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Critical properties'of two-dimensional classical models and (1+1)-dimensional quantum
models are obtained by solving a general dimerized spin chain, The staggered-electric exponent
of the F model is derived. The central role of umklapp scattering in controlling renormalization
and determining Potts-model critical exponents is pointed out. The thermal exponent of the
Potts model is evaluated, and the validity of den Nijs conjecture is established. Logarithmic
singularities at the multicritical point are obtained.

It is widely recognized that there is a close connec-
tion between the critical properties of a great many
models in two space or space-time dimensions. The
general classical problem may be stated as an eight-
vertex model with both staggered and direct fields,
which contains the Baxter and staggered-F models as
special cases and may be mapped exactly into the Is-
ing, Potts, Ashkin-Teller, ' and body-centered-solid-
on-solid roughening models, ' Its transfer matrix' is
related to a dlmerized quantum spin chain (XYZ
model) and to the equivalent spinless Fermi gas.
Furthermore, in the scaling limit, systems of classical
charges, planar spins, fermions with spin, sine-
Gordon bosons, and general roughening models may
be fitted into the same picture. 4 These models are
encountered in a wide variety of physical situations,
particularly adsorbed films, organic conductors, ice-
rule ferroelectrics, and magnetic materials.

The purpose of this Communication is to give a
unified derivation of the critical properties of these
systems, extending an approach first introduced by
Luther and Peschel' for the uniform Baxter model,
and further developed by Kadanoff and Brown. %e
shall work with the fermion representation of the
transfer matrix and show that, in order to obtain a
complete picture, incorporating the crossover to a
new phase at the end of the fixed line, it is necessary
to recognize the importance of umklapp scattering,
and to follow explicitly the renormalization from the
bare Hamiltonian to the neighborhood of the fixed
line. In particular, we shall determine the complete
temperature dependence of the staggered-field ex-
ponent of the F model, and give a derivation of the

thermal exponents of the Potts models, "showing
the importance of a delicate cancellation of the lead-

ing singularities.
Our approach makes use of Temperley and Lieb's

device of a transfer matrix which builds up a lattice
diagonally. 3 In Hamiltonian forms (T e ") it may
be written in terms of fermion variables as
H =HD+tHl ~here

2M

Ho = —X (K„—2g p„p„+))
n 1

2M

Hi = —X (—I )"(DiIC„+D2p„p„ii + D3p„)
n~l

2M

~ X (&n &n+i + &n+I &n )

Here K„—= a„a„+i+ a„+la„, p„=—a„a„,and the param-
eter t is proportional to the staggered field for the F
model and to T —T, for other classical systems.
Table I gives the values of g, D;, and 8 at t = 0 for
the different models. Critical properties are obtained
from the ground state of H, and, for ~g ~

~ 1, Ho has
power-law correlation functions corresponding to a
line of critical points with variable exponents.

Asymptotic forms of correlation functions may be
studied by introducing a lattice spacing s = L/2M and
taking the continuum limit s 0 by letting M
with L fixed. Then it is necessary to have m ~ if
the coordinate x = 2ms remains finite as M ~. In-
troducing right- and left-going field operators4
Q~(x) = (—1) (Q2~ —i&2~+~)/2s' and $2(x)
= (—1) (Q2„+i p2 +, )/2s'i', and replacing sums
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TABLE I. Values of the coefficients D;, 8, and g for different models. The notation g =i (1 —g )' and

r = (1+2g)(1+g) ln(1+2g)/2g has been used. K is the four-spin interaction of the Ashkin-Teller model and a is a vertex
weight.
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over m by integrals over x, we obtain
r

MHO I
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~

dxi p( — —
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+8 go)pp2+g(R)R2+R2R, ), (3)

dH
y (5)

[L
H, = —

J dx [D+y",y, +D y', y, +-a(yIy', +y,y, )],
(4)

where p;(x) —= P; (x)P, (x), R;—= p;(x —2s)p, (x),
D+ = +2i ( —D~ -D2/rr) D3. R—enormali—zed coupling
constants for direct and umklapp scattering, dimeriza-
tion, and the thermal perturbation of the Baxter
model are denoted by gD, g„, D;, and 8, respectively,
and they will be determin|'. d from renormalization-
group equations, which are most conveniently
derived by rewriting the problem in Coulomb-gas
language. This may be accomplished by making a bo-
son representation of the fermion operators in Eqs.
(3) and (4), thereby transforming H into a multiple
sine-Gordon Hamiltonian and enabling us to carry
out an explicit expansion of Tr exp( —2MH) in

powers of g„, D+-, and B. The resulting series is the
grand partition function of a Coulomb gas which has
two types of mutually interacting charges with fugaci-
ties g„and D-+, and a third, independent, set of
charges with fugacity B. Given this representation, it
is well known '0 how to write down renormali-
zation-group equations as expansions in the fugacities:

Here y is proportional to g„, H is a function of gD,
and I —= lnM (note that L/2M is the lattice spacing).
The variables D- do not appear on the right-hand
side of Eqs. (5) and (6), since their effect can always

be made negligible by starting with weaker fields or
smaller deviations from T, Conseque. ntly Eqs. (5)
and (6) are the renormalization-group equations for a

single Coulomb gas, and they may be solved in-

dependently for 8(l) and y(l). The scaling trajec-
tories are well known, -

' and they are shown in

Fig. 18 of Ref. 10 (with 2/8 rrK). Asymptotically,
for g & 1, y 0 and H tends to a fixed-point value
80(g) that is determined by the boundary conditions.
Once 8(l) and y(l) are known, Eqs. (7) and (8) may
be solved for D- and 8, to obtain the critical
behavior.

Equations (5)—(8) are not valid for the whole tra-

jectory, since the starting value of y is not small for
all g. Furthermore, although t is small, it is neces-
sary to follow the evolution of the D; from the start-
ing values shown in Table I to the asymptotic forms
that make up D —.This is of particular importance
for the Potts models. For these reasons, we have
carried out the early stages of renormalization nu-
merically by studying the M dependence of the ener-

gy levels" of H, obtained by diagonalizing the matrix
for lattices of size 2M ~ 16. These numerical results
were matched onto the analytical solutions of Eqs.
(4) and (5), in the domain where both are valid.
This procedure is tantamount to a numerical evalua-
tion of Ho, and the results are in agreement with the
expression

dy 2
2 ——y

dl H

(

dD+- I += 2 — D- ——yD+
dl 2H

dB =(2 —2e)a .
dl

(6)
cosvr (1 —Hp) =g

obtained from the exactly known thermal eigenvalue
of the Baxter model. "' However we have also veri-
fied it for the quite different form of thermal pertur-
bation that leads to Eq. (7). Once this global connec-
tion between Ho and g has been established, it is pos-
sible to use Eqs. (5)—(7) to obtain corresponding ex-
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ponents for other models.
By now it is clear that umklapp scattering plays ex-

actly the same role as vortices in the planar
model, 'p which is asymptotically equivalent' ' to
Hp. This process was omitted by Luther and
Peschel, ' who were the first to discuss the continuum
form of the uniform Baxter model and spin chain
(D; =0). Thus their calculation is analogous to
Berezinskii's original spin-wave theory" of the planar
model, arid it misses the analog of the vortex unbind-

ing transition ' to a phase with finite coherence
length g, in the region g & I (8p & I) where umklapp
scattering is a relevant perturbation.

For g & I, the analytical form of ( may be ob-
tained by replacing Eq. (9) with cosh'. = g. The scal-
ing trajectories then pass through y =yp—= 2X/m for
8=1, and, using Kosterlitz's result' $ —exp(n/yp),
we find

( —exp(m'/2Z) (10)

in agreement with the exact result of Johnson, Krin-

sky, and McCoy. " Alternatively, Eq. (10), together
with cosh'. =g, could have been used as a starting
point to derive Eq. (9).

%e now apply these results to the F model with a
staggered-electric field, conjugate to the antiferroelec-
tric order parameter. Variations in temperature cor-
respond to changes in g, and the value g = I (8p = I )
marks the phase transition in zero field first elucidat-
ed by Lieb. ' In our picture this is an umklapp-
driven transition. Its relationship to the plasma-
insulator transition of the Coulomb gas was already
evident from the work of van Beijeren2 and Chui and
Weeks. " If s is the staggered field, and T & T, (i.e.,
——, «g ( I), Eq. (7) and the renormalization-group

equation for the free energy show that there is a
singular contribution to the F-model free energy of

the formf —~s ~
', where yF ,

= 2 —(28p) '. This
defines the staggered-electric exponents q =4 —2y~

and 8 = (4 —g)/g which are temperature dependent,
with g ranging from 1 at T = T, to 3 as T ~. Our
result agrees with the exact values' q = 2, 5 = 1 at
T = 2T„and is (to our knowledge) the first deriva-
tion of the complete T dependence of these ex-
ponents. The value of y, is experimentally accessi-
ble, and it has been measured' in stannous chloride
dihydrate giving —& q & —.Unfortunately, the

magnitude of T/T, was imprecisely known, and it

would be of interest to carry out further experiments
to see if the temperature dependence of q is con-
sistent with our results.

A similar discussion may be given for the Ashkin-
Teller model, for which our whole picture is con-
sistent with the general point of view developed by
Kadanoff in a series of publications. ' " For
——, «g « I, Eqs. (7) and (9) together with Table I

show that the singular part of the free energy goes as

D+(I) =D (I) tanhl(/) (12)

D (I) = D (I;) exp[K(/)]
cosh/(I;)

where
6 oo

I (/) = —, dl'y (/')

K(/) =„,dl'[2 —(28) ']
I

and /; is the matching point. For Hp &

I(l) -y(/) exp[(2 —2/8p)l] 0

(13)

asymptotically so Eq. (12) gives D+(I) —D (I)I(/).
In the same region K(I) —I [2 —(28p) '] and, since
dfld/ —D+D, Eq. (11) follows immediately from
the usual procedure for determining thermal ex-
ponents. On the other hand, when Hp ~ 1, or q ~ 4,
the integral defining I (/) diverges at its upper limit

and, according to Eq. (12), D+(I) =D (I) and there

AT

f —(lt( with t —T —T„yr" =2 —(28p) ', and

sin(~8p/2) =
2

coth(Kl2) This result has previous-

ly been obtained by Kadanoff. "
The Potts models are more subtle. At first sight it

appears that the thermal exponent y~p obtained from
Eq. (7) is 2 —(28p); but this is clearly incorrect
since it gives n = —, for the Ising model (q =2). The

resolution of this difficulty resides in the relationship
~among the coefficients D;, peculiar to the Potts
models (see Table I), which leads to a cancellation of
the leading singularities in the free energy. The true
thermal eigenvalue is given by what should normally
be the leading correction to scaling, and this is pro-
portional to the umklapp scattering variable y. A

physical picture may be given in terms of the
Coulomb-gas representation described above. The
charges +2Q associated with y are twice as large as
those associated with D [(28) '— 2/8 in going
from Eq. (7) to Eq. (5) so Q' 4Q']. The Potts-
model cancellation means that, asymptotically, there
are no bare charges of value +Q (fugacity D+), and
the insulating phase cannot consist of bound pairs of
charge +Q, but rather the single charges disappear
into bound triplets (—Q, —Q, 2Q). Consequently 2ypr

is the dimension of (D )'y, and from Eqs. (5) and (7)

yp = 3 3/28p

a result which has been conjectured by den Nijs' on
the basis of numerical values of y&p.

For q =0, the cancellation can be seen directly
from Table I and Eq. (4) ( D; = D, /s and the bare
value of D+=0). For q AO, we have established it
analytically to first order in g and numerically for all g
in the range 0 ~ g & 1 by means of the matching
procedure described above. The latter provides a
boundary condition for Eq. (7), leading to the solu-
tion
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is no further cancellation.
The four-state Potts model is of special interest.

This is the point (g = 1) for which the trajectories
flow into 8= 1, y =0. Setting 2 —2/8= —x, the solu-
tion of Eqs. (5) and (6) near the fixed point is given

by x =y = (a + l) ' and, since 2 —(28) '

=
2

—x/4, we obtain Nauenberg and Scalapino's

result22 for the free energy: f —t43/) int~. This con-
clusion is identical to that obtained by Kadanoff' at
the equivalent point of the Ashkin-Teller model, as it
should be. For a finite-size system, a similar argu-

ment shows that f —t2hf(a +InM) ~ with b = —, .

Our numerical results are consistent with this form,

with b in the range I to —,. A similar logarithmic

singularity is present in the free energy for all

models; in particular it is present for weak dimeriza-
tion in the ground state of spin-Peierls systems. ~'

For q ) 4 finite coherence length (10) for t =0 im-

plies that the system is not at a critical point. It may

be shown directly from the sine-Gordon representa-
tion that, in this region f —~t ~f

'i' with g given by

Eq. (10). The system then undergoes a first-order
transition with latent heat -g ' ', in agreement with

Baxter. '4

Our picture of the Potts models has some similarity
to that of Nienhuis et al.7 and of Nauenberg and
Scalapino"; the behavior near q =4 is associated with
the existence of a marginal variable. However, we do
not have to introduce dilution for this purpose; the
marginal variable is already present in the lattice
model as umklapp scattering. %e also emphasize
that our derivation of renormalization-group equations
(5)—(7) did not make use of any exact results or
conjectures. The only external input is the global re-
lation (9) which serves as a boundary condition on the
solutions.

A discussion of electric and magnetic perturbations
from this point of view will be given in a future pub-
lication, together with some considerations on tricriti-
cal. exponents, and an expanded account of the work
described in this communication.
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