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The adequacy of our physically based boundary condition is discussed relative to the theoretical boundary
condition used by Csavinszky and Morrow. The impurity-ion potentials resulting from the two calculations are
compared and contrasted on the basis of their physical behavior and that of the ionized-impurity-limited mobilities
to be derived from each.

Ax1 equivalent variational principle' and the
methods of numerical analysis' have been used in
obtaining approximate solutions of the linearized
version of a generalized Poisson's equation for the
potential P(r) of a pointlike impurity ion in a doped
semiconductor medium characterized by a spa-
tially-variable dielectric constant z(x). These
treatments are concerned with the development
of impurity-ion potentials that embody a more ac-
curate description of dispersive valence screening
than that found in the early Dingle theory' which
yields an exponentially screened Coulomb poten-
tial scaled by the inverse of the static dielectric
constant K p of the medium

Various approximate analytic potentials employ-
ed as trial functions in the variational technique
or as fitting functions in the numerical approach
have been used in a number of Born-approxima-
tion~ and partial-wave-theory' calculations of ion-
ized-impurity-limited mobility and other quan-
tities related to ionized-impurity scattering in un-
compensated semiconductors. These applications
of the generalized Disable theory are deficient in
one or more of the following respects:

(l) Usage of the linearized poisson's equation
rather than the complete nonlinearized version.

(2) The potentials are derived from the linear-
ized Poisson's equation with the neglect of a term
involving II'(r}, where the prime denotes the deriv-
ative with respect to r.

(2} One of these potentials incorporates an in-
correct boundary condition at small r.

(4) No distinction is made between x(r) and the
spatial dielectric function e(x) of the medium.

(5) Derivations of the potentials imply, either
implicitly or explicitly, that the solutions to the
linearized Poisson's equation reduce to the Dingle
potential $0(r) at sufficiently large r such that
~(r)- ~,.

Recent developments by Csavinszky and Morrow
(C M) (Ref. 6) correct for the difference between a(x)
and e (r), and explore the large-x behavior P-AP, of
the generalized potential, where A is a numerical
factor to be determined. (Some theoretical basis
for expecting that A will be different from unity
has recently been proposed by Brownstein. ') CM
have obtained approximate solutions to the linear-
ized equation both by an equivalent variational
principle and by numerical methods. Obviously,
the potential calculated by CM will differ from that
calculated by us (SR) because of this distinction
between ~(I ) and e(r) Furth. ermore, our form for
e(r} is due to Resta' while that used by CM was
formulated by Azuma and Shindo. ' We believe that
Resta's dielectric function is physically more rea-
sonable than the Azuma-Shindo function. The
former rises smoothly up to a constant value Kp

and then is defined as constant thereafter. (For
example, in the case of silicon the dielectric
function is exactly equal to the static dielectric
coIIs'taIlt Ko for r greater than 4.28 a.u. ) As we
mentioned in our paper, the Azuma-Shindo func-
tion is suspect since it rises to a nearly constant
value at a larger value of r than was predicted by
Srinivasan. " Thus, due to these dissimilarities,
the actual linearized Poisson's equations solved
by SR and by CM are different and should not be
expected to yield identical solutions for p.

CM have raised an objection to our use of the
boundary condition that P = P, for r = 25 a.u. in
our numerical solution. Such an objection is
really a criticism of the common practice in the
early calculations of identifying Q with P, for
large r (fifth point listed abave). This relation-
ship has a strong intuitive basis and was consid-
ered to be additional information characterizing
P, rather than a contradiction of the boundary
condition at infinity, P 0. The spatial dielectric
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function attains its full objective within a rela-
tively short distance and asymptotes to z, at r = ~.
Therefore, it would appear reasonable from con-
tinuity that Q —$0 for large r. The theoretical re-
sults of Brownstein that P -AP~ as previously
mentioned, might seem to contradict this assump-
tion. Nevertheless, as stated by Brownstein, for
most practical purposes this departure from unity
is negligible. Another indication of the closeness
of A to unity can be seen in Fig. 1 of Meyer's
paper which compares the numerical solution to
the generalized linearized Poisson's equation with

In his solution Meyer used the boundary con-
dition, $-0.at infinity. There, it is seen that

P/g is essentially indistinguishable from unity
forr &7 a.u. . In SR, the closeness of A to unity
is used as an approximation in the implementation
of the numerical boundary condition at infinity.
our choice of "infinity" at 25 a.u. was a comprom-
ise between accuracy and computer time. We
found very little variation in the results for larger
values of "infinity. " In this regard, it mould be of
interest to know the choice of "infinity" used by
CM .and Meyer in their numerical solution rou-
tines.

The potential derived by CM, in contrast to
those derived by SR and by Meyer, shows a value
for A that is significantly different from unity.
For their potential, the behavior of A (defined as
"q" by CM) as a function of R„ the Dingle screen-
ing length, is as folloms. We see from CM's Fig.
3 that, for small values of Ro, A is small, being
as low as O.V. For largeR the value of A asymp-
totes to some larger value that mould appear from
this figure to be approximately 0.9V. (It is hard
to decipher the exact behavior as CM do not car-
ry their solution out to very large values of R,.}
We find such small values of A (i.e., significantly
less than unity) in the low-Ro region to be discon-
certing for the following reasons.

(I} When A is less than unity, this indicates
that the derived potential is smaller (weaker) than
the standard Dingle potential. The effect of the in-
clusion of the spatial variation of the dielectric
function is such that the ion is less screened than
with a constant dielectric function. Thus, it would
seem plausible that the potential derived from
such considerations should be stronger (not weak-
er) than the Dingle potential.

(2} The further effect of such a "weakened" im-
purity-ion potential will be to increase the value
that would be calculated for ionized-impurity-lim-
ited mobility. This trend is away from the experi-
mental points which are usually found to be lower
than the traditional (Brooks-Herring) predictions
for mobility.

It may be useful to consider the accuracy of the

two solutions achieved, each with respect to their
respective linearized Poisson's equation. For an
exact solution the sum of the terms in the equa-
tion, denoted by f (r), should equal zero .We have
evaluated both differential equations with their
corresponding solutions inserted. It was found,
for large r, that f(r} in our equation summed ex-
actly to zero, while the CM terms evaluate to a
small nonzero value. The explanation of these re-
sults is obvious. We used a «(r}[=e(~)] that is
defined to be a constant for r greater than the
screening radius of the dielectric function. There-
fore, in this range ~'(r) vanishes and the equation
reduces exactly to the Dingle equation. This, of
course, is the rationale behind our approximate
boundary condition at r = 25 a.u. , which we believe
is physically reasonable though not, perhaps, math-
ematically rigorous. It might be remarked as a
corollary that, in the case of other spatial dielec-
tric functions that are not structured so as to limit
exactly to a constant value, the validity of the ap-
proximation such as we used at r = 25 a.u. will be
a function of the validity of the approximation that
x'(r) is zero.

To continue with the examination of the CM case,
we note that in the situation where an exact solution
cannot be found, i.e., the sum of the terms in the
equation is not equal to zero, the accuracy of the
solution must be measured by the relation of f (r}
to the individual terms of the equation. Clearly,
the relation of

~f (r) ~
to the largest term in f (r}

is the point of interest. W'e found that at r = 25 a.u.
the value of AM was less than two orders of mag-
nitude smaller than the largest term in their equa-
tion. This indicates an adequate but not an over-
whelmingly accurate solution for large r. Our
solution yielding an exact value for fs„of zero,
at large r, must be considered the more accurate
representation in that region even though it is
based on an approximate numerical boundary con-
dition.

Finally, we would like to raise a question as to
the relative numerical accuracies of the boundary
conditions used by SR and by CM. Speaking with
respect to a numerical solution, a boundary con-
dition at infinity must be not only physically re-
asonable, it must be numerically expressible.
That is, a boundary condition which asymptotes
very slowly to some value at infinity is much less
satisfactory for numerical solution schemes than
is one which rapidly reaches to nearly its asymp-
totic value. We would contend that the approach
of p to $0 is much more rapid than is the approach
of P to zero. Thus, from such perspective, it is
arguable that our boundary condition of p = $0 at
r = 25 a.u. is the more riumerically feasible.

In summary, we assert that our boundary con-
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dition at infinity, while lacking perhaps the theo-
retical rigor of CM's boundary condition, still
contains a meaningful physical sense of the be
havior of the impurity-ion potential. Additionally,
our derived potential would seem to display the
expected physical behavior which the CM potential
lacks. However, as pointed out earlier by Meyer,

any treatment of this problem must consider the
solution of the nonlinearized Poisson's equation.
Therefore, the most accurate information on the
effect of the spatial variation of the dielectric
function will not be produced by either impurity-
ion potential.
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