
PHYSICAL REVIEW B VOLUME 23, NUMBER 1

Comments

1 JANUARY 1981

Cotnrnents are short papers which coinrne»t on papers of otheI authors previously published ill the Physical Review. Each Con~ment

ticles is followed, and page proofs are sent to authors.

Correlation-length exponent in t~o-dimensional percolation and Potts model

P. D. Eschbach, D. Stauffer, and H. J. Herrmann
Institut fiir Theoretisehe Physik, Cologne University, 5000 Koln 41, N est Germany

(Received 14 April 1980)

Following Reynolds et al. and Swendsen, Monte Carlo renormalization calculations were made

for percolation on the triangular lattice for rescaling up to 10000 x 10000, and for the 4-state

Potts model on square lattices up to 64 x 64. In contrast to earlier studies, our comparison with

the den Nijs hypothesis gives good agreement with its prediction y = —for percolation but bad

agreement with its prediction y =
2

for the 4-state Potts model.

Whereas critical exponents for the two-dimensional
Ising model have been known exactly for decades, no
exponent has thus far been calculated exactly in two
dimensions for the more general q-state Potts model
or the simpler percolation problem. den Nijs' sus;
gested a formula for the correlation length exponent
y =1/v which is defined through g n e " (g = correla-
tion length, e = distance from critical point):

(y —3) —arccos - 2 = 3
2 Jq
7r 2

This formula gives the exact y =1 for the Ising
model (q =2) and predicts y = —for percolation

(q = 1) and y = —for the 4-state Potts model

(q =4). On the other hand, Klein er al 'suggeste. d

that the result y = log( —,)/ log( J3) = 0.738, which

follows from a simple renormalization argument on
the triangular lattice, is exact; and Zittartz suggested

y ~ (4/n ) arccos( J2 —1) = 1.456 for the 4-state
Potts model. As a step toward a future exact solution
of the two-dimensional percolation and Potts model,
one would like to know which of these competing
formulas is ~rong. Series expansions, analytic renor-
malization techniques, and early Monte Carlo renor-
malization methods5 were not accurate or reliable
enough to settle these problems. Recent Monte Car-
lo renorrnalization for percolation, on the other
hand, gave y =0.738+0.008 for square site percola-
tion6 and y =0.733 +0.008 for square bond percola-
tion, ' in better agreement with Klein et al. than with
den Nijs. The careful analysis of Reynolds et al. did
not yet rule out the den Nijs hypothesis.

The original intention of the present percolation
work was to employ the same Monte Carlo renormal-
ization method as Reynolds et al.6 but to increase the

&(p) = L(p)dp

is the probability that at concentration p the finite
system percolates, i.e., that at least one path of occu-

(2)

accuracy enough to rule out Eq. (1). We hoped to
increase our accuracy by:

(i) Throwing away those computer runs which gave
a percolation threshold far away from the fixed point
before much computer time was used for these runs.

(ii) Employing lattices larger than those used be-
fore in any Monte Carlo simulation known to us:
Our maximum size is 10000 in length compared with
500 in Refs. 6 and 7 (presumably we established a
new world record here).

(iii) Working with triangular site percolation

(p, =
2

) which uses less computer memory and time

than square site percolation. (To save memory only
two consecutive rows of the lattice were stored, and
for b above 1000 unused labels of finite clusters were
discarded in regular intervals. 6)

(iv) Last but not least by using two CDC Cyber 76
computers six times faster than the computer at Bos-
ton University together with a much slower CDC
Cyber 72 where more time was available.

The Reynolds method employed here determines
for a fixed sequence of random numbers (which
determine the occupation numbers) at what concen-
tration p a b x b lattice percolates from top to bot-
tom. This is achieved by varying p in suitable steps
until the threshold for that particular sequence of
random numbers is determined with the desired ac-
curacy. By repeating this procedure over and over
for different random numbers one obtains a histo-
gram L (p), where L (p)dp is the probability that the
finite system has its percolation threshold at a con-
centration between p and p+dp. The integral"
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(3a)

pied sites connects the top row of the lattice with the
bottom rom. This renormalization transformation
R (p) has a fixed point at some p'. R (p') -p'. If
the length b of the lattice is increased, p' approaches
the percolation threshold of the infinite lattice.
Standard renormalization arguments give the critical
exponent y as

y =log()i)/log(b), (b ~)
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FIG. 1. Histogram of L (p) vs p for b =1000. The error
bars on the wings are much larger than the error bar at the
maximum, which is based on many more runs. The solid
line gives the Gaussian approximation for L (p).

such that R (p) =p" +X(p —p') + close to the
fixed point. Within the accuracy of our data one may
identify, as pointed out by Reynolds et al. , the fixed
point p" with the average (p ) or with the position
p,„ofthe maximum in L (p), but not with p, . (For
small lattices p" is smaller than (p). ) The resulting
X = L (p,„) increases asymptotically as b»; if the ra-
tio yb = log(A. )/log(b) is plotted versus I/in(b)
then' the intercept gives this asymptotic y. (Time
was saved by a factor of 3 by stopping the iterative
search for p if it was outside the interval

p, —d, (p (p, with 4 = , L ".)—
Figure I shows a histogram for L (p) at b = 1000,

based on 570 runs away from the maximum (crosses)
and on 6000 runs close to the maximum (full cir-
cles). The error bar at the maximum gives the error
bar for yb and has to be regarded as a typical error,
not as a maximum error. Table I gives details for all
lattice sizes b used here. There yG refers to the
Gaussian approximation: If

L (p) = (2n o') '~'exp( ——,
'

(p —p,„)'/o'1

near the maximum, then ko = (2wo 2) '~2 is this
maximum, and yo = log()1.o)/ log(b) is the Gaussian
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FIG. 2. Variation of the exponent estimates versus
I/In(b). The solid line is a parabola fitted through all points
with the constraint y =0.75 for b = ~. The sum of weighted
squared deviations from such parabolas, fitted with the in-
tercept constrained to be y, has a minimum near y =0.75
and is about twice as large at y =0.738 (see inset).

approximation6 for yq. Figure 2 summarizes the data
and shows that a parabola fitted on all data with the
constraint y =

4
at the intercept gives an excellent fit

over the three decades of b studied here. (In that
analysis we combined the four less accurate points for
b & 1000 into a single average: y& =0.720+0.010 for
b = S900.)

The averages (p ) = „pL (p)dp lie between 0.48
and 0.50 even for very small lattices; we did not em-
ploy periodic boundary conditions where (p) is
lower. " Finite size scaling asserts p, —(p) ~ b ~;

and with y =0.75, b & 100 we find p, =0.49997, con-
firming excellently the not yet rigorously' proven
result p, = —,. More details are given elsewhere.

With the different Swendsen Monte Carlo renor-
malization group (RG) technique" we studied the 4-
state Potts model. " We employed mainly two kinds
of RG procedures with b = 2 -as the scaling factor:
the common "tie breaker" method, and a symmetric
procedure with one cell influenced by 17 surrounding
sites, We took into account up to eight different in-
teractions and performed four RG steps. A run start-
ing with a 64 x 64 lattice was observed for 90000
Monte Carlo steps per spin. Attempting to quantify
our Monte Carlo RG results we calculated the aver-
age of the best values of y for different runs. They
are plotted with their statistical error bars in Fig. 3
for the two renormalization procedures. The dif-
ferent RG steps in Fig. 3 are plotted as if they ap-
proach the fixed point at the origin with a scaling fac-
tor of 0.5—the irrelevant eigenvalue of the scaling
field which alters y most. (This was the approximate
mean value of all the irrelevant eigenvalues con-
sidered. ) As our values for the fourth RG step are
not very accurate we plotted only some examples for
that step. The extrapolations sketched in Fig. 3 have
different curvature for the two different procedures,
'and the extrapolated value of y = 1.34 does not agree
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TABLE I. Details of statistics and results for our percolation study. Only the total number N of
runs is given, not the fraction which ended close to p~,„. For (p) our errors are 10 4 to 10 3, for

p they are about 0.001. One run for b =10000 needed about one hour on the CDC Cyber 76.

(p)

10000
9 000
5 000
3 000
1 000

630
430
300
215
160
110
80
57
40
27
20
17
14
12
10
9
8

7

6
5

4
3
2

0.4998
0.4999
0.4998
0.4999
0.4995
0.4991
0.4988
0.4985
0.49&4
0.1975
0.4971
0.4961
0.4957
0.4943
0.4924
0.4896
0.4906
0,4899
0.4890
0.4874
0,4879
0.4877
0.4880
0.4877
0.4880
0.4896
0.4921
0.5000

0.499 3

0,496 9

0.493 1

0.484 8

0.486 8

0.4790

0.477 0

0.470 2

0.481 4
0.500 0

0.713 + 0.002
0.712 + 0.006
0.698 + 0.010
0.702 + 0.004
0.697 + 0.004
0.702 + 0,004
0.695 + 0.004
Q.693 + 0.003
0.688 + 0.002
0.679 + 0.004
0.671 + 0.003
0.668 + 0.003
0.660 + 0.003
0.658 + 0,003
0.653 + 0.003
0,649 + 0.002
0.645 + 0.005
0.640 + 0.003
0.637 + 0.003
0.628 + 0.003
0.621 + 0.002
0.614 + 0.003
0.605 15
0,58496

0.701 + 0.012
0.745+ 0.015
0.708+ 0.025
0.725 + 0.017
0.707 + 0.002
0.715 + 0.004
0.703 + 0.006
0.693 + 0.002
0.703 + 0.006
0.693 + 0,002
0.685 + 0.001
0.681 + 0.002
0.680 + 0.001
0.674 + 0.003
0,667 + 0.001
0.665 + 0.003
0.660 + 0,001
0.658 + 0,001
0.655 + 0.001
0.652 + 0.003
0.654 + 0.002
0.653 + 0.002
0.650 + 0.002
0.652+ 0,002
0.659 + 0.002
0.671 + 0.002
0.702 59
0.835 21

39
28
30
36

6 150
800

1 000
1 950
4 200
6 500

16 000
38000
30 500
30000

110000
200 000
120000
120000
130000
220000
130000
130000
130000
130000
130000
280 000

exact
exact
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FIG. 3. Values for the 4-state Potts model y, obtained by

the tie breaker procedure (crosses) and the symmetric pro-
cedure (circles) at different RG steps.

with den Nijs's conjecture y = —,. But since the

asymptotic behavior is not known we cannot estimate

y reliably. No eigenvalue of any of our interactions
seem's to tend to unity with growing number of RG
steps, and thus we do not think that marginality ef-
fects or logarithmic correction factors' are important.
We did not take into account vacancies. More details
are given separately. '"

In conclusion, our value y =0.75 for percolation
agrees well with den Nijs (y =0.75) but not with
Klein et al. y = 0.738), whereas our y = 1.34 (4-state
Potts model) does not agree with den Nijs (y = 1.50)
and only slightly better with Zittartz (y ~ 1.46). Our
Fig. 2 suggests y =0.738 is wrong for percolation un-

less the extrapolated curve has zero slope at the inter-
face or changes drastically its curvature. Similarly
Fig. 3 suggests y = 1.50 to be wrong unless the curve
has infinite slope at the intercept or changes drastical-

ly its curvature due to marginal behavior (as expected
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from the picture of Ref. 13). Whether these possible
exceptions actually do occur is a question beyond the
scope of our numerical study. Monte Carlo results
alone can never rigorously invalidate a theory.

Lobb and Karasek" found that for bond percola-
tion on the square lattice yq is nearly independent of
lattice size b, in contrast to the site percolation results
of our Fig. 3. But their extrapolation y =0.745
+ 0.009, based on rather small b, is not accurate
enough to distinguish between y =0.738 and

y =0.750. We find from 1700 runs for 1000 x 1001
square bond percolation: y~ =0.745+ 0.003. For
smaller sizes we confirm the exponents of Lobb and
Karasek and also within 10 4 the relation p'=0.5 al-
ready for small b. Combining these exponents for
10 & b ( 100 with our value for b =1000 we extrapo-
late b =0.75+0.01 for infinite lattices, just as we
found it for triangular site percolation.

Note added in proof For per.colation, Reynolds
(private communication) reanalyzed the data of Ref.
6 and agrees with our conclusion y = —,; and

Nightingale and Blote [in Proceedings of the Statisti-
cal Physics Conference, Edmonton, Canada, August

1980 (unpublished)] confirmed it with even greater
accuracy: y =0.7497. The latter paper also agrees
with our y for the 4-state Potts model, but we agree
with them that these deviations from the den Nijs
formula presumably are numerical effects due to
marginality.
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