowledge of the discontinui-
ties of C~, a„K~, V, and S along the vapor-pressure
curve yields these two relations involving as un-

knowns only the coefficients u, v, and their deriva-
tives. Thus we can obtain information about u and v

in a region around the entire vapor-pressure curve.
It is interesting to note the similarity between Eqs.

(32) and a similar one obtained by Griffiths2t involv-

ing the discontinuity in C. across the coexistence
curve for a second-order phase transition. Griffith's
formula was derived by use of the appropriate Ehren-
fest relation and since he did not need to rely on the
validity of Eq. (20), as we have here, is of more gen-
eral validity than are Eqs. (31). In this connection, it
is also of interest to note that for the case of second-
order transition for which AG, = d G, =0, Eqs. (31)
assume the simpler form

AG + vAGp 0 u AG~ + v&Gpp 0 {33)

It is then easy to confirm in the same way as above
[see the discussion immediately following Eq. (29)]
that these relations are equivalent to the two Ehren-
fest relations for a second-order phase transition!
The fact that Eqs. (33) can indeed be satisfied
without both u and v vanishing identically also fol-
lows from these two Ehrenfest relations which show
that the determinant of the coefficients in Eqs. (33)

uhG„, +vAG„, = uh—G, +(1 —v„)AG„

where u, v, and their derivatives are to be evaluated
at the given point of the vapor-pressure curve. In
more familiar terms Fqs. (31) may be written in the
form
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must vanish:

(AG„) (Agpp) —(Agp)2 =0

To summarize then, the relations in Eqs. (32), and
corresponding ones involving discontinuities in the
third and possibly higher derivatives, are useful from
the present point of view for a number of reasons.
First, they are independent of the analytic background
term Ao and hence are useful even without a know-
ledge of this function. Secondly, they are applicable
along the entire vapor-pressure curve and hence can
be conveniently used without the difficulties general-
ly associated with measurements in the laboratory
made right at the critical point. Third, a knowledge
of the discontinuities in the second derivatives of G
yields direct information about the forms of u and u.
That is, just as the Clausius Clapeyron Eq. (19) gives
us partial information about the shape of the vapor-
pressure curve, and thus about the ratio u/u via Eq.
(21), the relations in Eqs. (32) give us information
on the derivatives of u and v and thus information
about u and v near the vapor-pressure curve. Addi-
tional knowledge of u and v is, in principle, obtain-
able by the generalization of Eqs. (32) to higher
derivatives.

A straightforward application of this procedure can
be given in the asymptotic region of the critical point
by use of the solution in Eq. (25). Assuming that the
form for G in this relation is given and accurately
summarizes experiment, we may calculate by its
usage the discontinuities in the various derivatives of
the Gibbs function G along the phase boundary
( p =ppt + Cptsp with Cp known). Substituting these
results into Eqs, (31), we obtain relations involving u

and v along the phase boundary. It is then easy to
show —or at least to confirm —that u and v are given
by

P(s+1) ' '(s+1) P(s+1)

which is precisely Eq. (24) evaluated along the phase
boundary.

An application of this procedure but not confined
to the critical region will be considered in the next
section.

VI. SPONTANEOUS MAGNETIZATION
AND POLARIZATION

As an application of the procedure suggested in the
preceding section, let us consider the case of a ferro-
magnetic system, whose thermodynamic behavior is
described by the two independent variables, H and t
where H is the magnetic field and t = ( Tz —T)/Tc
with T~, the Curie temperature. For negative values
of t, the system is parmagnetic, while for t )0, it ex-

hibits a spontaneous magnetization Mp=Mp(t)
This transition is very similar22 to the liquid-gas tran-
sition considered above, but is somewhat less com-
plex owing to the system's symmetry under magnetic
field reversal. This has the consequence that the
Gibb's function G(t, H) must be an even function of
H in order that magnetization M(t, H) —= —GH,
change sign with the magnetic field. The discontinui-

ty in the first derivative of G determines the spon-
taneous magnetization in accordance with the formu-
la

firn M(t, H) =+M, (t) .
H +0

(34)

In geometric terms, if we think of the p axis in Fig. 4
as the H axis, and the vapor-pressure curve there as
coinciding with the t axis (H =0), then the surface
in this figure can be thought of as representing the
Gibbs function G(t, H).

The starting point for the analysis is an appropri-
ately modified Eq. (20)

u +v G +AD
8G 8G
8t

(35)

ut)gp+uhGH, = (1 —u, ) SG, —u, SGH

uI G/H + us, HHH = —utthgt + (1 —uH)hgH
(36)

where all quantities are evaluated along the phase
boundary H =0. Because of the symmetry available,
in the present ferromagnetic case, these two relations
simplify considerably, As noted above, both v and v,
must vanish at H =0 and since no latent heat is asso-
ciated with the transition, so must the terms involv-
ing EG, . Moreover, according to Eq. (34), hgtt
= —2Mp(t) and brief reflection shows that AGH,

2dMp/dt Sub—stituting .these facts into Eq. (36)
we find that the first of these reduces to AG„=O.
This is consistent with the experimental fact" that

with u, v, and Ao analytic functions, now of t and H.
To satisfy the above noted symmetry requirements
according to which G(t, H) must be even in H, it is

easy to see that it is necessary for u(t, H) to be an
even and u(t, H) an odd function of H. Moreover,
since u is also analytic, it follows that u(t, 0) =0
=u, (t, 0). This is consistent with the condition in

Eq. (21),

dH u(t, 0)
dt u(t, 0)

and confirms that the phase boundary H =0, coin-
cides with a characteristic curve in this case. As is
well known, the condition dH/dt =0 when used in

conjunction with the Clausius Claperyron Eq. (19)
means that no latent heat is associated with the tran-
sition.

Proceeding now from Eq. (35), we find as in the
derivation of Eq. (31)
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=Ma(r) —;(H =0)
dt u

(37)

It follows from this formula that, except for a con-
stant of integration, the shape of the spontaneous
magnetization curve is completely determined by the
values of u and v0 along the phase boundary. And
conversely, given an experimental curve for Mo(r),
we can use Eq. (37) to deduce information about the
functions u and u in the immediate neighborhood of
this boundary.

As a first check on Eq. (37), consider the asymp-
totic region at the critical point where u and v have
the form

the specific heat C~ of a ferromagnet is continuous
across the line H =0. The second of Eqs. (36), how-
ever, yields something new. For the substitution of
the above H =0 values for u, AG„etc., into Eq. (36)
yields the relation

cal point. Regardless of the values obtained for a
and b in this way, this formula for G(r, H) would be
consistent with experiment in the asymptotic region
at the critical point.

However, rather than following this approach here,
let us consider briefly the possibility of obtaining the
parameters a and 6 by assuming that Eq. (40) can be
extended all the way down to t = —Tz, that is to,
T =0. To this end, we recall that near T =0, 81och's
spin-wave theory" predicts Mo( T) —I =—T' '. Brief
reflection shows that it is nor possible for Eq. (40) to
agree with this limiting behavior for any choice of the
constants a and b. If, however, we assume, that
6 = I/g, then we find from Eq. (40) that for small T,

(Mo —I) —T~ and this also agrees —although not
nearly as well —with the experimental points not too
close to T =0. Substituting this value b = I/5, we
find, , on normalizing Mo to unity at T =0, that Eq.
(40) assumes the form

(I —T/Tc)~
(I —T/&T, )sr

(41)

Substituting these into Eq. (37), we obtain

where a and b are constants to be determined by ex-
periment. Substituting into Eq. (37) and integrating
we obtain

Mp(t) =K (P

I +Or
(40)

where the parameter g is defined by (—I = b 5/a and
K is a positive constant of integration. Note the in-

teresting fact that the parameter "a" appears both in
the factor (I+at) in the denominator in Eq. (40) as
well as in the exponent Pg of this factor.

To make practical usage of Eq. (40) it is necessary
to obtain numerical values for the two parameters a
and b. This could be achieved, in principle, by sim-

ply making a comparison —at small t where the forms
for u and u in Eq. (39) are expected to be valid —with

experimental curves for Mo(t). With the parameters
a and b then at hand, we could utilize Eqs. (35) and
(39) to obtain a formula for the Gibbs functions
G(r, H) valid in an extended region around the criti-

and this is consistent with the well-known experi-
mental fact M —t& in the critical region.

Let us now attempt to extend this argument away
from the critical region by modifying appropriately
the forms for u and v in Eqs. (38). If we make use
of the analyticity requirements that have been im-

posed on these two functions, such modifications are,
in, "first order" unique and lead one to the formulas

u = r(I+or); v=. H(I+br), (39)1 5

p 8+I 5+1

with T~ the Curie point and with (, the only remain-
ing free parameter, constrained to be larger than uni-

ty. As noted above, the parameter g, appears both in

the factor (I —T//TED) as well as in the exponent Pg
of this factor.

A detailed study of' Eq. (41) shows that its form is
rather insensitive to the choice for the parameter ( in

the range 3 ~ g ~12. Figure 7 shows a graph of Eq.
(41) for the values / =10, P =0.33 and also includes
for comparison some experimental data26 for Ni. The
insert in the same figure shows some experimental
points of nickel on an expanded and thus more sensi-
tive scale and includes for comparison also, graphs
for: Eq. (41), the spin-wave theory, an empirical T'
curve, and the classical gneiss theory. In comparing
these curves it should be borne in mind that Eq. (41)
is intended to be a representation of experiment only
in the region right around the critical point at T = T~.
Thus, it may well be fortuitous that the present
results compare favorably with the other curves in

the figure outside of the critical region.
As a second application of the procedure suggested

in the preceding section, let us consider the case of a
ferroelectric material. ' Of particular interest to us is
the curve for the spontaneous polarization as a func-
tion of temperature, analogous to the curve for the
spontaneous magnetization in Fig. 7. However, rath-
er than attempting to produce here curves for fer-
roelectrics whose polarization curves are similar to
the magnetization curves in Fig. 7 it is somewhat
more instructive to consider the unusual polarization
curve for Rochelle salt (NaKC&H406 4H20). This
material which was the first known ferroelectric ac-
tually has two Curie temperatures, one at about 24 C
and the other at —18'C. Figure 8 shows some exper-
irnental points" for the spontaneous polarization of
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this material.

Making use of the same symmetry arguments as
used above for the ferromagnetic case, we can obtain
formulas similar to Eqs. (37)—(40) and conciude that
the spontaneous polarization P is given by

t~P=K
(1+at)pr (42)

In this formula f =1 + b 5/a and the constants a and
b, as in Eq. (39), are to be determined by experi-
ment. As before, K is a constant of integration.

To make practical use of this formula in Eq. (42) it
is necessary to select appropriate value for the con-
stants K, a, b, g, and P. Obviously, in order that Eq.
(42) be consistent with the existence of two Curie
points, we need to select the parameters a and g to
be negative. Hence, defining q= —(, we may reex-
press Eq. (42) in the form

250 260 270 280 290 300
(43)

FIG. 8. The spontaneous polarization of Rochelle salt as
given by Eq. (43) with g =1,05, P =0.60 (the solid curve)
and with q =1.05, P =0.33 (the dashed curve). The experi-
mental points are taken from Ref. 38.

where C is a constant determined by the scale on the
left in Fig. 8, T~ =297 K, is the temperature of the
upper Curie point and T~ =—255 K is the temperature
of the lower Curie point. In terms of the original
parameters, for example, a = —(T& —Tq) '. Finally,
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to determine a value for g, we use the easily verifi-
able fact that the maximum of the curve for P in Eq.
(43) occurs at T= T,„, where

T,„= T2+g(Tt —T2)/(g+1) (44)

Hence, comparison with the experimental points
which indicate that the maximum of P occurs about
midway between the two Curie points, we deduce
that ~ =1.

Empirically, wc find that the experimental values
for the spontaneous polarization of Rochelle salt can
be fairly well represented by thc choice

~=1.05; p=0.60 . (45)

VII. CONCLUDING REMARKS

In conclusion, let us consider several items which
relate to this proposal.

First, the agreement with experiment for the mag-
netization curve in Fig. 7, as well as that for the
spontaneous polarization of Rochelle salt in Fig. S,
seems to indicate that the simple forms for u and v

in Eq. (39) may already be a reasonable approxima-
tion to thc correct forms for these functions. This
was certainly not foreseen by the author and may
well turn out to be fortuitous! In any event, making
use of data, such as that in Figs. 7 and 8, we are able
to obtain what seem to be reasonable estimates for
the parameters a and b in Eqs. (39). Armed with

this knowledge we can then specify u and v in Eq.
(39) and then use these in Eq. (35) to calculate the
Gibbs function. For the ferromagnetic system, for
example, we find in this way

' p(v+1)

G(r, H) =
1+at f (H/[r (1+at) "]s') + A

The solid curve in Fig. 8 is the graph of Eq. (43) with

this choice for the parameters. For comparison, we
also show by the dashed curve, the graph of Eq. (43)
with the parameter values q=1.05, P=0.33. Thc
constant C is selected in both cases so that the max-
imum coincides with the experimental maximum. It
should be noted that the values P =0.5 and q =1.0
are not ruled out by the experimental points.

Finally, it is interesting to note the relationship
that, according to Eq. (44), seems to exist between
the "critical" exponents p and 7tp at the two Curie
points and the maximum in the polarization curve. It
should be recalled in this connection, however, that
the relations in Eqs. (43) and (44) are based on the
assumption implied in Eq. (39) and the iatter has
only a restricted range of validity.

with & = (b —a)/a and with A an appropriate analytic
background term. In other words, by simply input-
ting the data from the magnetization curves, we can
obtain a formula for the Gibbs function that is valid
in a region around the phase boundary. Note, how-
ever, that much of the information obtained in this
way is restrictive in that the formula for G(r, H) in

Eq. (46) involves an undetermined function f as well

as the analytic background term A.
A second item of interest deals with the question

of the uniqueness of the form of Eq. (20), or
equivalently of Eq. (35). As soon as one agrees to
go to a phenomenology of first-order phase transi-
tions via the partial-differential-equation route, there
are a maze of possibilities that can and should be ex-
plored. The one selected here in Eq. (20) is dis-
tinguished in this sense mainly by the fact that it is

linear, and first order and therefore presumably the
simplest member of this class. A possible "first-
order" modification of Eq. (30) might be to replace
"G" on the right-hand side by an analytic function,
say W(G). The resultant nonlinearization of Eq.
(20) would not change, in a substantial way, much of
the material presented above. The main alterations
would be: (1) to make it awkward to separate G, as
in Eqs. (25) and (46) into a singular term and an
analytic background term; and (2) to modify the
right-hand sides of Eqs. (30)—(32) by the replace-
ment of G, by W'G, and G~ by 8"G„where 8" is

the derivative of W; Of there, the latter is the less
serious, for it would correspond mainly to a modifica-
tion in the forms for u and v in the region around
the vapor-pressure curve.

A third item of interest comes up in connection
with a possible alternate formulation of Eq. (20) in

terms of the Helmholtz potential, A (T, V) or one of
its derivatives, say the pressure P( T, V). The projec-
tion of the cur~e corresponding to the crease in Fig.
4 would in this case be that part to the coexistence
curve in the first quadrant. Brief reflection shows
that to specify the entire coexistence curve it would
be necessary now to join together —through the
origin-two characteristics from adjacent quadrants.
This possibility is thus morc complex than the
Gibbs-function approach described here but may well

be worth exploring.
Finally, it may be worth commenting on the possi-

ble generalizations of Eq. (20) to the case where ad-
ditional independent variables are relevant for a
description of the physical system. As pointed out by
Fisher, ' the extension to higher dimensions of rela-
tions such as that in Eq. (20) is straightforward and

relatively free of ambiguity. In the present case, we

would simply add to the left-hand side of Eq. (20) a
term, say w(t, p,x) G„, where x would be a third in-

dependent variable —fur example, the concentration
of a component in a mixture —and where now u, v,
~, Ao, and G would each depend on the three vari-
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ables t, p, and x. Of considerable interest in this con-
nection is the phase boundary, across which the first
derivatives of G would be discontinuous. Here, this
surface would be a two-dimensional one in the space
spanned by the Cartesian t, p, and x axes. A prelim-
inary study of this equation, shows that an analysis of
the type in Sec. IV, can be carried out as easily with

three independent variables as with two. We find
that the phase-boundary surface obtained this way is
the solution of an equation of precisely the form in

Eq. (20).
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APPENDIX

In this Appendix, we state without proof, '" a
number of theorems regarding the solutions of the
partial differential Eq. (20) and its associated charac-
teristic curves as determined by Eqs. (23). Where
appropriate, we specialize to the case of present in-

terest for which u(r p) and u(r p) are analytic in r

and p, independent of G, and where u and v both
vanish at the origin t =0, p =0. Further, we shall be
concerned only with solutions which have derivatives
of all orders everywhere with the possible exception
of an isolated point or an isolated line.

Theorem I: If a solution surface G(r p) of Eq.
(20) has a point in common with one of the charac-
teristics of Eqs. (23), then this characteristic curve
lies in its entirety on the surface G(r, p).

Theorem 2: If two solution surface Gt(rp) and
Gi(t, p) have a point in common —i.e., Gt(rii, po)
= G&(to,pii)= Ga for a given (ro,po) —then they must
intersect along the unique characteristic curve
through the point (to, po, GO).

Note I: This theorem is not valid for the case that
equality of GI and G2 occurs at the point t0=0=po.
For at this unique singular point of the equation
there does not exist a unique characteristic curve.

Note 2: This theorem is a direct consequence of
the preceding one.

Theorem 3: If Go(t, p) is a particular integral of
Eq. (20) and if /t (r,p) is a solution of the associated
homogeneous equation u(8h/Br) +u(BA/Bp) =0
then if G(r p) = Go(r p) +/t (r p), then as /i(r, p)
runs through all the solutions of its equation, G(r,p)
will run through all the solutions of Eq. (20).

Theorem 4: Let C (Fig. 6) be an arbitrary space
curve and Co its projection down into the tp plane.
Then there exists one and only one solution of Eq.
(20) that contains the curve C provided its projection
Co is not a characteristic curve —i.e., is not a solution
of Eq. (23). If Co is a characteristic curve, then there
are infinitely many solutions of Eq. (20) that contain
C.

'M. E. Fisher, Physica (Utrecht) 86—88B, 590 (1977). See,
also Michael E. Fisher and Helen Au-Yang, J. Phys. A

12, 1677 (1979); 13, 1517 (1980).
2Michael E. Fisher, in Proceedings of the Symposium in Honor

of E. W; montroII's 60th afrthday (Plenum, Ncw York,
1978}. The author is indebted to Professor David Mu-
kamel for pointing out this work to him and for a helpful
conversation on the subject of this paper.

3The Pade Approximation in Theoretical Physics, edited by G.
A. Baker and J. L. Gammel (Academic, New York, 1970).

4Michael E. Fisher, Rcv. Mod. Phys. 46, 597 (1974); Ken-
neth G. Wilson and J. Kogut, Phys. Rcp. 12, 75 (1974).

5See, for example, L. D. Landau and E. M. Lifshitz, Statisti-
ca/ Physics, 3rd ed. (Pergamon, New York, 1980), Part I,
Chap, 5.

6For an alternate approach to the following analysis, see
Martin J. Cooper and Melville S. Green, Phys. Rev. 176,
302 (1968).

7We shall frequently use thc shorthand G, in place of the
more usual BG/Bt. Note that because of our definitions
for the quantities t and p: G, = T, GT', G&

= —P, GP, etc,

8Robert G. Griffiths and John C. Wheeler, Phys, Rev. A 2,
1047 (1970). We folio~ here the arguments of these
authors consistent with which the appropriate scaling
variable is ( p —pot)/t&~. For ferromagnetic systems the
parameter analogous to po is zero.

~J. M. H. Levelt Sengers and J. V. Sengers, Phys. Rev. A

12, 2622 (1975). See also, F. %. Balfour, J. V. Sengers,
M. R. Moldover, and J. M. H, Levelt Sengers, Phys. Rev.
Lett. 65A, 223 (1978) for morc recent values.

toB. Widom, J. Chem. Phys. 43, 3898, 3829 (1965).
"L.P. Kadanoff, Physics 2, 263 (1966). See also, Kadanoff

et a/. , Rev. Mod. Phys. 39, 395 (1967).
See, for example, H. Eugene Stanley, Phase Transitions and
Ciitical Phenomena (Oxford University Press, New York,
1971), Chaps. 11 and 12.

'3F. Wegner, Phys. Rev. B 9, 4529 (1972).
'4See-, for example, R. Courant and D. Hilbert, Methods of

Mathematica/ Physics (Wiley-Interscicnce, New York,
1962), Vol. II, Chap. 2.

'5ln Fig. 5, we have for simplicity assumed po =0 and used
the fact that in the asymptotic region of the critical point



23 PHENOMENOLOGY OF FIRST-ORDER PHASE TRANSITIONS 4555

Eqs. (20), (23), and (24) imply that these characteristic
curves have the form ( p p—er )

= C
( t (&a with 1 ( p5 ( 2

and with Ca constant.
' L. Benguigui, Physica (Utrecht) 64, 189 (1973). We here

translate this author's arguments from the ferromagnetic
case to that of the liquid-gas transition.

' J. T. Ho and J. D. Litster, Phys. Rev. Lett. 20, 603
(1969). For more recent measurements, see A. T. Al-

dred, P, de V. duPlessis, and G. H. Lander, J. Magn.
Magn. Mater. 20, 236 (1980),

SJ. M. H. Levelt Sengers, W. L. Green, and J. V, Sengers,
J. Phys. Chem. Ref. Data 5, 1 (1976).

' M. S. Green, M. Vicentini-Missini, and J. M. H. Levelt
Sengers, Phys. Rev. Lett. 18, 1113 (1967).

2 The other possibility, that it is an envelope of the charac-
teristics (Ref. 14) is not possible in the present case.

'Robert R. Griffiths, Phys. Rev. 43, 1958 (1965).

For a fuller discussion of this similarity see Ref. 12.
3E. Kneller, FeIrontugnetisi» (Springer-Verlag, Berlin,

1962)„p. 147A'.

By constrast to the case of the liquid-gas transition f'or
which it was necessary to introduce the parameter po for
the slope of the vapor-pressure curve at the critical point

[see Eq. (24)], here we know the slope to be zero thus

leading to the simpler form t'or v in Eqs. (38).
F. Bloch, Z. Phys. 61, 206 (1930); 74, 295 (1932). See
also, F. J. Dyson, Phys. Rev. 102, 1217 and 1230 (1956).

M. Fallot, Ann. Phys. (Paris) 6, 305 (1936); P. Weiss and

R. Forrer, ibiif. 5, 153 (1926).
27For a recent review, see M. E. Lines and A. M. Glass,

Principles anrf Applications o/'Ferroelectiics and Relatecf Ma-
te]ials (Clarendon, Oxford, 1977).
J. Habliitzel, Helv. Phys, Acta. 8, 498 (1935); 12, 489
(1939).


