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We continue our study of the time development of the donor fluorescence in the presence of
a high concentration of acceptor ions which act as traps for the excitation. It is assumed that the
transfer rates between donors are symmetric and independent of the energy mismat'ch between
ions and that there is no back transfer from the traps. e study two classes of systems. In the
first, the donor ions form a lattice with the traps distributed at random as interstitial impurities,
each trap being coupled to a single donor. The effective decay rate is calculated in the

coherent-potential approximation (CPA) and compared with a low-concentration theory based

on the average t-matrix approximation (ATA). Results are presented for one, two, and three
dimensions. In three dimensions the ATA and CPA are in close agreement up to a trap con-
centration c„=0.01. Beyond that, the decay rate calculated in the CPA increases more rapidly

with increasing trap concentration than the corresponding rate in the ATA. In one and two

dimensions the asymptotic fluorescence decays more rapidly than the algebraic decay calculated
in the ATA. At low concentration the effective decay rate varies as c&2 in one dimension and

c„/~Inca ( in two dimensions. The behavior in the diffusion regime is studied in a system where

the donor-acceptor transfer varies as r 6. A self-consistent equation for the t matrix is solved

numerically, and results are obtained for the variation of the decay rate and effective diffusion

constant with trap concentration.

INTRODUCTION

The time development of optical fluorescence in

the presence of a random distribution of traps has
been the subject of a recent series of theoretical pa-

pers. '~ In Ref. 1 a general theory of the fluores-
cence was developed which made use of the average
t-matrix approximation (ATA) to calculate the La-

place transform of the integrated donor fluorescence
following broad-band excitation. In Ref. 2 the theory
was applied to the calculation of the fluorescence in a
system where the fluorescing ions (donors) formed a

regular array with the traps (acceptors) being substi-

tutional impurities. Nearest-neighbor incoherent
transfer between donors and from donors to accep-
tors was assumed. The opposite limit, where there is

a large number of donors in the sphere of influence
of an acceptor, was considered in Ref. 3. In this re-

gime a continuum description based on the diffusion
equation is appropriate.

The analysis developed in Refs. 1—3 is applicable
to systems where the concentration of traps is much
less than the donor concentration. In order to deter-
mine the limits of validity of the low-concentration
theory it is necessary to study the donor fluorescence
as a function of trap concentration. In Ref. 4 an

analysis of the donor fluorescence was carried out for
arbitrary values of the ratio of acceptor to donor con-
centration. It was assumed that the donor and accep-
tor arrays were dilute and that both the donor-donor

and donor-acceptor transfer rates varied as r ' char-
acteristic of dipole-dipole transfer. The coherent-
potential approximation (CPA) was utilized to calcu-
late the effective decay-rate as a function of the ratio
n„a /(noP' ) Here rtq .and no denote the acceptor
and donor concentrations, respectively, while u and P
are the coefficients multiplying r in the correspond-
ing donor-acceptor and donor-donor transfer rates.
According to the theory, which is applicable only
when n & P, the ATA is reasonably accurate for con-
centrations such that n&at~2/(noPt~2) & 0.2. Beyond
that point the asymptotic decay rate begins to depart
significantly from its linear dependence on trap con-
centration.

This paper is a continuation of the analysis which
was begun in Ref. 4. %e investigate the dependence
of the donor fluorescence on trap concentration in a
system where the donor ions form a lattice. The
traps are "interstitial" impurities which have the
property that each trap can interact with a single
donor and that a donor ion can transfer to no more
than one trap. The donor fluorescence is calculated
using the CPA and comparison is made with the
results obtained with the ATA. Although the model
is some~hat artificial we have reason to believe that
the qualitative features of many of our results apply
also to more realistic situations such as considered in
Ref. 2.

The CPA can be understood as an approximation
in which trapping is characterized by a self-consistent,
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frequency-dependent transfer rate. The self-
consistent equation amounts to requiring that the
single-trap t matrix associated with the difference
between the actual and the effective transfer rates
vanishes on the average [cf. Eq. (2.7)]. As will be
sho~n belo~ the CPA reproduces the exact results
for the reciprocal of the Laplace transform of the
time-dependent fluorescent decay at high and low
trap concentrations. In addition, it provides a reason-
able interpolation formula between these limits.

In addition to our work on short-range interactions
we have studied the effects of a finite concentration
of traps in the diffusion regime considered in Ref. 3.
%e propose a self-consistent integral equation for the
t matrix which we solve using numerical techniques
developed in Ref. 3. Specializing to the case ~here
the donor-acceptor transfer rate is given by o,r 6 we
calculate the asymptotic decay rate and the effective
diffusion constant as a function of the dimensionless
parameter n„(a/D)3t4, D denoting the diffusion con-
stant.

The analysis of systems with interstitial traps is
outlined in Sec. II. In Sec. III we discuss the dif-
fusion model and in Sec. IV we comment on our
results.

II. INTERSTITIAL TRAPS

~here yR is the lifetime of the Auorescing level.
The function f(t) characterizes the loss in intensity
due to one-way transfer to traps.

%hen c& && 1 the ATA can be used to calculate
the Laplace transform of f(t) which we define by

f(s) = Ct e "f(t)
0

%e obtain the result

(2.2)

In this section we analyze the effect of a finite con-
centration of traps on the integrated fluorescence fol-
lowing broad-band excitation of the donors. %e as-
sume that the donors form a lattice. A fraction c&

have interstitial traps associated with them. Each trap
can receive excitation from its companion donor;
there is no backtransfer from the trap to the donor.
In the interest of simplicity we assume that the
donor-donor transfer takes place only between
nearest neighbors. The transfer is incoherent, sym-
metric„and independent of the energy mismatch
between donors.

%e follow the notation of Ref. 1 and ~rite the nor-
malized intensity of the donor fluorescence F(t) as

F(t) =c "«f(t),

acceptor pairs. The function go(s) is given by the ex-
pression

go(s) =—X
1 1

tV -„s+zW(I -y„) (2.4)

In which

y, = z ' X'exp(i k r,t)
J

(2.5)

dr O' X X —X~p„s
I + [X Xept, (s) JGo(s)

(2.7)

Here tp(X) is the probability distribution for the ran-
dorn variable L characterizing the donor-acceptor
transfer. For the model under consideration we have

a'(X) = c„g(X—X) + (I —c„)g(X),
assuming a fraction c~ of the donors can transfer to
traps at the rate X. The Green's function in (2.7) is
given by an expression similar to (2.4), i.e.,

Go(s) =—X
1 1

/tt -„s+ Xept, (s) +zIV(I —yk)
(2.9)

With the distribution (2.8) Eq. (2.7) reduces to

X „=—[Q + X —[(Q +X)2 —4c„XQ]'i2}, (2.10)

Q(s) = Go(s)-' . (2.11)

In the limit c~ 0 Eq. (2.10) reduces to the ATA
result shown in Eq. (2.3),

cg X c~X
Xep~(s)

1 +XGo(s) 1 + Xgo(s)

(c„&(1, s finite)

(2.12)

since in this limit Go(s) =go(s). In the opposite lim-
it, c~ =1, we have

XepA(s) =X (c„=l) (2.13)

where X,. denotes a sum over the z nearest neigh-
bors'of the site I, and 8'is the donor-donor transfer
rate. The symbol N is the number of donors, and
the sum on k is over the Brillouin zone associated
with the donor lattice.

The application of the CPA to the interstitial prob-
. lem is similar to the application made in Ref. 4. The

function f( s) is given by

j(s) =[s+Xep~(s)] '

where Xep„(s) is the solution to the equation

f(s) = [s+c„X/[I+Xgo(s) J} '

Here X denotes the donor-acceptor transfer rate
which is assumed to be the same for all donor-

(2.3) The result shown in Eq. (2.13) is to be expected
since when c& =1 all donors are associated with traps.
Under these conditions donor-donor transfer has no
influence on the effective rate of transfer to the traps.
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We have solved Eq. (2.10) in the limit s =0 for
one-, two-, and three-dimensional lattices. 6 In all
cases we obtain a finite value for Xcp&(0), which we
identify with an effective decay rate. In Fig. 1 we
display our results for Xcp„(0) for a simple cubic
lattice along with the predictions of the ATA for the
cases X = Wand L =1000W. It is apparent that the
decay rates calculated in the ATA and CPA are close
to one another for c& & 0.01. The curves diverge
with increasing trap concentration with the larger
discrepancy occurring for X =1000 W.

In Refs. 1 and 2 it was pointed out that in one and
two dimensions gp(s) diverged as s '~' and —lns,
respectively, in the s 0 limit. As a consequence of
this divergence, f(t) in the ATA has the asymptotic
behavior

limit e~ 0. To see how this comes about we note
that (2.10) becomes

AX
cPA( )

I X (0)
(2.16)

= [[Xcpp(0) +2 W]'—4W'] ' '

= [4X„„(0)W]-'~' (2.17)

Combining (2, 16) and (2.17) we obtain the result

for s =0, c„«l. In one dimension Ga(0) is given
by

G.(0) = —' I'"
m o Xcp~(0)+2 W(l —cosy)

,f(r) —(4rrc„'Wr) ' ' (2.14)
Xcp~(0) =4c„' W (2.18)

in one dimension, and

f(r) —(4m, c„Wr) ' (2.15)

in two dimensions.
As noted, in the CPA Xcpp, (s) remains finite in

the limit s 0. The singular behavior of the Green's
function which gives rise to the algebraic decay of
f(t) leads in the CPA to effective decay rates which
are nonlinear functions of the concentration in the

which holds when c& « I,X/16 W. From this equa-
tion it is evident that the effective decay rate is in-
dependent of X and varies as the square of the con-
centration. More generally it can be shown that in
the same limit f(t) is a universal function of the
dimensionless variable c&~ Wt. In Fig. 2 we show the
variation of Xcpg(0) with trap concentration over the
entire range 0 ~ e& ~ 1.

lO

lO

IO

XcpA

lO

O.OOI O.OI

C&

I

O. I l.O jo
QOOI

I

O.ot
I

O.l

I

I.O

FIG. 1. Effective decay rate X&pz(0) for a simple cubic
lattice as a function of trap concentration cg. Xqpp(0) is

measured in units of the donor-donor transfer rate W. The
upper solid line is for X =1000 K', the lower solid line is for
X = K In both cases the broken line is the result given by
the ATA.

FIG. 2. Effective decay rate X&pz.(0) for a one-
dimensional lattice as a function of trap concentration cz.
Xqpp(0) is measured in units of the donor-donor transfer
rate H. The solid line is for X =10008; the broken line is

for X =- H'.
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f (s) = [s + XcpA(0) + XcpA (0)s] (2.19)

where XcpA (0) = dXcpA(0)/ds. From (2.19) we

We can obtain an approximate expression for f(t)
at long times by exPanding XcpA(s) in Powers of s.
Keeping only the zeroth and first-order terms we ob-
tain

obtain

f(t) [I +Xcp (0}] ' e p —, . (2.20)
XcpA(0)t

I + XcpA (0)

At low concentration in one dimension XcpA (0) = I,
whereas in all dimensions Xcp„(0)=0 when c& =1
[cf. Eq. (2.13)].

In the case of the square lattice we have

Go(0) =
2

dx dy [Xcp„(0)+4W(1 ——cosx ——cosy)] ' =(rta W) 'F(4/a2) (2.21)

where

a =2+XcpA(0)/2 W (2.22)

and F(m) is the complete elliptic integral of the first
kind defined by

w/2

F(m) = (I —m sin 8) tt'dH
0

(2.23)

When XcpA(0) (& W, Go(0) reduces to

Go(0) =(4n W) ' in[32 W/XcpA(0)] . (2.24)

Combining this with (2.16) we obtain the result

4m' 8
in [32 W/XcpA(0) ]

(2.25)

from which we infer that XcpA(0) varies as c~/~inca
~

in the limit c& 0. Similarly it can be shown that
XcpA (0) vanishes as [ln (32 W/XcpA (0) ] in the
same limit. Our results for XcpA(0) in two dimen-
sions are displayed in Fig. 3.

It must be emphasized that Eqs. (2.18) and (2.25)
hold only for s =0 and thus characterize the integral

f f(t) dt In view of the .comments made earlier
0

about the close connection between the ATA and the
CPA at low trap concentrations we expect that for
large s or equivalently for short times the ATA and
the CPA will give similar results when c& « 1. The
two approximations will begin to differ when Go(s)
departs from go(s). Very crudely, this will happen
when

c& =0.01, 0.1, and 0.6. Over the interval O~c& Wt
& 1 they find that the CPA overestimates the rate of
decay of the fluorescence. However for c& « 1 and
c& &t && 1 the CPA is significantly closer to the ex-
act result than is the corresponding expression calcu-
lated in the ATA, wheref(t) deca, ys much less rap-
idly. This is evident from a comparison of values. for
the integral f(t) dt which for the exact f(t) is

0
equal to (2' W) ' when X/ W' = ~. In the ATA the
integral is infinite, whereas in the CPA it has the
value (I + e„)/(4' W). Although the CPA is superi-
or to the ATA the first passage time result
f(t) =exp[ —4'�(Wt/m)'t'], is actually a better ap-
proximation than the CPA when c~ & 0.5. For
c& & 0.5 the situation is reversed, with the CPA be-
ing the preferred approximation.

IO

IO

CPA

IO

s XcpA (0) (2.26)

or at a time t —XcpA(0) ' (see Fig. 4). Thus when
c„«If(t) will be given equally well by either the
ATA or the CPA for 0 &( t « XcpA(0) ' whereas
for t ))XcpA(0) ' the CPA is the suPerior aPProxi-
mation.

Recently, Movaghar and Sauer' succeeded in ob-
taining an exact solution for f (s) when X/ W = ~ for
a one-dimensional array with an arbitrary concentra-
tion of traps. Inverting the transform they compare
the CPA expression for f(t) with the exact result for

IO

O.OOI O. OI O. I I.O

FIG. 3. Effective decay rate XgpA(0) for a square lattice
as a function of trap concentration cg. XcpA(0) is measured
in units of the donor-donor transfer rate N'. The solid line
is for X =10008', the broken line is for X = IK
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]0
r

The function ga( r —r, s) is given by

I iI' dk exp[ik (r —r )]
(2n)' " s+Dk2

(3.3)

]0

A
&(s)

where the integral is over all of k space and D
denotes the donor diffusion constant.

Equations (3.1)—(3.3) apply in the low-concen-
tration regime which in the case where V(r) =ar 6

corresponds to n~ (a/D)'i' && 1. In order to study
the behavior at higher concentrations we make a
modification of (3.3) which is suggested by the
analysis in the Appendix to Ref. 1.

s + Dk ~ s + Dk + nq J d r e'" ' " T( r, s) (3.4)

-I
IO which to order k' is equivalent to

s + Dk' s + y(s) + D,«(s) k' (3.5)

]o'-

]0 ]0' Io

where y(s) and D,«(s), given by

y(s) = n„JI d r T( r, s)

and

(3.6)

FIG. 4. Log-log plot of f'(s) vs s for a one-dimensional
lattice with cz =0.001 and X =1000M. The variable s is

measured in units of N and. f (s) in units of +' '. The
solid line is the CPA result; the broken line is obtained us-

ing the ATA. The two curves begin to deviate at the point
where s = X&PA(0) =4 x 10

III. DIFFUSION LIMIT

r

rr.s'r=, + „Jsr r r.rs1,(3.1)

where n& is the acceptor concentration. In the ATA
the function T( r, s) is a solution to the integral
equation

T( r, s) = V (r) —Jjd r V (r)ga( r —r, s) T( r, s)

(3.2)

in which V(r) is the donor-acceptor transfer rate.

As discussed in Ref. 1 the diffusion approach is ap-
propriate whenever there is a large number of donors
in the sphere of influence of an acceptor. In systems
where the donor-acceptor transfer rate is nr and
the donor-donor rate is Pr the diffusion regime
corresponds to cx )& P. The time dependence of the
fluorescence in this regime has been treated within

the framework of the ATA in Ref. 3. In Refs. 1 and
3 it is shown that in the diffusion regime f(s) can be
written

D «(s) =D —
6 nA Jtdr r T(r, s) (3.7)

are the s-dependent decay rate and effective diffusion
constant, respectively.

This approach has a simple physical interpretation.
The function ga( r —r, s) in (3.2) is the propagator
for the donor excitation. Our approximation
amounts to replacing the bare propagator by an effec-
tive propagator characterizing the transfer of excita-
tion in a lossy medium in which the presence of the
traps also influences the rate of diffusion. Equation
(3.2) with ga replaced by

I
~t

dkexp[ik (r —r )]
(2vr)' " s + y(s) + D,„r(s)k'

(3.8)

then becomes a self-consistent equation for T( r, s).
%e have solved this equation iteratively in the

limit s =0 for the transfer rate V (r) = ar 6

(r, ~ r ~ ~), V(r) =0 (r & r, ) using numerical
techniques discussed in Ref. 3. The calculations were
carried out with values of a(5.4 && 10 's cm6s '),
D(14.0&&10'cm's '), and r, (3.1&&10 s cm) ap-
propriate to the 'Pp fluorescence of Pr + at 12.5 K in
Prp 95Ndp p5F3.

Our results for y(0) are plotted in Fig. 5 as a func-
tion of cz —= n&(a/D)si4 The broken l. ine is the pre-
diction of the ATA which is seen to be in reasonable
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FIG. 6. Effective diffusion constant Deff(0) as a function

of c& =n&(a/D) . D,ff is measured in units of D the

donor diffusion constant for (z =0.

0.0
0.0 O.I 0.2 0.3

FIG. 5. Asymptotic decay rate y(0) in the diffusion limit

as a function of c„=n„(a/D) ~ . The broken line shows

the predictions of the linear theory. The decay rates are
measured in units of (D /a) ~ .

IV. DISCUSSION

The results presented in Ref. 4 and in Secs. II and
III' of this paper show that the asymptotic decay of
the donor fluorescence at high trap concentration is

more rapid than is predicted by the linear theory
(ATA). This is especially noticeable in one- and
two-dimensional systems where algebraic decay is

predicted by the ATA. In the case of a simple cubic
lattice we found that the linear theory works well for
c& ~0.01. At higher concentrations tht:re was a no-

ticeable deviation between the CPA and ATA decay
rates with'the greater discrepancy occurring for the
larger value of X/W. Figure 5 shows that in the dif-

agreement with the CPA out to c~ =0.1. The corre-
sponding behavior of D,tt(0) is shown in Fig. 6
where we have plotted D,tt(0) vs c„. The effective
diffusion constant decreases nearly linearly with con-
centration dropping to zero at c& =0.33 at which

point the theory lose's all meaning. The breakdown
of the theory with increasing trap concentration is not
surprising since our modified t-matrix equation is the
counterpart of the low-concentration approximation
to Eq. (2.10), XcpA(s) = c~X/[1+XGo(s) l.

fusion regime the ATA works well for |..& & 0.1. As a

point of reference we note that the value of c& for
thc Pp fluolcsccncc In PI'p 95Ndp p5F3 at 12.5 K is

0.03.
Although there has been comparatively little sys-

tematic experimental work on the effect of trap con-
centration on donor fluorescence we believe that

such studies are worthwhile. Measurements of the

asymptotic decay rates for different numbers of traps

should reveal the nonlinear behavior discussed in this

paper. The one-dimensional systems at low trap con-
centration are particularly interesting.

In connection with the theory it should be em-

phasized that the CPA has proved to be a highly suc-
cessful approach to problems like the one under con-
sideration here which involve diagonal disorder. For
this reas'on an extension of the theory to cover sub-

stitutional impurities of the type discussed in Ref. 2

would be especially valuable. However the most ur-

gent need is for a treatment of the dynamics of the
fluorescence in the diffusion regime which is better
founded than our heuristic modification of the t ma-

trix.
Note addedin proof Recent analysi. s shows that in

a one-dimensional system with X/ W = ~ and

c„&(1,f(t) decays asymptotically as
t' 2exp[ (at/to)' 3] [B. Mov—aghar (private com-
munication)].
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