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Comment on: "Electron mobilities based on an exact numerical analysis of the dieiectric-
function-dependent linearized Poisson s equation for the potential of impurity ions in

semiconductors"

P. Csavinszky and R. A. Morrow
Department ofPhysics, University ofMairie, Orono, Maine 04469

(Received 29 September 1980j

We believe that an assumption made in this paper, namely, forcing the potential to exhibit a prescribed behavior at
a certain distance from a point ion, is not tenable. We present below results of our numerical and variational

calculations made without the above assumption.

In a recent paper, Scarfone and Richardson'
(SR) numerically solve the linearized version of
a generalized Poisson equation that has been es-
tablished by Csavinszky' for the potential P(i) of
a point donor ion in a semiconductor. The non-
linear differential equation is of the form

Q" + —+ — (f&' + =0r K

where z(r) has been dubbed' the "spatially-vari-
able dielectric constant, " and p(r) is the electron-
ic screening charge density. Upon linear'ization
we obtain'
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which permits us to rewrite Eq. (1) as
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where R, is a screening length introduced by Din-
gle, ' and K, iS the StatiC dieleCtrie COnStant Of the
semiconductor. This is the basic differential
equation we are going to discuss. '

SR have numerically solved Eq. (3) under the
assumption that the donor-ion potential P(x) at a
distance of r =25 a~ (a~ stands for the Bohr radi-
us) becomes equal to the Dingle' potential

e r/Rp
Kr0

(4)

where e, is the magnitude of the electronic charge.

Having solved Eq. (3), subject to the boundary
condition. given in Eq. (4), SR then obtained a fit
of the numerical potential (for a given Rp) to the
analytical form of

y, =y, [1+(~,-1)e '"], (5)

where t is the fitting parameter and r is measured
in units of a~.

Vfe believe that the above assumption made by
SR is not tenable and that it affects the extensive
f versus Ro tables given by them for Si, Ge, and
GaAs. Our reason for this belief is as follows.
The second-order linear differential equation
given in Eq. (3) must be solved subject to two
boundary conditions. These boundary conditions
specify the behavior of the potential near the
origin, Q(r 0) =ep-/r, and at infinity, g(r-~)
=0. The correct solution is then uniquely deter-
mined at all intermediate values of r. It does not
follow that the solution at any particular value of
r, say x„ is givenby Qp(rp) of Eq. (4). Byforc-
ing this requirement at r, = 25 a. u. , SR have nec-
essarily obtained a solution that violates one of
the boundary conditions.

We have solved Eq. (3) subject to the proper
boundary conditions for Si [with a z(r) we shall
discuss momentarily] both by numerical means'
and by an equivalent variational principle proposed
by Csavinszky and Morrow. ' We find that a vari-
ational trial potential of the form

Q„= $p[q+ (ap —q)e «'],

where q and p are variational parameters, and r
is again measured in units of a~, is in very good
agreement with our numerical potential. This is
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FIG. 1. Comparison of the approximate variational

potential ft „(normalized to the Dingle potential ft)p}

with the exact numerical potential p,x (normalized to

the Dingle potential pp}. The potentials have been ob-

tained {Ref.14}for a point donor ion in uncompensated

n-type Si using a screening length of R p= 11,3 p g.
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FIG. 2. Dependence (Ref. 14}of the variational param-
eter p on the screening length Rp in n-type uncompen-

sated Si.

illustrated for' R, =11.3 a~ in Fig. 1. We also
find that the variational parameter p is a sensitive
function of R, . This is illustrated in Fig. 2. A

sensitivity on R, is also exhibited by the variation-
al parameter q, which is i1.1ustrated in Fig. 3.
Our finding concerning the exponential parameter
p is very different from that of SR, who find that
the exponential parameter t is almost a constant
over a wide range of R, values.

I et us return now to the assumption made by SH.
At r =25 a» the exponential factor in the square
brackets in Eq. (6) is (using Fig. 2 to obtain the
required p value) e "'~""'=e "=0.11X10'.
This number, even when multiplied by. («0 —q), is
completely negligible compared to q =0.85 (ob-
tained from Fig. 3). Consequently, for r~ R„
Eq. (6) can be written as
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FIG. 3. Dependence (Ref. 14}of the variational

parameter q on the screening length Rp in n-type uncom-
pensated Si.

On the basis of Eq. (8), e(r) can be interpreted as
the unshielded potential (e,/r) divided by the
shielded potential (q).

On the other hand, the spatially-variable dielec-
tric constant «(p) enters into the theorym of the po-
tential of a point donor ion placed into a doped
semiconductor. This quantity may be defined by

e, rE 0

«(r) ~' '

from which «(y) may be interpreted as the un-
shielded electric field (e,r/2) divided by the
shielded electric field (E).

Using E(r) = —V$(~), it follows from Eqs. (8)
and (8) that"

1 1 d 1

«(r) c(r) "dr ~(r) ' (10)

For Si, with A, 8, a, 8, and y denoting material

Q„/Qo=q &1,
in conflict with SB. One other comment concern-
ing Eq. (3) must be made.

In our calculations we have not identified the
spatial dielectric function e(z) with the spatially-
variable dielectric constant «(r), as has been done

by SR. Our reasons for this distinction, as has
been put forward by Morrow and Csavinszky, "
are stated below.

The spatial dielectric function e(r) describes the
response of an undoped semiconductor to a pertur-
bing point charge. This quantity, for a point donor
ion placed into the undoped semiconductor, is de-
fined" by
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parameters, the last three in units of a~', the
spatial dielectric function is given'3 by

1
s(r)

+ p CF ~gp ~~ ~Qg YF

tained by the variational principle

I.(&I&}f= JI ——,'«(&I&')' —,'«,—R,'$&' —,'-«g'
0

It is the second term on the ri.ght-hand side of Eq.
(10) that has been neglected by SR. This certainly
would also affect their t parameter somewhat.
Our e(r) is somewhat different from the one used
by SH, so this might also affect the t parameter
somewhat.

Finally, we mould like to briefly explain the
variational procedure used in our calculations. -

With the substitution of P= r&)I, one can rewrite
Eq. (3) as

K g «&&Ro—+——— ——K —
a

=0. (12)y' a'

An approximate solution of Eq. (11) can be ob-

which has been proposed by Csavinsmky and Mor-
row. That the variational principle is equivalent
to the differential equation can easily be seen; de-
noting the integrand in Eq. (13) by F, substitution
of F into the Euler-I agrange equation,

d—P -— S'=0
3$ dr 9P'

leads to Eq. (12).

Finally, we acknowledge useful discussions with
K. R. Bromnstein.
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