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Final-state and other approximations in x-ray spectra
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The final-state rule (due to von Barth and Grossman and to Mahanj for the calculation of x-ray absorption and

emission spectra of a metal is considered. Limiting forms of the exact Mahan, Nozieres, and de Dominicis theory,

valid far from threshold, are derived and compared to this rule. It is shown for a simple model that the use of
"orthogonahzed final-state" orbitals provides more accurate results.

Mahan~ has shown that the x-ray spectrum (ab-
sorption or emission) of metals can be approxi-
mated away from the threshold by the single-
particle spectrum calculated using the final-state
potential. That is, for absorption the x-ray trans-
itions are to single-particle states calculated in
the presence of the core hole; for emission, the
potential is the same as that of the ground state.
Mahan's evidence for this rule comes from nu-
merical studies of the exact (not asymptotic)
Mahan, Nozieres, and de Dominicis (MND) the-
ory2'3 using the formulation of Combescot and
Nozieres. 4 Yon Barth and Grossman~ originally
proposed the final-state rule, likewise from nu-
merical studies.

In this Comment, we derive limiting forms for
both absorption and emission, valid far from
threshold, and compare them to the final-state
rule. Our simple derivation provides insight as
to why the final-state rule is reasonable. Further,
we show that it can be improved by orthogonaliza-
tion of the final. states to the occupied initial
states.

The Hamiltonians for the conduction electrons
in the absence of a core hole is

The firial states are eigenfunetions of Hz which
can be put into one-electron form by letting

gk= Sk„Cn ~

where

(&q e, )Sa~ + g Vaa~Sa, „——0.
k

(6)

Then
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A final state is (letting n stand for the set
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where 4=1,2, . . . ,I. are the L lowest energy or-
bitals and IO) is the vacuum. The ground-state
energy is

H] ——~ekgkgk,t

where k' denotes wave vector, band index, and

spin; g, is a creation operator for the 4th orbital
whose energy is e k. Vfhen the core hole is pres-
ent,

with energy

L+

co„. -&, ,
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where bt creates a core electron with orbital en-
ergy e,.

I.et the dipole transition operator be

Hf ~kgkgk+
kk

H, = Z(b I
T

I core) aab + H.c. (lo)

where V». represents the interaction with the
core hole.

For absorption, the initial state is the ground
state

L

4'g —— at, IO),
k~f

The transition rate for absorption is (Z is the
photon energy)

The transition matrix element is
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where

(n IT Icore) = S~„&k IT Icore&
a +i

(13)
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kni

and N is the number of ground-state orbitals.
If the sum on k in (13) were from 1 to N,

(n IT l core) would be the single-particle matrix
element between the nth orbital (in the final-state
potential) and the core level. In fact, In& is the
nth orbital with its projection on the ground-state
Fermi sea removed:

Note that (nln) 01. Of course, the sum can be ex-
tended to all k in (13) without changing the value of
the determinant in (12); however, from numerical
studies we have found form (14) preferable to use
in the approximate formulas which follow.

For E far above the threshold energy E~ =ED
-E (Eo is the minimum E ), the states E which
contribute to (11) have nz,.&»L (i.e. , ~„,»eI, =er)
with the remaining n( «nz, &, i,= 1,2, . . . ,I . (If
some of the n, are large compared to L, the over-
lap of {n„n2,. . . , nI, }with{k=1, 2, . . . ,L) is neg-
ligible. ) The elements of the first column of (12)
of the form S~~, k=1,2, . . . ,L, are small and

L+i
can be set e(lual to zero. In this case (12) becomes

~ ~

iffi in2 inL

$+ $+ ~ ~ ~ S+
&(()) IH, I4,&=(-1) '~&n~, , lTI cro&e (15)
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(16)

W(E) can be written as

)('(z)= Js~w, (w)p(z -~), (17)

where

Denoting the set {n, , n». . . , nz) by P and letting

Ea= g Ee ~

fbi

L L

'4
n=i

Equation (17) is the limiting form of W(E) for
E &&E

If the shake-up transitions inherent in p(E) do
not spread out the intensity too much compared to
variations in W&(ar), p(E) can be replaced by
6(E +E„)and

and

W((~)=(2w/K) Q I&nlTlcore& I 5((g+e, -a)„)
yf nL+i

(18)

W(E) = W((E +E„)

=(2v/If} g &nlTlcore&I2

(21a)

p(E)= g I«Pl@,&l'5(E -E,}. (19}

The matrix element &P I 4~& is the determinant in
(15). W&(~) is almost the same as the absorption
given by the final-state rule; the latter can be
found by replacing n by n in (18). p(E) is the
spectral weight functione for core x-ray photo-
emission (XPS) and contains the relaxation of the
Fermi sea due to interaction with the core hole:

&6(E —(&„-&& -Es) ) ~ (21b)

In Fig. 1, we show absorption for a simple mod-
el, namely, a single band (no spin) of uniform
density of states and width 8'. The interaction
V». is taken to be U/N The sing-le-pa. rticle ma-
trix element &k IT l core& is chosen to be constant
(TgWN} so that in the limit U = 0, W(E) is con-
stant. The orthogonalized final-state (OFS} ap-
proximation, using (21), produces a spectrum
which is considerably closer to the exact results
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the principal threshold. The second threshold is
due to system fina1 states in which i is not oc-
cupied, whereas the first corresponds to states
in which ~i is occupied. A second threshold does
occur at a photon energy of 0.28S' in the calcula-
tion of Fig. 1; but it is too weak to be discerned
in the plot. Only if L/N«1 and 0.1 cU/W c1.5 do
we expect to find an appreciable intensity at the
second threshold. If U is small, the OFS approx-
imation is still reasonably good above the second
threshold for small L/N. However, if U is large
(and L/N small), we find that the approximation
which leads to (15) tends to break down, so that a
different approximation may be necessary.

For emission, the initial state written in terms
of holes is

0.2 0.4 0.6
I

0.8
PHOTON ENERGY

FIG. 1. Absorption spectrum for a single band (no
spin) of uniform density of states with constant single-
particle transition matrix elements. The absorption
is in units of (2~/h)T&~IS' and photon energy (relative
to threshold) in units of W. The parameters are N=60,
L =15, and U=0.2g. The dotted curve represents the
OFS approximation. The area of the exact curve is
(N-L)/N.

N

Q) ——f& c„I 0),
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where
N

and the energy is
L

~c ~

n=i

(22b)

(23)

than that from the final-state rule [Eg. (21) with
n-n], which is everywhere lower. The agree-
ment in the threshold region depends on U and
would be poorer if U were increased. For larger
L, the agreement is similar to that shown in Fig.

In the limit L-O, all three curves become
identical. If the empty portion of the band were
infinite in width, the replacement of n by n for
large n would have no effect and the final-state
rule would agree with (21) well above threshold.

It should be noted that, for the model consid-
ered in Fig. 1, the orbital n=1 with energy ~i is
a bound state. According to Ref. 4, a second
threshold should occur at an energy +1„2-+i above

I

4„= a&,, IO),

with energy
N N

&k y

kg

(24)

(25)

where v denotes the arbitrary set (kz„kz.». . . , k„J.
The transition rate for emission is

~(E)=(2 /k)Z I&C. Ilail&~) I'6(E+E.-«}
(26)

and the transition matrix element is

Here n=1, 2, . . . ,L labels the L lowest orbitals in
the presence of the core hole. The final states
are of the form

N

&~c roelr 1k'& &'c»elTlkz t& &corel~lkL+2) &corelTlk„&

&'@.I&& I &~) =(-1)
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(27)

Skl, +iN SkL,2N SkN

where
N

Is&= Is& —g s,"„Is&. (28)

Here the complementary nature of absorption and.

I I

einission is apparent, i.e. , k) has been ortho-
gonalized to the initial-state sea of holes, where-
as in (14) ln) was made orthogonal to the initial-
state sea of electrons.

Approximations analogous to those given above
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for absorption may be made. For example, suf-
ficiently far from threshold we have the following
one-electron form:

x8(E —(e~ —s Es)) .-

If Ik) is replaced by ~k), we obtain the final-
state -rule expression.

From Fig. 2 we see that for emission, as in ab-
sorption, the proper one-electron form provides
an excellent representation of the spectrum away

FIG. 2. Emission spectrum for a single band (no spin)
of uniform density of states with constant single-particle
transition matrix elements. The parameters are N ~ 60,
L, ~45, and U= 0.2S'. The units and labeling are the
same as in Fig. 1. The area under the final-state rule
curve is L)N.

FIG. 3. Emission spectrum for a nonuniform density
of states. Note that the final-state-rule results have
the same shape as that of the occupied density of states.
U= 0.25. The units and labeling are the same as in

Fig. 1.

from threshold. Use of the orthogonalized
final-state orbitals [(14) for absorption and (28)
for emission] produces accurate results by seem-
ingly avoiding destructive interference artificially
introduced when the bare final-state orbitals are
used. Note, further, that the relationship of the
final-state-rule spectrum to the exact spectrum
is not, in this case, the simple multiplicative
factor proposed by Mahan. '

In Fig. 3, we present results for emission from
a band of nonuniform density of states (ground
state). The simililarity of the emission spectrum
to the density of states is evident. The OFS re-
sults agree well with the exact results.

Extension of our procedures to actual potentials
and densities of states should be possible.
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