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Finely divided graphite is one af the most useful materials for a wide variety of adsorption studies. As a major step
in our investigations of the theoretical description of such adsorption phenamena, we present here full dynamical
calculations of bulk graphite and of graphite slabs consisting of a finite number of {0001)graphite planes. An
extended version af the axially symmetric model of Nicklow, Wakabayashi, and Smith allows the appearance of
surface modes of vibration not found with simpler models. Six branches of surface mades are found, but the surface
modes are much less pronounced than those in more isatropic crystals as a result of the very weak interaction
between the planes.

'

%e also present the bulk and slab vibratianal density-af;states functions.

I. INTRODUCTION

For many years finely divided graphites —graph-
itized carbon blacks and, more recently, exfoli-
ated graphites —have been widely used as sub-
strate materials for adsorption studies, because
the exposed surfaces in these materials are pre-
dominantly the well characterized (0001) basal
plane surfaces. These have the advantage that sur-
face uniformity can be controlled by heat treat-
ment or annealing, and that, because of this uni-
formity, the modeling of adsorbate-adsorbent in-
teractions is greatly facilitated. These circum-
stances have led, over the years, to the accumu-
lation of a large body of data in the form of ad-
sorption isotherms and heats of adsorption for a
variety of gases adsorbed on graphite substrates.
Although such work has been very useful for the
study of adsorbate-adsorbent interactions, a new

approach has recently received increasing atten-
tion, namely, the direct; measurement of the ther-
mal properties of the adsorbed material, such as
heat-capacity measurements. Experimental re-
sults of this kind are based on measurements of
the thermal properties of a system exhibiting
large surface-area-to-volume ratio; the contribu-
tion due to the adsorbed species is, then obtained
by subtracting from the measured quantity of the
total adsorbate-adsorbent system the contribution
due to the bare adsorbent. The same procedure is
followed in the theoretical evaluation of surface-
and adsorbate-thermodynamic properties.

In the case of graphitic substrates, it has usu-
ally been assumed that the substrate is inert in
that the dynamics of the substrate does not contri-
bute significantly to measurements of properties

of adsorbed systems. Such an assumption must be
valid to a reasonable first approximation, because
data analyses based on it have been reasonably
consistent with experience. However, with in-
creasing refinement and sensitivity of experimen-
tal methods, there is an increasing need for quan-
titative evaluation of the validity of such inert-
adsorbent approximations. This is important both
to establish bounds on the validity of such assump-
tions in interpreting experiments and to prepare
the way for data analyses which can take account
of substrate dynamics.

The present paper deals with the first aspect of
. such a theoretical evaluation, namely, the lattice-

dynamical treatment of a graphite system with a
high surface-to-volume ratio. Aside from the in-
terest of such systems for adsorption studies, they
are of intrinsic interest because of the changes in
their thermodynamic properties caused by the
large surface areas of the "bare" materials. For
instance, measurements of the heat capacities of
graphite samples of various states of subdivision
have been made by De Sorbo and Nichols, ' van der
Hoeven and Keesom, ' Delhaes and Hishiyama, ' and

Wostenholm and Yates. 4 Discrepancies found in
the heat capacities reported by these various au-
thors have been attributed to differences in sample
treatment. Various explanations have been sug-
gested to account for these differences: For in-
stance, it has been suggested that some of these
discrepancies may be the effect of adsorbed im-
purities. A different explanation was proposed by
Komatsu, ' who showed that an increase in the
specific heat can result from a reduction in the
values of the interplanar elastic constants c33 and

c44, caused by the presence of stacking faults. On
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the other hand, Flubacher et a/. ' have suggested
that in clean samples the excess specific heats
could well be due to intrinsic surface effects rath-
er than to changes in the elastic constants.

As a step in investigating this question and oth-
ers concerning a bare graphite substrate, we pre-
sent here a full lattice-dynamical treatment of a
graphite system with surfaces. More precisely,
we deal with a graphite slab of a finite but signif-
icant number of atomic layers, bounded by two
free (0001) basal plane surfaces and infinitely ex-
tended in the directions parallel to the basal
planes. Such a full treatment goes beyond earlier
works, such as Hefs. 7 and 8, which focus on more
limited questions or more simplified models. The
lattice treatment of such a slab with a registered
phase of xenon atoms absorbed on its surfaces, as
well as a discussion of the thermodynamic prop-
erties of the bare slab and the xenon-covered slab,
will be presented in subsequent publications. Some
of the more significant preliminary results of these
studies have been given in a recent publication. '

In Secs. H and III we present, respectively, dis-
cussions of the lattice dynamics of bulk graphite,
and of the graphite slab. A general discussion and
conclusions follow in Sec. IV.

I

a I I

Op
f

I,' 4a+

ao = 1.4210+ 0.0001 A,
c = 3.3539+O.OOOV A.

FIG. 1. Bulk graphite unit cell.

X

II. BULK GRAPHITE

The hexagonal structure of graphite consists of
stacked planes consisting of covalently bonded
carbon atoms, the planes being held together by
dispersion (van der Waals) forces Avarie. ty of
force-constant models has been. used to describe
these intraplanar (in.-plane) and interplanar (out-
of-plane) carbon-carbon interactions. Although a
"valence force field" model is appropriate to de-
scribe the intraplanar interactions, in the present
work we have chosen to use the "axially symmet-
ric" (AS) pairwise interaction model of ¹cklow,
Wakabayashi, and Smith'0 (NWS), because it is
based on a fit to their incomplete, but neverthe-
less extensive, measurements of phonon disper-
sion curves, which constitute the most complete
set of measurements to date. Furthermore, as
pointed out by these authors, the (bulk) specific
heat of graphite deduced from their model repro-
duces almost exactly the experimental behavior
over a wide range of temperatures (1.5-200 K).

A. The graphite lattice

The geometry of the bulk graphite primitive unit
cell is shown in Fig. 1 together with the primitive
lattice vectors a„a„a,. The nearest-neighbor
distance is given by a, and the interplanar distance
by c, where, according to Ref. 11,

The primitive lattice vectors, in terms of the in-
dicated Cartesian system, are given by

24= 2+o~ —
2 0~0I ~i

is Ws
2-l(2 o~ 2

a, = (0, 0, 2c).

There are four atoms (labeled 1 through 4) in the
unit cell, located at

atom la (0, 0, 0), atom 2a (a0, 0, 0),
atom Sa (ao, 0, —c), atom 4a (2ao, 0, —c) .

The AS interaction model of NWS considers in-
traplanar interactions up to third neighbors, but
only first- neighbor interplanar interactions. We
have extended the model to include second-neigh-
bor interplanar interactions for the following rea-
sons: First, the second-interplanar-neighbor
distance is less than 10%%uz larger than the first-
interplanar-neighbor distance. Second, not only
does an atom that has only two first-interplanar
neighbors have six second-interplanar neighbors,
but in addition an atom that has no interplanar
neighbor at a distance of c has twelve interplanar
neighbors at the second-interplanar-neighbor
distance. Hence these interactions should not be
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neglected. Finally, of specific interest to the
dynamics, the first-interplanar neighbors do not
couple atomic motions parallel to the crystal layer
to those perpendicular to it, whereas second-inter-
planar interactions do give rise to this coupling,
and consequently to surface modes of vibration,
not resulting from the original model. A survey
of the carbon-carbon interactions used in our
model is given in Table I.

B. Bulk lattice dynamics

We consider a crystal built up of unit cells, la-
beled by the triad of integers 1= (1„1„l, ), each
containing s different atoms labeled by v. The in-
stantaneous position of the atom v in the unit cell
1 [atom (lv)] is given by

r(1~) = r, (l~)+u(l~),

where r, (lx) is the mean position of atom (1v) and
u(lv) its instantaneous displacement from the mean
position. In the quasiharmonic approximation the
total potential energy of the crystal is expanded in
a Taylor series in u„(lv) (o.', P =x, y, z) up to the
quadratic term

e =C, + g e.(1~)u.(1~)
fke

+2 Z Q 4~~(1~, 1'~')u (l~)u~(11~'), (4)
1ka f'k'$

where

C.(1~)=
su (lv)

8 2@,

C, (1&;1'&')=
su (lv)su~(1'g')

The subscript on the derivatives indicates that
they are taken for the atoms in their mean posi-
tions. The C (lv) are zero if the crystal is in
static equilibrium (T= 0 K, zero-point dilation
neglected) and at finite temperatures, if in addi-
tion (lv) is a center of inversion; in general the
4 are small and they will be neglected. The 4 ~
are the force constants that appear in the equations
of motion.

The vibrational frequencies &u~(q) of the c~yst~l
are obtained from the eigenvalue equation

g D„,(«",g)t', (~', q p) = ~'(q) t', (v; g p) .
rc'g

Here $ (z; qp) is the o. component of the polariza-
tion vector of atom v in the mode characterized by
the wave vector q and the polarization index

P (=1,2, . . . , 3s}. D ~ is the dynamical matrix
element defined by

D ~(~a''; q)={M„M„,) Z C ~(lg; 1'g')exp(iq [r,(l'g')-r, (1~)]j,

where M„and M„. are the masses of atoms g and
&', respectively. The order of the dynamical ma-
trix is equal to the maximum value of p, i.e. , 3s;
for bulk graphite with four atoms per unit cell the
order is 12.

The AS interaction model assumes that the force
constants are derived as if the atoms interact
through central potentials, i.e., that the forces
between two atoms can be derived from a pairwise
interaction potential function P(r) which depends
only on the distance r between the two atoms.

l
Different potential functions are used for different
shells of neighbors. I et the potential of interac-
tion between the atoms & and &' be denoted by
Q„„,(r};then the total potential energy of the crys-
tal can be written as

4= „„. r lg -r 1'I('
1k 7 k (87k)

Maradudin et al. ,"show that under these condi-
tions we have the following expression for the
force constants 4 ~:

TABLE I. Carbon-carbon interactions in graphite.

Intr aplanar
interactions

Interaction
type a

1a 2a
la-1b
2a-2c
1a -2b

Neighbor
order

1st
2nd
2nd
3rd

Number of
neighbors

Interatomic
distance

ap
3ap
3ap
2ap

Interplanar
interactions

2a -3a
1a -3a
2a -4a

1st

@2+ 2)i/ 2

For locations of atoms, see Fig. 1.
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4,8(lc;1'd)=-, 0!', (&)-—0l. (&)
This work N'tItt8

TABLE II. Force constants for graphite (105 dyn/cm).

where x ls
and (1 'g'),
positions.
writing

+ "y' (r), (1o)
r=ro(Tff, 7'ff ')

the distance between the atoms (le)
and x, the distance bebveen their mean
Equation (10) can be simplified by

(12)

Qg

Pg

P2
CR3

P3
CV4

74
Qg

P5

75

-3.62
-1.99

0.52
-1.33

0.037
-0.288

5.99 x 10
-1.947 xl0 2

-1.076 x 10-3
-7.67 x 10+
-4.23 x 10
-1.033 x 10

-3.62
-1.99

0.52
-1.33

0.037
-0.288
-7.7 x10
-5.8 x 10

w ere r„ is the distance between atoms which are
nth neighbors of each other. The atomic positions
given in Eq. ( nowE (3) ow lead to the following interac-
tion constants:

Q 1

o's= -&~3

4

2P, =-4, ,

Ps=-&l
4

j.

2

3
&3 +t ~

a (13)

5
P5 = —4'c

C2
&' = —Ill+, , (4l —4l))

i,
' c'+a,

The values of Q,
' and Pt (i = 1,2, 3,4) were evalua-

ted by NWS by fitting their model to experimental
data comprised of their partial (up to about 14
THz) dispersion curves obtained from inelastic
neutron scattering, the Haman frequency (1575

elasticcm y, an'y d an observed value for the c«e a
constant.

odlfAs explained above, it was necessary to m i y
he NWS model by introducing second-interplanar

neighbor interactions. In order to do this the in-
traplanar force constants were left unmodi ie .
The new values of Q', and Q„'were found to give
roug y e chl the correct frequencies for the TO and

-vectorth Lo modes at I' (the origin of wave-vec ore m
within the new five-neighbor mode. . T1. 'Then

k ping P' and P' fixed, we varie @, an
order to obtain a best fit to the previous y1 men-
tioned frequencies at I'. 'These frequencies were

f th fit because low frequencies are
of themost likely to be affected by strengthening o e

of these mod-interplanar interactions. 'The result o e
ifications are given in Table II.

Reference 10.

0It is worth pointing out that our extensions of the
S model preserve the axially symmetric c ar-

acter of the dynamical model. Hence, thethe slab
with free surfaces will satisfy the rotational in-

mics to agree with elastic theory in the limit of
long waves. is." 'Th is in contrast to the case of a
more genera u1 b lk Born-von Karman tensor force-
constan m e, w

't od 1 which would not automatically
satisfy such rotational invariance for the s a an
which would probably require significant modifica-
tion of force -constants near the surface in order to
recover rotational invariance.

The dynamical equations (7) are numerically
solved for a mesh of wave vectors Q in the irre-
ducible part I"AHKLM of the Brillouin zone (BZ)
(see Fig. 2). For each Q there are twelve (P
= 1, 2, . . . , 12) modes, each with a frequency ~~(Q)
and a twelve-component polarization vector
E(~; 4 p)

C. Dispersion curves

In order to facilitate comparison of the bulk
dispersion curves v, (q) [= &u~(q)/2w] with those of
the slab, we present the bulk dispersion curves
in the so-called slab-adapted form, i.e., the bulk
dispersion curves are displaye d as functions of the

FIG. 2. Bulk graphite Brillouin zone.
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two-dimensional (2D) wave vector q = (q„,q„) (two-
dimensional vectors are indicated by a bar) in-
stead of as functions of the three-dimensional (3D)
vector q= (q„,q„,q, ). In such a graph one plots,
for a given q„,q~ interval, the family of dispersion
curves with each member corresponding to one
of the various allowed q, values. The latter are
determined by the number of layers that form the
periodicity length in the z direction. For this we
choose a nuWber of layers closely approximating
the number of layers in the slab. For details of
this method we refer to Allen et al."

In Fig. 3 we display the slab-adapted bulk dis-
persion curves for a z periodicity length of,14
planes, for q along the directions IM, MK, and
ICF in the BZ (see Fig. 2). Since there are two
atoms (six degrees of freedom) per plane and
fourteen planes, this graph consists of 84 disper-
sion curves. They are clustered together in six
bands of which the top three (bands 4, 5, 6) have
virtual 14-fold degeneracy; in band 3 the virtual
degeneracy is lifted only rather close to the ori-
gin I', while bands 1 and 2 are nondegenerate over
larger portions of the BZ. 'This virtual degeneracy
results from the very weak dependence of v~(q) on

q„which is an expression of the large anisotropy
of graphite resulting from the weakness of van der
Waals interactions between the planes, as com-
pared to the strong covalent interactions within the
planes.

The dynamical characters of the slab-adapted
bulk bands along I' to M are of particular interest
because the subsequent discussion of the bands of
the slab with free surfaces focuses on this direc-
tion, for which the sagittal plane is a mirror plane.
Along 1" to M there are three regions of "band
crossing" away from the low-frequency complex
near I', at q=0.6q~, 0.8q~, and 0.9q~. We label
the bulk bands 1,2, . . . , 6 in strict increasing order
of their frequency, except in the low-frequency
complex near I . Thus, because of the apparent
band crossings mentioned, the dynamical eharac-

5.0

4.0

g 5.0
O

2.0

I.O

0r

FIG. 3. Bulk graphite slab-adapted dispersion curves
for q values along the directions &18, 1ViK, and El of
the Brillouin zone.

ter of a band will change across such regions. We
may describe the dynamical character of a mode
by whether the polarization vector represents li-
near polarization perpendicular to the sagittal
plane (SH, for shear horizontal) or elliptical pol-
arization in the sagittal plane (SP};the latter clas-
sification can be further divided into SP polariza-
tion with the projection of the major axis largest
in. the direction of propagation (SP„}or largest in
the direction normal to propagation (SP,). For
example, at q= 0.5q„, band 1 is SP„2 is SH, 3 is
SP~) 4 ls SPg 5 is SH and 6 is SP}} At g, g~
after the three band crossings have been encoun-
tered, the dynamical character of bands 1 through
6 is, respectively, SP„SP„SH,SH, SP„, and
SP„. In the SP classes, the highly anisotropic
character of the interactions causes the polariza-
tion ellipses to be nearly degenerate linear polar-
izations; that is, the para. llel components in an

SP, mode are always 3 or more orders of magni-
tude smaller than the normal components, and
vice versa for SP„. Thus, the apparent band
crossing at p= 0.6q„ is avoided by hybridization
of the SP„and SP, character of bands 4 and 3, but
because of the very weak interaction between x
and z motions the two bands approach very near
each other. On the other hand, at q= 0.8q„and
0.9q„, the apparent crossing along I'M is real
because there we have bands that are first SH
and SP, and then SP and SH, touching in a cusp.
When q leaves the I'M mirror plane, this cusp
rounds into the usual sort of hybridization gap be-
cause the pure symmetry character of SP and SH
is lost; at general points in the slab-adapted
Brillouin zone, there will be significant mixing
of SP„and SH eharaeter because of the strong in-
traplana, r couplings.

D. Frequency distribution

In order to evaluate the thermal properties of
the crystal, one has to solve the dynamical equa-
tions for a sampling grid of q values throughout the
irreducible part of the 3D BZ. The frequency dis-
tribution g(v) has been obtained with the Gilat-
Dolling-Raubenheimer method, "'"with which a
smooth frequency distribution can be obtained
from actual diagonalization of the dynamical equa-
tions for a quite limited set of q values.

In Fig. 4 we display the frequency distribution
g(v) for bulk graphite. The peaks in@(v) (labeled
4 through I) correspond roughly with the flat por-
tions of the dispersion curves in Fig. 3. By study-
ing the vibrational character of the modes contri-
buting to these flat portions, one can identify the
kinds of modes that contribute to the various
peaks in g(v).
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FIG. 4. Bulk graphite frequency distribution g (v).

III. THE GRAPHITE SLAB

As was mentioned in the Introduction, the aim of
this study is to lay the groundwork for a treatment
of the dynamical and thermodynamic properties of
gases adsorbed on graphite which takes full ac-
count of the dynamical coupling between adsorbate
and adsorbent. 'The experimental results obtained
in a companion study by one of us (E. de A. ) per-
tain to adsorption studies on graphite samples
with large surface-to-volume ratio. '~ To obtain
the thermodynamic properties of the adsorbed
gases per se (adsorbate), one has to subtract from
the properties of the total adsorbate-adsorbent
system those of the bare graphite (adsorbent).
The dynamics of systems with large surface-to-
volume ratio shows significant difference from
the bulk dynamics through the occurrence of sur-
face-localized vibrations and other changes in the
frequency distribution, which consequently result
in changes in the thermodynamic properties of
such systems. The first step in this analysis is to
study the dynamics of a thin graphite slab, which
is the simplest system that exhibits a large sur-
face-to-volume ratio, and for which the dynamics
remains tractable.

III

FIG. 5. Graphite slab unit cell. The unit cell extends
through the entire thickness of the slab and contains two
atoms for each layer in the slab.

x and y directions, the slab unit cell extends
through the entire thickness of the slab (see Fig.
5), and only 2D lattice vectors are needed to
specify the position of a cell; of course, 3D vec-
tors continue to be needed to specify the atomic
position inside the cell. Furthermore, because of
the 2D translational symmetry, the reciprocal
lattice is 2D.

We introduce 2D vectors with only x and y com-
ponents, and indicate these with superior bars:
If r=(x,y, s) and l=(l„l„l,), then f'=(x, y) andi
= (I„l,). The position of the cell 7 is then FD (I )

lgag + l2a2 The 2D reciprocal lattice is deter-
mined by the basis vectors

A. Slab dynamics

bj = 2m', b2= 2p
a~ ~ 3 Xg a~ ~ a Xg (14)

As mentioned earlier, a graphite slab consists
of a finite number of (0001) oriented graphite
planes; the slab has two surfaces, and transla-
tional symmetry in the z direction ([0001]direc-
tion) does not exist. This has important conse-
quences for the lattice-dynamical formulation.
We briefly outline the main features of the "slab
dynamics, " following the work of Allen et al."
and referring to this work for details.

Since, - in the slab, periodicity exists only in the

where S is the unit vector in the z direction. The
corresponding 2D surface BZ (SBZ) is shown in
Fig. 6. The symmetry points in the SBZ are la-
beled by barred letters (e.g. , T') to distinguish
them from points in the 3D BZ (e.g. , I').

As in the bulk case, the index g will label the
atoms in the unit cell. For a 13-layer slab, the
unit cell contains 3.3 x 2= 26 atoms; thus g
= 1,2, . . . , 26 (note that in this notation the layer in
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~ 0 X ~

+Xe+II X—X—~ —W—X—~—g

which an atom resides is implicitly indicated in
its e value).

In analogy with Eq. (7) the slab eigenvalue equa-
tions are

~ g X 0 ~

Dog KK jQ g K ~gP = Rp g

FIG. 6. Graphite planar-projected crystal structure
and associated slab BrQlouin zone.

where the dynamical matrix elements are given
by

D a(z&', q)= (M„M„.) Z 4 ~($z; I'&')exp(iq [r,(l') -r,(l)+ r, (v') -r,(z)]). (16)

The construction of the dynamical matrix is done
in the same way as for the bulk, the only differ-
ences being that the number of atoms in the unit
cell is larger and that the "self-interaction" ma-
trix elements are modified because of missing
neighbors. For a slab consisting of thirteen lay-
ers, having two carbon atoms per layer in the
slab unit cell, the order of the dynamical matrix
is 13x 2 x 3= 78. With respect to the reduction of
the dynamical matrix, the same symmetry opera-
tions apply as for the bulk, except for the lack of
translations in the z direction. 'The construction
of the e1ements of the dynamical matrix is done by
rotational transformations on a minimum set of
3 x 3 matrices, in a manner similar to the bugr

case. For details we refer to Ref. 18.

8. Suxface modes

In surface vibrational modes the surface atoms
have large vibrational amplitudes, while atoms
deeper inside the crystal have vanishingly small
amplitudes. These vibrations may be identified
by an examination of the polarization vectors
f(e;qp) for fixed wave vector q and given polariza-
tion p. It is convenient to decompose the index K

into two indices (m, i), where m labels the atomic
plane and i labels the two different atoms in each
plane. Then, for fixed q and p we examine the
quantity

g(m)f'= /t'„(m)f'+ f&„(m)/'+ ft', (m)f', (17)

where, for example, m = 1, 13 labels the top and
bottom planes, respectively, of a 13-layer slab.
In Eg. (17) we have suppressed the index i because
it turns out that the square amplitudes for the two
different atoms in each plane differ by 1ess than
I/g in all cases examined. For a surface mode

~

t'(m)
~

' decreases rapidly with increasing m down
to the middle of the slab, and then increases rap-
idly again as the bottom surface is approached.
For a systematic description of the kinds of sur-
face modes that can occur in general, we refer to
Allen et al." In contrast to the surface modes,

~

$(m) I' for a bulk mode exhibits no surface local-
ization.

In Fig. 7 we show the slab dispersion curves of a
13-layer slab for wave vectors q chosen along the
I"M direction in the SBZ (cf. Fig. 6). Notice that
these curves look very much like the slab-adapted
bulk dispersion curves along I'M in Pig. 3. As
was the case with the latter, the 78-slab dispersion
curves faLL into six bands and also exhibit a high
order of near degeneracy (approximate degeneracy
in each band over most of Fig. 7).

There is, however, a significant difference with
the bulk case which is not visually evident in Fig.
7: An examination of the functions

~

f(m)
~

' vs m
for each of the 78 modes shows that each band con-
tains two degenerate modes, with frequencies
slightly below those of the other eleven bulk modes
in the band, for which

~
$(m)~

' decreases rapidly

5.0

4.0

= 30'O
Ol
Vl

C)

ICT

CL

P 0

l.0

FIG. 7. Graphite slab dispersion curves for q values
along the direction jN in the SBZ.
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SP, (elliptical polarization in the sagittal plane
with more vertical than horizontal component),
SP„(elliptical polarization in the sagittal plane
with more horizontal than vertical component),
and SH (shear horizontal; linear polarization with

particle motion perpendicular to the sagittal
plane). Although the separation into elliptical
polarization (in the sagittal plane) and linear pol-
arization (normal to the sagittal plane) is rigor-
ously true only along I"M [for which the sagittal
plane is a plane of mirror symmetry (see Fig. 6)],
polarization characters persist in a qualitative
sense even along 1 Z', where the sagittal plane
lies midway between two adjacent vertical. mirror
planes. Note, however, that, as with the slab-
adapted bulk bands, we have numbered the surface
bands in a strictly increasing o'rder of increasing
frequency at each wave vector of the SBZ. Es-
sentia, lly the same considerations of symmetry
decoupling between SP and SH modes and its ef-
fects on hybridization gaps, which were applied in

the discussion of the slab-adapted bulk dispersion
curves, apply equally to the case of dispersion
curves of the slab with free surfaces. Hence,
near the SBZ, boundary surface bands 2, 3, 4,
and 5 (and of course their parent bulk bands)
have polarization characters different from those
they had in the first half of the SBZ.

Figure 8 corresponds to a wave vector along
I'M about half~ay to the SBZ boundary, q= —,",q„-.
The near-linear behavior of these semilogarMhmic
curves from the surface layer (m = 1}through the
four or so subsurface layers indicates that at this
wave vector the variation with depth of each sur-
face mode is dominated by a single decaying ex-
ponential which is characteristic of the individual

surface mode. %bile we have not solved for the
evanescent waves of the bulk phonon band struc-
ture, the appearance of this dominant behavior of
the surface-mode amplitude indicates that each
surface mode is made up predominantly of a single
evanescent wave having the imaginary component
of wave vector normal to the basal planes, &

= Im(q, ); that is, the vibrational amplitude is
closely approximated as

t'(m) ~ exp(-ctmc),

where c is the. fundamental interplanar distance.
[Lack of structure within this envelope indicates
that for this dominant evanescent wave He(q, )
«(6c} '.] Hence c' can be read off from straight-
line portions of the attenuation curves, so that in
Fig. 8 at q=2oqz= 2m/& the principal decay length
(& ') ranges from about 4—,

' interplanar distances
for S, (the macroscopic Rayleigh mode) down to
0.6 interplanar distances for $4.

Figures 9 and 10 give attenuation curves at two

other representative wave vectors along I.'I:
q= —,'Og~, for which the wavelength is fairly long,
yet for which the higher-lying bands are well
clear of the broad bulk band 1, and q= q&, at the
SBZ boundary. %e note that at all these wave
vectors, the surface-mode amplitudes appear to
be dominated by a single evanescent wave. The
wave vector of the dominant evanescent wave must
be purely imaginary, because the attenuation
curves do not exhibit any oscillatory behavior.
[The breaks in slope shown between the m = 6 lay
er and the middle layer of the slab (I = 7) are
artifacts of the limited thickness of the slab. The
surface modes occur in nearly degenerate pairs,
with the odd member of'a pair having a node at the
midplane for any (x,y) components of displace-
ment and the even member of the pair having a
node there in any z components. Thus, for the
more deeply penetrating modes there is an appre-
ciable nonvanishing amplitude at the midplan. e
which is manifest as a break in the slopes in Figs.
8-10; the break in slope can be observed to be-
come less significant as the modes become less
deeply penetrating with decreasing wavelength. ]

The ratio o' ~/X for the Hayleigh mode changes
only about 7%%uo as q ranges from 2, qg to,—5oqg (at
this shorter wave vector, the Rayleigh mode ex-
hibits only a semiquantitatively exponential be-
havior in Fig. 9), whereas this ratio varies much

more widely for the other five surface modes over
the same wave-vector change. The proportional-
ity of o' ' to wavelength is a characteristic of Ray-
leigh waves derived for elastic continua, and we

see that this feature still obtains approximately
for wave vectors at least halfway to the SBZ bound-

ary. Of course, as the wave vector more closely
approaches the SBZ boundary where the wavelength

satisfies the Bragg condition, the effect of micro-
scopic periodicity of the lattice can be expected to
modify the "macroscopic" characteristics of 8,;
e.g., for q=qp (Fig. 10), o.''/X for S, is 1.20, only

some 70%%uo of the roughly constant value of 1.75 it
had over the first half of the distance to the SBZ
boundary. %hile we do not know of any calcula-
tions of & ' for the Hayleigh mode based on. elastic
continuum theory which can be compared with our
results, Dobrzynski and Maradudin have obtained
a general formula for the Rayleigh wave velocity
g~ on a basal surface of an elastic medium of hex-
agonal symmetry, and as applied to graphite this
result reinforces our finding of a very slight split-
ting of surface mode branches from their parent
bulk bands. The relation for the Hayleigh wave
velocity can be put into the form

(Xs —I)[gs —c„/c„+c,', / (c„c44)]'

= (c4,/c„) Xs (Xs —c„/c„),
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where Xs =vs/(c~/p)~~' is the Rayleigh wave ve-
locity scaled by the velocity driven by the c~ elas-
tic constant. For single-crystal graphite, nomi-
nal values for the elastic constants are" (in units
of 10 Nm ) c~~= 106, c86=44, c~~=3.65, c~s
=1.50, and c~=0.40. With these values it is read-
ily apparent that X& will be only slightly less than
unity, and in fact Eq. (19) yields a solution of Xms

= 0.9996, accurate to 2 parts in 10' if X'„ is set to
unity everywhere except in the (X„' —1) factor.
Hence, in the long-wavelength limit the Rayleigh
wave frequency is split down only 0.02%%uo from the
bulk mode governed by e~.

Although we do not show dispersion or mode
attenuation curves for wave vetors along I.'E or
in the interior of the irreducible element of the
SBZ, it should be obvious from an examination of
the bulk bands of Fig. 3 and our discussion of Figs.
V-10 that many features will parallel those we
have discussed already. The primary differences
are those following from the lack of a vertical
mirror plane symmetry. Although the hybridiza-
tion regions shown in the I& panel of Fig. 3 are
slightly exaggerated by being plotted as straight
line segments connecting a 20-point mesh, they
are still substantial because of the lower sym-
metry.

C. Slab frequency distribution

The slab frequency distribution g~(v) is of im-
portance for the calculation of the thermodynamic
properties of the slab (to be discussed in a sub-
sequent paper}. Of particular interest are any fea-
tures in g'ab(v) that result from the surface modes;
to reveal these we have to compare g~(v) with the
bulk frequency distribution gb~(v).

The main difficulty in evaluating an accurate slab
frequency distribution is the fact &hat the Gilat et
al.'~" method has not yet been adapted for surface
calculations. In the present work we therefore
employed the straightforward root-sampling meth-
od [cf. Eq. (14)]. In order to enhance the accuracy
of g (v) at low frequencies (which is important
for low-temperature thermodynamic properties)
we divided the irreducible element of the SBZ into
three regions: an outer region covering -', ths of
the zone and containing 264 uniformly distributed
sampling points, an intermediate region covering
—,', ths of the, zone, also containing 264 sampling
points, and an inner region, covering —,', ths of the
zone and containing 300 sampling points.

In Fig. 11 we show gab(v) for a 21-layer slab; it
was constructed by using 100 frequency intervals
between 0 and 5.5 &&10" Hz. In comparison with
the bulk gb"a(v) (Fig. 4), which was generated with
the Gilat et al. method, it is clear that a fair a-

21-LAYER SLAB

200 50 40 50
v{10 sec )

FIG. 11. Slab frequency distribution g ~ (v) for a 21-
layer graphite slab. The number of frequency channels
used is 100.

IV. CONCLUSIONS

We have shown that an extension of the NWS
axially symmetric model for graphite lattice dy-

mount of "noise" is present ing~(v); this is a re-
sult of the much smaller number of frequencies
available in the straight sampling method. Never-
theless, the main features, i.e., the peaks, which
we observed in gb~(v), are also present in g~b(v),
but at slightly lower frequencies; however, the
peaks C, &, E, and G ingb~(v) are not resolved
ing~b(v). Those peaks which result from noise
only (especially between 25 and 38 x 10"Hz} were
identified by comparing their positions for 3- and
13-layer slabs (not shown here) and for the 21-
layer slab; the positions of the noise peaks shift
when changing the slab thickness, whereas the
positions of the physically significant peaks do not
shift. The great similarity between g~(v) and
gb'a(v} (aside from the noise features) is a direct
result of the great weakness of the interplanar
forces relative to the intraplanar forces: The
creation of the surfaces causes only a relatively
small perturbation of the bulk dynamics, in con-
trast to the situation in more isotropic crystals
(cf. Ref. 13). Nevertheless, it is precisely the
subtle differences between g~~ and gb~ which give
rise to surface-excess thermodynamic properties.
8imilar subtle differences between slab and bulk
for the layer- (and polarization-) projected fre-
quency distributions, formed by weighting mode
contributions to g(v) with the appropriate compo-
nents of the mode eigenvectors, give rise to sur-
face-excess dynamical quantities such as surface
enhancements of the mean-square amplitudes of
vibration. A more detailed discussion of these
questions requires more work and must be left to
subsequent papers; a preliminary discussion of the
question of surface-excess specific heat was given
in Ref. 9.
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namics leads to the existence of surface-localized
vibrational modes associated with every bulk band
and existing over alI. of the surface Brillouin zone.
Through the inner half of the SBZ, the three low-
est surface-mode branches exhibit macroscopic
and quasimacroscopic character: 8, is the Ray-
leigh wave branch, which is entirely macroscopic
and is directionally isotropic at long wavelength;
S, and S, are quasimacroscopic (in that their loc-
alization scales as a low power of wavelength), at
least as soon as their parent bulk bands have
cleared the low-lying broad bulk band extending up
to about 4 THz. In this low-lying bulk band 8, and

S, are only pseudo-surface-waves (i.e., reso-
nances), except that exactly along the I'~ direction
8, remains a quasimacroscopic surface wave, de-
coupled by symmetry from the surrounding bulk
band. The higher-lying surface bands S„S„and
S, are microscopic (in that their localization scale
is determined by lattice constants) over the entire
SBZ.

Unlike the wide variety of structures in the sur-
face mode shapes found in earlier work on cubic
and hcp crystals (e.g., Refs. 13, 23-25), the mode
shapes [described by

~
$ (m;q) ~'] for each of the

surface mode branches exhibit a simple layer-to-
layer exponential decay over the whole SBZ, in-
cluding the SBZ boundary. This means that each
surface branch is dominated by a single evanescent
wave (of the complex bulk band structure") char-
acteristic of that branch, and, furthermore, the
complex wave vector q, of the dominant mode is
pure imaginary (any real part of q, would give an
oscillatory modulation to the exponential decay
given by the imaginary part).

In another contrast with results obtained with
crystals of only moderate anisotropy, the surface
bands of graphi". e (0001) are peeled down from
their respective bulk bands by only very, very
slight frequency shifts. Even the Rayleigh branch

differs in sound velocity from the bottom edge of
its parent bulk band by only a small fraction of 1%.
This has the consequence that the surface-excess
frequency distributiong'(v) [~g'""(v) -gb "(v)] de-
viates from its mean value of zero by positive and
negative excursions that are much smaller than
those found for surfaces of crystals with more
moderate anisotropy, because for all except the
lowest bulk band the narrowness of the bulk bands
in comparison to their dispersion across the SBZ
means that any positive contribution to g'(v) from
a surface mode at any point in the SBZ is largely
canceled by the associated depletions of its parent
bulk band at nearby points of the SBZ. This self-
cancellation of g'(v) holds less strongly for the
contributions from 8, and its parent bulk band;
however, it is still much stronger in graphite
(0001) than more moderately anisotropic crystals,
and the smallness of variation in g'(v) for graphite
(0001) supports the usual practice in adsorption
studies using this substrate of neglecting the con-
tribution of the surface dynamics of graphite (one
aspect of the "inert-adsorbent" approximation)
A preliminary report of the effect of the residual
g'(v) for graphite (0001) on the surface-excess
specific heat has been given in Ref. 9, and more
detailed reports of the temperature-dependent
properties such as surface thermodynamic func-
tions and surface-enhanced mean-square ampli-
tudes are in preparation.
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