
PHYSICAL REVIEW B VOLUME 23, NUMBER 9 1 MAY 1981

Relationships bet~veen the pair-correlation function, the superfluid fraction,
and the condensate fraction in liquid pHe
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It is shown that the Woods-Svensson decomposition of the dynamic structure factor S(0, co)

into superfluid and normal-fluid components implies relationships between S(g) and the super-

fluid fraction n, = p, /p and between g(r) and n„which are very well borne out by experiment.

Combining our new relationship between g (r) and n, with that between g (r) and the conden-

sate fraction no proposed by Hyland, Rowlands, and Cummings then gives an explicit relation-

ship between no and n, for all temperatures in the superfluid phase.

About two years ago, Woods and Svensson' found
that new neutron inelastic scattering results' for the
temperature dependence of the dynamic structure
factor S(Q. ru) of liquid "He were very well described

by the relationship'

S(Q, ru) = n, S,(Q, co) +n„S„(Q,co)

where n, = p, /p and n„=I —n, are the superfluid and
normal-fluid fractions. This remarkable decomposi-
tion of S(Q, pp) into components with weights pro-
portional to the hydrodynamic quantities n, and n„at
values of Q far beyond the hydrodynamic regime
was, at the time, presented simply as an empirical re-
lationship which gave a very good description of the
data.

In this paper, we first outline the theoretical justifi-
cation for the decomposition (I), summarizing the
recent work of Griffin, 4 and Griffin and Talbot. 5 We
then point out that (I) implies analogous decomposi-
tions for the static structure factor S(Q) and the
pair-correlation function g (r). These relationships
between S(Q) and n, and between g(r) and n, are
shown to be very well borne out by the results of a

recent high-accuracy neutron-diffraction deter'mina-
tionp of S(Q) and g(r) for a wide range of tempera-
tures.

Our relationship between g(r) and n, opens a new

route for obtaining insight into the relationship
between superfluidity and Bose-Einstein condensa-
tion. In 1938, London' first advanced the hypothesis
that the A, transition in liquid He is closely related to
the phenomenon of Bose-Einstein condensation.
More than four decades have since passed and,
although it is generally believed that superfluidity in

liquid 4He is indeed a direct consequence of the mac-

roscopic occupation of the zero-momentum state, an
explicit relationship between the superfluid fraction
n, and the condensate fraction no has never been es-
tablished. By combining our relationship between
g(r) and n, with that between g(r) and np proposed
by Hyland et al. , we obtain an explicit relationship
between n, and no covering the entire superfluid
range 0 ~ T ~ T&.

Subsequent to the proposal of the decomposition
(1) by Woods and Svensson, ' one of us4 pointed out
that in the well-known microscopic theory of a con-
densed Bose liquid, S(Q, pu) is composed of a con-
densate part (which vanishes if np =0) and a regular
part. Moreover, a rigorous argument was given
which showed that, at least in the phonon region, the
quasiparticle resonance in the condensate part had a

weight proportional to the superfluid fraction n„in

agreement with the Woods-Svensson ansatz (I). In a

recent extension5 of this work, the regular part
[SR(Q, cu)] of S(Q, pu) has been evaluated using the
simple "bubble approximation" with Bogoliubov
propagators, and it is found that there are two contri-
butions to Sp(Q, co). One is due to excitation of two
quasiparticles and vanishes (because of coherence
factors) if np =0. This contribution is associated with

what Woods and Svensson' call the multiphonon part
of the superfluid component. The other contribution
[Sn"(Q, ~)] to S„(Q,co) is due to neutron scattering
from a Bose gas of thermally excited quasiparticles
and is clearly what Woods and Svensson' call the
normal-fluid contribution (it vanishes at T =0, but is

finite for T ) T~). In the evaluation of SR'"(Q, co),
we note that, in the temperature region 1—2.17 K,
rotons make the dominant contribution to all proper-
ties and, in particular, one hasP n„(T)—T '~'e Prr,

where 4 is the roton energy. In this temperature re-
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gion, we need only consider the rotons in evaluating
SR"(Q, cu) and further, since one can use a Boltz-
rnann distribution for rotons, it immediately follows
that Sg(Q, cu) will be proportional to e ~'r and hence
to n„(T)to a very good approximation (for further
details, see Ref. 5).

We titus see that both terms ln (1) follow quite na-
turally from the microscopic theory of an interacting
Bose-condensed system, at least for T & 1 K, At
lower temperatures, and especially in the phonon-
dominated region (T & 0.6 K), the Woods-Svensson
ansatz may not be strictly correct since, in this re-
gion, one would not expect the normal-fluid part to
be simply related to S(Q, co) for T & T„.In this re-
gion, however, the normal-fluid part is negligibly
small.

In view of the strong support, both experimental'
and theoretical, 4 5 for the decomposition (1) of
S(Q, co), one is clearly justified in using it to obtain
the analogous relationships for the static structure

factor S(Q) =J"S(Q, eo) de and the pair-correlation
function,

g(r) = I +(2w.'pr) ' Jt Q[S(Q) —1]sinQr dQ

S(Q) =n, S,(Q)+n„s„(Q)

g(r) =n, g, (r)+n„g„(r) (3)

The temperature dependence of the quantities
S,(Q, cu) and S„(Q,ru) in (1) (see Ref. 1 for details)
essentially disappears when one integrates over co to
obtain (2). The quantities S, (Q) and g, (r) may thus
be simply interpreted as the values of S(Q) and g(r)
at very low temperatures, where n, =1 and n„=o.
(In practice, T =1 K, where n, =0.993, is sufficiently
low. ) Similarly, S„(Q)and g„(r)are the values of
S(Q) and g (r) at a temperature T" just above T~,
where n, =0 and n„=l. (As in Ref. 1, we will use
T'=2.27 K.)

Recent high-accuracy neutron-diffraction results
for S(Q) and g(r) allow a detailed test of the tem-
perature variations predicted by (2) and (3), and this
is shown in Fig. 1 for a selected set of Q and r
values. %e see that the agreement between the solid
curves given by (2) and (3) and the experimental
values6 is generally very good. ' This good agree-
ment is further strong evidence that (1) is essentially
correct. In calculating the solid curves we have used
the n, values of Maynard" supplemented at tempera-
tures less than 1.2 K by the values of Brooks and
Donnelly. '2 The relationship (2) does not work very
well in the hydrodynamic limit (Q 0), and this is
expected from the work of Griffin, 4 but it is seen
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FIG. 1. Comparison behveen the experimental values (Ref. 6) of S(0}and g(r) for liquid 4He and the values (solid curves)
calculated from Eqs. (2) and (3) using the n, values of Refs. 11 and 12.
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(Fig. I) to give a good description for Q as small as
0.2 A '. Note that (2) and (3) are both correct in

the large-argument limits where S(Q) = I and

g (r) = I, and that (3) is also correct at small r since
g(r) =0 for r & 2 A.

One now has the possibility of combining any
known relationship between g (r) and the condensate
fraction na with (3) to obtain an explicit relationship
between n, and no. About ten years ago, Hyland
et al. in fact proposed that

(4)

This'relationship has recently been used' ' together
with the results of Ref. 6 to obtain values of no for
seven temperatures in the range 1.00 «T «2.15 K.
These studies' ' give an extrapolated value of no at
T =0 in good agreement with the best theoretical es-
timates, and, further, show that the behavior of g(r)
as a function T which is implied by (4) is, at least for
r & 6 A, very well borne out by experiment. (See
Refs. 13 and 14 for details. ) By applying (4) to new
x-ray-diffraction results for g (r), Robkoff er al. t5

have also obtained a value of no for liquid helium at
1.67 K and saturated vapor pressure which is in ex-
cellent agreement with the values in Refs. 13 and 14.

The above is strong experimental support for (4),
but it is not proof of its validity. Strictly speaking,
what is found' is that the experimental results for
g(r) are very well described by the relationship

where, for r & 6 A, f( T) is, to within th. e experi-
mental uncertainty, independent of r and decreases
monotonically with decreasing T from the value
1.002 +0.038 at 2.15 K to the value 0.762 + 0.035 at
1.00 K. The quantity g(r) —I, which is a measure of
the spatial correlations of the atoms, is thus observed
to decrease monotonically with decreasing tempera-
ture in the superfluid phase whereas it increases
monotonically "with decreasing temperature in the
normal phase. This continuous weakening of the
spatial correlations as the temperature is lowered in

the superfluid phase is believed to be a direct conse-
quence of the condensation into the zero-momentum
state. Such an interpretation seems plausible since
the "condensate atoms, " being completely delocal-
ized because of the Heisenberg uncertainty principle,
might be expected not to contribute to the spatial
correlations at large r. If this is indeed true, and if
we regard g„(r)as the pair-correlation function for
the "uncondensed atoms, " then f( T) should simply
be the probability that a pair of atoms are not in the
condensate, i.e.,

(6)

Guided by the experimental observations, one is
thus led to (4). We offer this simple physical in-

tet'pretation because the theoretical justification of
(4) given in Ref. 8 is not very convincing and has re-
cently been criticized. ' In particular, in their deriva-
tion, Hyland et al. s completely ignore the role of
anomalous correlation functions which are known to
be of crucial importance in condensed Bose systems.
In spite of this criticism, (4) may still be correct for
reasons other than those given in Ref. 8.

A very recent study" has in fact given support for
(4). In this study, values of na for 1.00, 1.10, and
2.12 K have been obtained directly from the momen-
tum distributions for the He atoms deduced from
neutron inelastic scattering measurements of the
dynamic structure factor S(Q, ru) at large values of
Q. This is a completely different method from that
of Hyland et al. ,

~ and it has a much more rigorous
theoretical foundation. ' The fact that the new
values of no are in very good agreement with those
obtained"'4 by application of (4) is independent evi-
dence that (4) is a good approximation.

The empirical relationship (5) can be combined
with (3) to give

To the extent that (6) is valid, we then find that

no(T)[2 —no(T)]
n, T =

na(0) [2 —np(0) ]
(8)

We thus have obtained an explicit relationship
between n, and no for all temperatures in the super-
fluid phase.

An important implication of (8) is that n, and no

have the same critical exponent as T T),. Joseph-
son'9 has shown that, in tQe critical region near T)„
no ~ ( T, —T) 'P and n, ~ ( T„—T) tP '" . Hence, if (8)
is correct in this limit, qv'=0. The exponent v' is
known to be approximately 0.67, but q is indeed be-
lieved 2' to be very small, perhaps 0.03 to 0.04.
Equation (8) also predicts that n, and no will have the
same temperature dependence in the limit T 0
which is not correct since it is known that, as T 0,
np varies" as 1 —AT' whereas n, varies" as 1 —BT".
This shortcoming is not surprising since, as we have
noted above, the relation (I) [on which (3), and
hence (8), is based] may well not be correct in the
phonon-dominated region ( T & 0.6 K). In this re-
gion, however, the variations of n, and no are negligi-
bly small and hence this limitation is of little impor-
tance.

A very important advantage of knowing the rela-
tionship between n, and no is that it would open a
new possibility for an accurate determination of the
temperature dependence of no. Experimental deter-
minations' ' ' of no are very difficult and time con-
suming and it may never be possible to determine no
directly with high precision at a great many tempera-
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tures, particularly at temperatures near T„where no

is very small. On the other hand, n, can be deter-
mined very precisely"'" over the entire temperature
range, and the recent studies" ' "give considerable
hope that reasonably accurate values of no can be
determined at at least a few relatively low tempera-
tures. These values could then be combined with the
precise n, ( T) values to give, via (S) or an improved
relationship, accurate values of no for all tempera-
tures.

In this paper we have shown that the decomposi-
tions, (2) and (3), of S(Q) and g(r) into superfluid
and normal-fluid components with weights n, and n„
are very well borne out by experiment. This is addi-
tional strong evidence that the original decomposition
of S(Q, ru) into such components proposed by
Woods and Svensson' is indeed a good approxima-
tion. This decomposition has also been supported by
the recent calculations of Griffin¹ and Griffin and
Talbots who have argued that forms such as (I), and
hence (2) and (3), arise naturally as a direct conse-
quence of the existence of a Bose condensate in an
interacting system.

It is also worth noting that (2) and (3) can be
rewritten

S(Q) —S,(Q) =It.(S,(Q) —S,(Q))

g(r) —g, (r) =~.lg. (r) —g, (r) l .

These forms emphasize the fact that the changes in
S (Q) and g (r) as we increase the temperature are
proportional to the normal-fluid fraction, which in

turn is proportional to the number of thermally excit-
ed rotons for T ~1 K. In fact, Reatto and co-
workers have proposed that the anomalous tem-
perature dependences of S(Q) and g (r) for super-
fluid ¹He are a direct consequence of the thermal ex-
citation of rotons. Their calculations, which are
based on a finite-temperature generalization of the
well-known zero-temperature Feynman variational
calculation of S(Q), give reasonably good agreement
with the observed' variations of S(Q) (see Ref. 26
and also Fig. 17 of Ref. 6). The precise connection
between this approach and the microscopic theory of
a Bose-condensed system used by Griffin¹ and by
Griffin and Talbot' is not clear at present.

The existence of (3) gives rise to a new possibility
of obtaining an explicit relationship between the con-
densate fraction and the superfluid fraction, and we
have proposed a tentative relationship, (S), based on
(4). While (4) does not at present have a rigorous
theoretical foundation, it is found"'4 to be consistent
with the existing experimental data, and it has a sim-
ple physical interpretation. It is also supported by the
fact that the values of no obtained' in a very recent
study based on a different method agree very well
with those obtained"'4 by application of (4).

To the extent that we take (3) as being correct, our
relationship (g) is equivalent to the ansatz (4) of Hy-
land er al. ' Our new relationship (3) has thus en-
abled us to replace the postulateds relationship (4)
between na and g (r) by a relationship (g) between no
and n, . It is hoped that future theoretical work will
be able to give directly the explicit relationship
between no and n, .
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