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Model Hamiltonian of donors in indirect-Nap materials
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We propose a model Hamiltonian for donors in Si and Ge, whose matrix elements can be ex-

pressed analytically for Slater-type basis wave functions defined in an ellipsoidal coordinate sys-

tem. This model Hamiltonian yields results for the energy eigenvalues of the ground state and

excited states almost identical to that for the exact Hamiltonian. The simplicity of this model

Hamiltonian makes the application to more complicated systems such as donor bound excitons

and bound multiexciton complexes possible.

I. INTRODUCTION

The bound excited states for the donors in indirect
materials, such as Si and Ge, have been successfully
described by the Kohn-Luttinger effective-mass ap-
proximation (EMA). ' 3 The ground states, however,
because of the multivalley nature of the conduction
band, are split into several states through the
"valley-orbit interaction. " As a result, the binding
energy is increased substantially (about 35%) and a
theory beyond the EMA is required. Moreover, the
effect of valley-orbit splitting is extended to several
s-like excited states because they have the same sym-
metries as the ground states, and their wave func-
tions have to be modified to become orthogonalized
to the new ground-state wave functions. The split-
tings of the 2s states for donors in Si were estimated
to be about 1 meV by Kohn and Luttinger, ' using the
quantum-defect method. This, again, cannot be ex-
plained by the EMA.

To account for the valley-orbit splittings, Balderes-
chi4 performed a quantitative calculation based on the
multivalley effective-mass equation (MV-EME) origi-
nally introduced by Fritzsche. ' Later, the MV-EME
was also adopted by several authors6 '0 to calculate
the ground-state energies of donors in Si and Ge.
Although the above calculations have produced
results for Si in good agreement with experiment, it
has been pointed out"' that the MV-EME they
used is inappropriate, because it includes spurious in-
tervalley kinetic energy (KE) terms and neglects the
overlap effects from Bloch functions in different val-

leys. By totally ignoring the intervalley KE terms and
retaining the Bloch functions, Shindo and Nara" pro-
posed another multivalley effective-mass equation.
Recently, Altarelli et al. ' used this new MV-EME,
introducing an umklapp renormalization factor for
the impurity potential due to the umklapp processes,
and obtained the ground-state energies for Si:P and
Ge:As in good agreement with experiment. Howev-
er, as pointed out by Herbert and Inkson, " the

neglect of intervalley KE terms could lead to unstable
solution to the MV-EME, i.e., the binding energy is
increased by about two orders of magnitude. There-
fore, besides the umklapp processes for the impurity
potential, the correct theory for -the valley-orbit in-
teraction should also include the intervalley kinetic
energies in a proper way. Most recently, Resca and
Rests"'6 (RR) have proposed a "spatial renormali-
zation factor" (SRF) to replace the umklapp renor-
malization factor (URF) used by Altarelli er al. '

With the use of SRF, they find that both the substi-
tutional and interstitial donors in Si introduce a deep
level. ' Unfortunately, the RR approach also neglect-
ed the intervalley KE term, which is of the same size
as the intravalley KE term when the envelope func-
tion becomes very localized (necessary for a deep lev-
el). As will be shown in this paper, without the in-

tervalley KE term, the use of URF also produces a
deep level (unstable solution), whereas the introduc-
tion of intervalley KE stabilizes the system for substi-
tutional donors.

To account for the anisotropy of the conduction
band of Si and Ge, elaborate trial wave functions (for
instance, the linear combinations of ellipsoidal orbi-
tals as used by Faulkner3 for the EMA) must be used
in order to produce reasonable results. The use of
elaborate trial wave functions would make the
evaluation of energy expectation values very compli-
cated and further progress, such as solving the donor
bound exciton problem, very difficult.

The purpose of the present paper is twofold: (i) to
provide an accurate calculation of the ground states
and the s-like excited states for donors in Si and Ge
with the intervalley kinetic energies and mass aniso-
tropy taken into account properly; and (ii) to propose
a model Hamiltonian, such that when the ellipsoidal
trial wave functions are used, the Hamiltonian matrix
elements can be expressed analytically and give rise
to the correct energy values for the ground states and
all excited states. We obtained energy eigenvalues of
the six lowest s(d)-like states for various donors in
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Si and Ge which are in excellent agreement with the
experimental data for both the exact and the model
Hamiltonians.

In Sec. II, the general theory for an impurity sys-
tem is reviewed, and the model Hamiltonian is for-
mulated. In Sec. III, the matrix elements of the ex-
act Hamiltonian are evaluated, and the analytic ex-
pressions for the matrix elements of the model Ham-
iltonian are given. It is also shown that with suitable
choice of some parameters, the model Hamiltonian
cab produce matrix elements which are almost exact-
ly the same as those of the exact Hamiltonian. In
Sec. IV, the numerical results for the exact Hamil-
tonian and model Hamiltonian are presented and
shown to be almost identical. Finally, in Sec. V, a
summary is presented.

+ X(gg{ Vd{$„,) F(k ) =EF(k)
k

(5)

only one band. This is the case for Ge where the
valleys are at the zone edge in the [111]direction. In
Si, however, the valleys are near the zone edge in the
[100] direction and the 5, band and h~ band are de-

generate at the X point. " In this case, substantial
mixing of the two bands in the wave function P( r )
is expected. The multivalley problem for donors in
Si is therefore intrinsically a two-band problem as re-
cently pointed out by Pantelides. ' An equivalent
formulation is to allow k to range over more than
one Brillouin zone with a different zone for each
band. ' In this formulation

HF(k) —= Ea(k)F(k)

II. THEORY

A. Basic problem

f2 '72 + ( V + V) p = F. Q
2 pp1

where V is the self-consistent potential seen by each
electron in the perfect crystal and Vis the perturba-
tion potential introduced by the impurity. Equation
(1) can be rewritten for a pseudowave function P( r )

1

f2 V'+ V,'+ V, @(r)=ad(r),
2m

(2)

where V&0 and V& are the pseudopotentials for the
perfect crystal and impurity, respectively. Using the
solutions to the problem without the impurity,

—A2 V'+ V,' @0,(r) =E„o(k)yo,(r),
m

we can expand the solution to Eq. (2):

$(r ) = XF„(k)g„q(r )
nk

(3)

The single-particle Schrodinger equation of the per-
fect crystal perturbed by a substitutional impurity can
be written as

F„(k)= X a; (I' )F;(k—k;) (6)

where the coefficients af(I') are determined by

group theory. o- labels the degenerate partners and
the wave functions F;(k —k, ) are related to one
another simply by the operations belonging to the
group Td. It is clear that if the functional form of
F, (k —k;) is known for a given valley, then the total
wave function Fr (k) is completely determined by

Eq. (6). If we expand the function Fr (k) on a

complete orthonormal set of functions
{X.a; p'„( k —k;)], then we have, for the jth valley,

The conduction band of Si can still be approximated
very well by a parabolic function. " The extension of
the wave function F(k) into the second Brillouin
zone automatically takes into account the mixing with
the 42 band.

For indirect zinc-blende semiconductors, the con-
duction band has several equivalent minima located
at k;, where j ranges over the N equivalent valleys.
The value of N is 6 and 4, respectively, for Si and
Ge. Since the total Hamiltonian H is invariant under
the point group T&, its eigenstates should transform
as the partners of certain irreducible representations,
I, under the operations of Td. We can write the
soiution to Eq. (5) with a given summetry I as linear
combinations of the above functions F;(k—k, ) local-
ized at N equivalent valleys, ' namely,

Substituting Eq. (3) into Eq. (2), one obtains"

HF„(k) = E„(k)F„(k)

+ X &d.'I v. ld0 „&F„(k'&
n k

= EF„(k) (4)

Fj(k —k;) = XC„P'„(k—k;)

Substituting Eq. (7) in Eq. (5), we obtain after the
application of symmetry

X H„„C„=F. XN„„C„

(7)

(8)

For shallow donors, the wave functions are local-
ized near the conduction-band edges. If the other
bands are separated by large energy gaps as compared
to the binding energies, then one has to consider

where

H„„=$ g, (1)H&„"&, (9)
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W„„= Xg,(r)Ai&"„' .

H~~"„and N„„" are the matrix elements for the basis
wave functions associated with the intravalley
( X = 1), inter transverse ( X =2), and interlongitudinal
(X=3) terms. All three terms are present in Si
(m =3); the last term (it =3) is absent in Ge
(m -2). The coefficients lg, (I') j which are obtain-
able from symmetry can be found in Rcfs. 8 and 10.

S. Formulation of the I'odel Hamiltonians

In this section, we derive an expression for model
Hamiltonians (one for each possible irreducible
representation) which operates on the envelope func-
tion for a single valley. We obtain closed, form, ap-

proximate expressions for these Hamiltonians. This
is accomplished by neglecting intervalley overlap ma-
trix elements which can be sho~n to yield very small
corrections ( & 0.1'/0) to the energy eigenvalues.

Returning to Eq. (5), we can write Has the sum of
the kinetic-energy operator T and the potential-
energy operator V. We first examine the potential-
energy part of H. V is an integral operator ~hose
kernel is defined by (@i,. l Valg„, ). The pseudoimpur-

ity potential V@ can be written as a point-charge po-
tential Vpc( t') plus a short-range core potential
W(r).

Because of its short-range nature, the Fourier
transform of lV( r ) should be a smooth function
over the appropriate region in k space. Hence we can
assume that the matrix element of IV( r ) for k and
k near the band minima are given by

ment is given by

v„'",' -J,p„(o)p„(o)

+R J d2re

x Vpc(r)p„(r)p„(r), (14)

i k,. ~ r
where p'„( r ) e ' be the Fourier transform of
P'„(k—k;) in real space, and similarly for

pi {r ) e i.
We now derive a functional form for the potential

term for the model Hamiltonians, which yields ana-
lytic expressions for the basis functions defined in an
ellipsoidal coordinate system. All thc materials treat-
ed in this paper have very anisotropic conduction
bands. If we define the ratio of the longitudinal ef-
fective mass ml to the transverse effective mass m, as
the "anisotropy factor" p, , then the values of p, are
about 5 for Si and 20 for Ge. To account for the an-
isotropic charge distribution caused by the kinetic-
cncrgy term, wc choose thc basis functions to take
the form p„( r ), with the argument r defined as

r = (x,y, z/g), (15)

2

Vpc(r) =-
a[ r '(1 —g' cos28') 'i2] r'(1 —g2 cos2e') 'i2

where the parameter f is called the "eccentricity fac-
tor. " The appropriate eccentricity factor ( can be
determined by a variational calculation, where the en-
ergy expectation value of the lowest-lying state of
certain symmetry is minimized. When ellipsoidal
basis wave functions are used, it is convenient to
write the point-charge potential Vpc( r ) in an ellip-
soidal coordinate system as well,

~here J„ takes on three values depending on whether
k; and k; are in the same valley (h, =l), on different
axes (%=2), or on the same axis (X=3). The
point-charge part can be written approximately as

(el I Vpc 1

40 ) = ~ i Vpc(k —k ),
Where VpC(q) = —4me2/q2a(q) iS the FOurier
transform of Vpc( r ) with a(q ) being the wave-

vector-dependent dielectric function which is cus-
tomarily represented by the empirical form

1 ~q + (1 —A)q2 + 1 y (13)
( ) q2+a2 q2+p2 a(0) q2+y2

and R „are the umklapp renormalization factors as.
defined in Ref. 13. As before, A. implies the relation-
ship between k; and k;, the centers of the ith and

,jth valleys, respectively. For any two basis functions
p„'(k —k;) and p„'(k —k;), the potential matrix ele-

with g = 1 —f and 8 ls tile polar angle ln an ellip-
soidal coordinate system. The matrix elements V„'„"'

in Eq. (14) are rather complicated, since the term
(1 —g2cos28')'i' mixes states of angular momentum
quantum number differing by an even integer. For
s-like eave functions we choose the model potential
to have the form (see Appendix A for derivation of
this functional form)

J),S(r )
Vs'M (r') =

e2 /goo sin(P2, +f )
e'(r') r' (p,Ar')

&0-=(»n 'g)/g,

ko
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S„=[I,A eo, (I —A)eo, —I]

o, =(o, a, P, y)

f„, p„, and tt are adjustable parameters obtained by

minimizing the differences between thc matrix ele-
ments of this model potential and the exact matrix
elements V„„". As will be shown in Sec. III, with

suitable choice of the parameters f)„p„,and h the
matrix elements of the model potential can fit the ex-
act matrix elements extremely well. For non-s-like
states, which are only important for the expansion of
excited states and have vanishing amplitude near the
origin, the short-range correction and intervalley

scattering terms are negligible. Thus, the effective
potential is simply the hydrogenic potential screened

by the dielectric constant ~0. Hence, thc total model
potential operator can be written approximately as

v„"(-')= Xg,(r) vt„ lo& (ol

, , „-, (I —lo&(ol), (20)
eor' I —g'cos'8' 'i2

wh'ere (0) (0( is the projection operator onto t =0
states.

The q dependence of the dielectric function,
short-range core potential, and the intervalley scatter-
ing terms have been neglected for the mixing of s-
like states with non-s-like states.

The next step is to examine the kinetic energy
(KE) part of the total Hamiltonian. In general, the
KE matrix elements T~~„"i can be calculated exactly by

2
'

()) A' 9
2NlI QZ

'2 ' ', 2

+
2rplf Qx

, (23)

where we have chosen the z axis to be the longitudi-
nal axis. For the intervalley terms, we only have to
consider the matrix elements between s-like states
(the others are negligibly small). As will be shown in

Sec. III, we can find a simple closed-form operator to
approximate the exact intervalley KE operator (de-
fined in ellipsoidal coordinates, r )

carrying out the integration in k space, i.e.,

T„',"= J P„'(k —k;)Eo(k)P'„(k —k;)d'k, (21)

~here the full knowledge of the dispersion function
for the conduction band in the extended zone
scheme is required. Because of the localized nature
of the envelope wave functions in k space, it is a
good approximation to write Eo(k) as the sum of
E, (k —k;) defined for the ith valley as

E,'(k —k, ) =it'{i,'+k,')/2m,

+it'(k, —k, )'/2m, ,

where wc have chosen k; = koz, with ko being the dis-
tance of the band minimum from the zone center.
For Ge, the band minimum is right on the L point.
For Si, the value of ko used in this paper is
0.86(2w/a), "where a is the lattice constant The.

functions E;(k k;—) are truncated at the value of k,
where these functions centered at different valleys in-
tersect with each other. This truncation js necessary
for evaluating the intervalley KE so as to avoid the
spurious overlapping of the function h'2(k, —ko) t/2m'
with the wave functions centered at other valleys
(e.g. , k; =—koz)."

For the intravalley term, this restriction is unneces-
sary, and the model KE operator in real space can be
written as

X=2, 3 (24)

with

(25a)

I

C and q„arc chosen to minimize the differences
between the model matrix elements (P~( T~t"'(P„)
and the exact ones (P„(Tt"i(P„&. The total model
KE operator is therefore written as

where p = mI/m, and

d! =—2(ko (25b)
~4 =T~t" + Xg.«»h"'lo&«l . (27)

The operators (8/Br') with arrows pointing left or
right, are defined as

(26)

Combining Eq. (27) with Ett. (20), we therefore get
the closed-form expression for the model Hamiltoni-
an of symmetry I

(28)
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In the next section we derive the explicit expressions
for the matrix elements of the exact Hamiltonian H
and the model Hamiltonians, H~~, and see how close-
ly they are related to each other.

IB. MATRIX ELEMENTS

In this section, we evaluate the matrix elements for
both the exact and model Hamiltonians and deter-
rnine the parameters in the model Hamiltonians
which give the best fit between the two sets of matrix
elements. Slater orbitals in an ellipsoidal coordinate
system are used as the basis set. The z axis can be
used as the longitudinal axis of the ellipsoidal coordi-
nate system. Analytic expressions for the matrix ele-
ments for the model Hamiltonians are also given.
For convenience we use atomic units (a.u.) with en-
ergy measured in units of e~m, /2e02/r2 (rydberg, Ry)
and distance measured in units of col/'/m, e' (bohr),
where m, is the transverse effective mass.

The radial. part of each basis function is made up of
a linear combination of ellipsoidal Slater orbitals,

I
Il Itl

hl ) (~ )]/2

with

P„„„(r ) -R„/(r') Y/,„(0')

R„,(r') = X~',R,,
(r')

with A ' obtained from the Schmidt orthogonaliza-

tion procedure.

A. Exact Hamiltonian

The matrix elements of the exact Hamiltonian in
this basis can be written in terms of the Slater orbi-
tals [Eq. (29)]

where N„l is the normalization constant,

(2b ) /+3/2

N„l=—
42/+2)!

The exponents b„l are chosen to cover the entire
physically reasonable range. The actual basis func-
tion P„/,„(r ) is formed by taking the product of a
spherical harmonic Y/,„(0') with an appropriate radi-
al function obtained from R„/(r') by employing the
Schmidt orthogonalization procedure24

(33)

%'e first calculate the matrix elements for the
Harniltonian H'"' for two s-like Slater orbitals denot-
ed as (b]) and )b2), [see Eq. (29)] where b is the ex-
ponent. The total matrix element may be divided
into two parts, the kinetic energy T " and the poten-
tial energy V "'. For the intravalley term, we obtain

(b, (T&»)b, ) =Sa(b, b, )'/2/(b, +b,)', (34)

I

with 8 given by Eq. (25a). The intervalley kinetic-
energy matrix elements can be written in terms of
the Fourier transforms of Slater orbitals

Rh k (b'+ k'+ k'+ (2k ')'

For the intervailey (h. = 2, 3), we have

d'k
(b2~T&"]~b]) = ""

R, [0&"&(k-k,z)]E]'(k-k,z)P7, (k-koz)+-
(2m)3 1

where the ellipsis represents exchange term,
E]0(k koz) is defi—ned in Eq. (22) for the valley as-
sociated with Rq, , z is the unit vector in the z direc-

tion, and 0 " is a rotation operator 5 which
transforms from a given valley to a transverse valley
(X =2) or a longitudinal valley (k =3). The ex-
change term is produced by interchanging b1 and b2.
With some approximation, Eq. (36) can be reduced
to two-dimensional and one-dimensional integrals for
X =2 and 3, respectively. For the reader's interest,

we put this derivation in Appendix B.
The matrix elements of the potential energy for s-

like basis states are given by

3/2 4

(b I
l""'I» =

erg

(37)

where S„ is given by Eq. (19b). The functions J,'"'
are given by
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telJ"' b b)= '~ d
{(b,+b,)[1+(8-1)g']'"+o]2

' (38a)

and

J„"' b, ,b, =Re ~ d
({(b)+b2) [1+(8 —1)(']'"+o „) +2iko)

(38b)

Jt2~ (b), b2) -Re I

(2m) "0 [(b~v& + b2v2+ o „)+iko(7)f 7)2) )

where o„are given by Eq. (19c),

v( 2
—[1+(8 —1)pe 2)'", 8~ g ',

and

—(1-(')' 'cos($+P/2)

(38c)

(39a)

(39b)

with P =90'for Si and 109.47' for Ge.
As discussed in Sec. LIB, the exact Hamiltonian can be approximated by the single-valley effective-mass Hamil-

tonian HEMA for all the other basis states. These matrix elements for ellipsoidal Slater orbitals are given by

&biimlHEMA{b2im) 8 'gg'cl ~l(bl b2)+DI [8„„JII(bvb2)+8„. ,J, , (b2, bt)]

(/+/ )/2
—8„, , X G„",(m)a„K„,(b), b2), ', (40)

where j is an integer such that I'+2j is non-negative.
The coefficients C/ and D/"' are given by

r

(1 g) 1 + 2I(i+1) 6m (41 )
(2l —1)(2I +3)

I

The coefficients I, J, and E are given by
T

ll(b), b2) ~S)2(l) b)b2+b I

i+1

JIII(b~, b2) =S)2(l) [b2 +2bb2/(I + I'+ 2) ]

(44a)

(44b)

and

3(1 —8) (I' —m') [(I—1)'—m']
(2I —1) (2l + l)(2i -3)

KIIi(b), b2) =4S)2(I)b/(I + I'+2)

where

S,(l) -=(b, i{b I) = Qbi b2

b

2/+3

(44c)

(45a)

where 8 is given by Eq. (25a). The coefficients a.
are given by the recursion relation

with

[(2v —1)a„~ —$)— for v~1
2vg

(42a)

b = (b, + b, )/2 . -

B. Model Hamiltonjan

(45b)

a0
sin 'g

(42b)

The G„" (m) are defined by

(/+/ )/24' y„"„(0)1', (0)- X G" (m) cos'"lI
v 0

(43)

and can be obtained by carrying out this expansion.

The only part of the model Hamiltonian matrix
that differs from the exact Hamiltonian matrix is that
for the s-like basis states. Again we will treat the
kinetic and potential energies separately,

%e want to replace the intervalley contribution to
the kinetic energy by that appearing to originate from
a single valley.

The form of the model KE operators given in Eq.
(24) is obtained by observing that the principal con-
tribution to the integral in Eq. (36) occurs for Rb
near the band minima. Hence, we can approximate
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TABLE I. Adjustable parameters h, f„,p„, C, and q„determined by fitting the diagonal matrix
elements of various terms in the model Hamiltonian with that of the corresponding terms in the
exact Hamiltonian.

Intra
(z-1)

Si
Inter-trans

(&=2)
Inter-long
(X-3)

Intra
(z- I)

Ge
Inter-trans

(z-2)

+A.

h

C

1

1.005
1.48
0.821

12

2

2.265
1.59

1

1.48
2.42

0.69
25

the integral by replacing the tail of the basis function Rb in the other valleys by an appropriate function in the
original valley.

In the first term of Eq. (36), Rb, is localized in the valley outside the region where the integration is carried out.
Its tail in the region of integration is a smooth function of k, and can be approximated by the functional form

16m bP'C 16m b2~' (C —1)

[(g Q+b ) + g (k-ka2) ] [(2gzg+ b ) + ( (k- koz) ]
(46)

where q], and Care taken as adjustable parameters. This function has the advantage that it resembles the function

Rb in the region of integration and only gives small contribution to the integral when the region of integration is
2

extended to the whole k space. Furthermore, when the region of integration is extended to the whole k space, the
integral can be done analytically and we obtain

8g(b b )5/2 C (C —1)
(rigb +b)+b2) (2v]„h+b)+b2)3

which corresponds to the matrix elements of the postulated intervalley KE operators defined in Eq. (24). It
should be noted that Eq. (47) reduces to Eq. (34) when 5 is set equal to zero.

The matrix elements for the s-like part of the model potentials VstM~ [given in Eq. (17)] can be carried out
analytically. We obtain

4

(b~I Vs/ Ib2) 8(b~b2) +R„x
gn'g „ t 5)+b2+ho„2+p)~52 (48)

where R„, S„, and cr„are defined by Eqs. (12),
(19b), and (19c), respectiveiy; p„and h are
adjustable parameters.

C. Fitting of the free parameters

There are a number of free parameters in the
model Hamiltonians which are to be selected so that
the matrix elements of the model Hamiltonian are as
close as possible to those for the exact Hamiltonian.
Fitting of this expression for the KE matrix elements
results in the parameters given in Table I for Si and
Ge. The quality of the fit as a function of the orbital
exponent for the Sister orbital is shown in Fig. 1.
The fit is superb for the range b & 8 a.u. ; however,
for larger values of b (more localized functions) devi-
ations between the exact and model results do occur.

The fit of the intravalley PE matrix elements is ac-
complished by adjusting the parameter h. The values

~ oe ~ ~ ~ ~ ~ ~ ~ ~ IVIODE L

I NVERSE RAD I US b ( bohr-I )

FIG. 1. Intervalley kinetic energy plotted as a function of
the inverse radius of the basis envelope wave function for
the exact Hamiltonian (dashed line) and the model Hamil-
tonian (dotted line) for donors in Si and Ge. Atomic units
are used as defined in the text.

7 I I I I I I f
I NTERVALLEY PQTENTIAI ENERGY

AS FUNCTION -OF INVERSE RADIUS
:/

5—
/

—--- EXACT Inter- trans. (Si)&~
/

r
3— &~ inter-long. (Si)

2—
~PInter-trans. (Ge) ~ ~'

.r
I

r' .~ ~ oW
~~

~W~aW

I I

I 2 3 & 5 6 7 8
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ae ~ e ~ ~ se ~ ~ tete MQDE L

l6 I I I I

INTRA VALLEY POTENTIAL ENERGY

AS FUNCTION OF INVERSE RADIUS

l2-
«4/ r————EXACT

~ ~Ge

6-
~WM

4

IV. RESULTS

In this section we report the results of calculations
of the various ground states and s(d)-like excited
states of donors in Si and Ge. Results are reported
for both the model and exact Hamiltonian matrices.

The numerical work was carried out, using 10 s-

like, 6 do-like, and 4 go-like Slater orbitals. The
parameters b„l are chosen to be bojZ„&, with b0=2
a.u. for Si and bo =4 a.u. for Ge and

I I

3 4 5 6
INVERSF RADIUS b (bohr ')

FIG. 2. Intravalley potential energy plotted as a function
of the inverse radius of the basis envelope wave function for
the exact Hamiltonian (dashed line) and the model Hamil-

tonian (dotted line) for donors in Si and Ge. Atomic units

are used as defined in the text.

7 I I I I I

INTERVALLEY KINETIC ENERGY

AS FUNCTION OF INVERSE RADIUS

————EXACT Inter - trans, (Si)g'
t
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(Ge) x5

o
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JD
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FIG. 3. Intervalley potential energy plotted as a function
of the inverse radius of the basis envelope ~ave function for
the exact Hamiltonian (dashed line) and the model Hamil-

tonian (dotted line) for donors in Si and Ge. Atomic units
are used as defined in the text.

resulting in the best fit are given in Table I. The
quality of the fit as a function of orbital exponent for
the Slater orbital is shown in Fig. 2. Again the fit is
superb, and continues to be quite good even-for large
values of b.

The fit of the intervalley PE matrix elements is car-
ried out by adjusting the parameters p„and f„with /t

fixed at the value required for the intravalley PE.
The parameters iesulting in a very good fit are given
in Table I. The comparison between the exact results
and calculations for the model are given in Fig. 3,
The fit is quite good over the entire range of b re-
quired for our calculations.

Z I =(1~ 1.S.2, 3, 4, 6, 9, 14, 0.S, 0 25) for /=0

Z„I = (0.5, 0.7, 1, 2, 3, 5) for / = 2

Z„I=(O.S, 0.7, 1, 2) for /=4 .

The eccentricity factor f was determined by minim-
izing the ground-state energy. Hence, it is not clear
whether our basis set is good for the excited states or
not. To examine this, we calculated the eigenvalues
of the EMA Hamiltonian using this basis set with
$-0.57 for Si and )=0.355 for Ge, respectively.
Our results for the lowest six states are listed in
Table II along with the results obtained by Faulkner. 3

Our results for Si are almost identical to that of
Faulkner. ' For Ge, we obtain slight1y larger ioniza-
tion energies (by about 0.1 meV) for the excited
states than those obtained by Faulkner. %e there-
fore believe that our method is suitable for the
ground states as well as for the excited states.

The matrix elements for the exact Hamiltonian H
and the model Hamiltonian H~ were obtained as
described in Sec. III, and both matrices are diagonal-
ized numericaBy. The results obtained for both
Hamiltonians are very close to each other (within
1'/o).

For the isocoric impurity P in Si, we assume the
short-range core potential takes the form

gr(-) p ~c' 2" 2

a(r)
(49)

in units of eV with P, =2.'72 and o., =3.33 a.u.2'

Putting Eq (49) into Eq (ll) we obtain"'~ that
Jt ——-0.60, J2=6.35, and J3 ——7.11 (in units of 10 '
Ry bohr'). For As in Ge, we assume the short-range
core potential has negligible effect, i.e., set J& 0 in
Eqs. (14), (17), and (37). The validity of this as-
sumption may depend on the impurity pseudopoten-
tial used. It was shown by Pantelides and Sah9 that
the short-range core potential is small for an isocoric
impurity, if one works within a true-potential
representation. On the other hand, the umklapp re-
normalization factors R „are obtained by using the
empirical pseudopotential method (EPM). This em-
pirical pseudopotential used for the crystal may not
satisfy the criteria for internal consistency given by
Pantelides. '8 %e therefore calculated the ground-
state energies for several choices of the renormaliza-
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TABLE II. Ionization energies of the six lowest s(d)-like states obtained in EMA for Si:P and
Ge:As. The results obtained by Faulkner (Ref. 3) are also included for comparison. All energy
values are in meV.

2s 3$ 3dp 4s 4dp

Si:P
Present work

Ref. 3

31.22

31.27

8.85

8.83

4.76

4.75

3.75

3.75

2.86

2.85

2.11

2.11

Ge:As
Present work

Ref. 3

9.81 3.59

3.52

2.14

2.01

1.43

1.34

1.19

1.17

0.94

0.87

48
SI:P

44

42—
UMKLAPP

E 34-

K
LLJ

w 32-.

0.47 0.48 0.49
f=) I6 - Ge
Ql

BINDING ENERGY
VERSUS

RE NOR MAL I Z AT ION FAC 7OR

r +
3

G.54 0.55

14—

tion factors R „. For Si, we worked out the cases with

R2 taken to be from 0.47 to 0.55 and R3 taken to be
0.48. The results for the energies of the three split
ground states calculated for both H and H~ are plot-
ted in the upper half of Fig. 4 against the parameter
R2. %'e find that with the choice R2 =0.53, the

theoretical results are in excellent agreement with the
experimental data. For R2=0.38 and R3 ——0.3 (the
values obtained from EPM), "we obtain for the I'~,
I q, and I 3 states 38.9, 35.1, and 33.5 meV, respec-
tively, when W( r ) is included and 43.2, 34.3, and
33,1 meV, respectively, when W( r ) is neglected.
For Ge:As, the energies of the split ground states are
plotted in the lower half of Fig. 4 against R2, with R2
ranging from 1.3 to 1.8. For R2=1.56, the results
fit experimental data very well. For R2 ——2.33 (the
value obtained from EPM), '3 we obtain very large
binding energy ( & 20 meV), which is inconsistent
with the experimental data.

To examine the stability of the Hamiltonian when
the short-range core potential is neglected, we did a
variational calculation using the s-like trial wave func-
tion R~( r ) as given by Eq. (29). In Fig. 5 the ener-
gy expectation value of the I ~-symmetry ground state
for Si:P with a trial wave function given by Eqs. (6)
and (29) is plotted against the variational parameter
b. The umklapp renormalization factors used are
those from EPM. ' As shown in this figure, the sys-
tem is stabilized only if the intervalley KE term is in-
cluded. Similar situations also hold for donors in Ge.

The charge densities of the ground states of Si:P

I2—

I 0

I I I

I.3 I.4 I.5 1.6 1.7
RENORMAL I Z AT ION FACTOR Rp

I

1.8

0.0

—I.O

4)

~ -Z.O

Si:P

—WITH INTERVALLEY K E

--WITHOUT INTERVALLEY K E

ENERGY EXPECTATION VALUE OF
THE GROUND STATE AS FUNCTION

OF VAR I ATIONAL PARAMETER

FIG. 4. Binding energies of the ground states associated
with various irreducible representations plotted against the
umk)app renormalization factor R2 for the exact Hamiltoni-
an (solid line) and the model Hamiltonian (dashed line), for
Si:P (upper half) and Ge:As (lower half), respectively. The
experimental data (taken from Ref. 30 for Si:P and Ref. 34
for Ge:As) are also included (marked "+").The energy
units are meV.

-40—
I I I I I 1 I

0.0 I.O 2.0 3.0 4.0 &.0 6.0 7.0 8.0

VARIATIONAL PARAMETER b .(bohr )

FIG. 5. Energy expectation value of the I ~-symmetry
ground state in Si:P is plotted as a function of variational
parameter b with (solid line) and without (dashed line) the
intervalley kinetic energy.
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0,2

= O.I—

0

I l I

5s.

ado

4do

(d - L IKE COMPONE NT )

4do
~ yOI~~g ~

I

TABLE III, Short-range core potential strength parame-
ters J„determined from fitting the calculated ground-state
energies ~ith the experimental data for nonisocoric impuri-
ties in Si and Ge. The units of J„are 10 3 Ry bohr3.
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'Is
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THE CHARGE DISTRIBUTION
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6 8 IO IZ

RADIAL D I STANCE r' ( bohr)

4do

Si:As Si:Sb Si:Li Ge:P Ge:Sb

18.62 36.83 57.36 0.975 8.05

-4.88 -3.92 83.43 0.975 8.05

2.62 26.33 90.88
FIG. 9. Charge distribution in the 1 ~-symmetry excited-

state envelope ~ave function for Ge:As plotted against the
radial distance r'.

TABLE IV. Ionization energies of the six lowest s(d)-hke states for various impurities in Si and Ge. The available experi-
mental values are included in parentheses. All energy values are in meV.

3$ 3do

S1

P

Li

P

As

Li

Li

45.S
(4s.s)
53.7

{S3.7)b
42.7

(42.7)'
31.2

(31.2)d

34.2
(33.9)
32.6

(32.6)
32.9

(32.9}
33.0

(33.O)b

327
(32.6)'
31.2

(31.2)
30.5

(3o,s)
33.0

(33 0)b

10.3
(10.6)'
10.9

10.0

9.19
(9 05)e

9.01

9.06
(9.o)'

9.03
{9os)
8.85

8.76

9.06
(9.o)b

5,22
{s.3)b
5.39

(s.3)b
5.15

4.82

4.83

4.84
(4.8)'

4.76

4.73

4.84
(4.8)'

3.7S
(3.7s)
3.75

3.75

3.75

3.75

3.75

3.75

3.74

3.75

3.11
(3,1)'
3.20

(3,2) b

3.07

2.89

2,90

2.16
{2.2) b

2.19
{2.2)b

2, 14

2.10

2.10

2, 10

2.10

'Reference 30.
bReference 31.

P

As

P,As, Sb
P

As
Sb

12,9
(12,9)'
14.2

(14.2)'
10.3

(1o.3)

9.81
(1o.1)
(1o.o)'
(1o.o)

4.01
(4.1)'
3.65

'Reference 32.
dReference 33.

2.32
(2.4)f
2.16

2.14

1.51

1.53
(1.s)'
1.45

1.20

1.19

0.97

'Reference 34.
fReference 35.
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For nonisocoric impurities, we can adjust the core
potential strength J& such that the calculated ground-
state energies fit the experimental data, with the
umklapp renormalization factors R& determined from
the results for the isocoric impurities. In Table III,
we listed the parameters J„determined for various
impurities in Si and Ge. For the interstitial impurity
Li in Si, we have used the umklapp renormalization
factors, R2=1.08 and Rq =1.23 (from Ref. 13). It
should be noted that for zero core potential (J„=O),
we obtain a large binding energy (about 600 meV)
for the interstitial donors in Si. The energy eigen-
values for the states for various impurities in Si and
Ge are listed in Table IV. The available experimental
data are also included in parentheses for compar-
ison. Excellent agreement between theory and exper-
iment is obtained. In Table IV, it is noticed that the
ionization energies of the 3do state in Si and the 4s
state (having the 3do nodal structure) in Ge are al-

most independent of impurity type and the valley-
orbit interaction while the ionization energies of the
other states are more or less affected. This is again
due to the fact that the s-like excited states have to
be readjusted to become orthogonalized to the new

ground state, which has been modified by the valley-
orbit interaction.

V. SUMMARY

model Hamiltonian can be expressed analytically, if
Slater-type basis wave functions are used. This Harn-
iltonian yields almost identical results as the exact
Hamiltonian, and because of its simplicity, can be ap-
plied to more complicated systems such as donor
bound excitons and bound multiexciton complexes.
We have also calculated the six lowest-energy eigen-
values for the s(d)-like states of each symmetry for
various impurities in Si and Ge. Our results are in
excellent agreement with the available experimental
data.
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APPENDIX A: FUNCTIONAL FORM
FOR THE MODEL POTENTIALS

We have constructed the model Hamiltonian for
the donors in Si and Ge. The matrix elements of this

In the spherical model, the intervalley potentials are
equal to their spherical average, i.e.,

( k .—k, ) r 1 d 0 e2 sin(l»r)
V'"'( r ) = J»8( r ) —R»e2 J e = J»8( r ) —R»o(r)r 4a " 'e(r)r (h»r)

(Al)

where 6» —=
~ k;—k

~
for )» = I, 2, 3 as before. In an ellipsoidal coordinate system [with r =—(xy, zlzz) j, the spheri-

cal average for V~»)(r) is

(A2)

Comparing Eq. (A2) with Eq. (Al), we can approximate Vst»)( r ) by the expression

f„aosin(p»hr')
VSM (r }» R» (A3)

where

1 1 -&, ' t' d(cos8')
X S.e '

~ 5 =25ko ao —= J'e'(r') eo „) " ' '
o (1 —g2cos8'}' 2

with g'=—1 —g2 and f„, p„and h are adjustable parameters.

sin 'g

APPENDIX 8: MATRIX ELEMENTS FOR
INTERVALLEY KINETIC ENERGY

In this appendix we derive a simplified expression for Eq. (36) for the intervalley KE matrix elements Substi-.
tuting Eq. (22) and Eq. (3S) into Eq. (36), we obtain
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$(btb2)5~2 t ~ r w —p/2

&b~~ Tt2~~b, ) = J ktdkt ~ d@ J dk

(1/I )(k, k,—)'+k„2+k,'
[b +k +g'(k —ko)2+k ] [bt +k2+k +( (k —ko)2]i

where the ellipses here and following represent exchange terms, and with k, =-kt cos(P+P) and
k, =—ktsin(@+P) and

goo goo feoo

&b, [T

(1/I. )(k, k, )'+—k„'+k„'

[b2 +k2+k~+g'(k +ko)']'[bt'+k'+k'+('(k —ko)']'

(81)

(82)

where we have used kr cos@= k, and kt sin@ = k~ and extended the region of integration to infinity along the
direction where the function in the integral quickly decreases to zero as k increases. For A =2, only the integra-
tion over k„can be carried out analytically (we have chosen the x axis normal to the plane spanned by the two
valleys).

f„(b,b, )'~' .- t - Pn 1(k,-, @)[(1/1.)(k, —k, )'+k„']+1
&b, ~

T'»~b, ) =
40 4 -pj2 pq p+q

where

+ 0 ~ ~ (83)

p'—= bt'+f'( ktcos@ —ko)'+kt2 sin'@ .

q2=—b22 + f~[ktcos($+P) —ko]'+kr2 sin2($+P)

where P =90' for Si and 109.47' for Ge. For h, =3, only the integration over k„and k„can be carried out analyt-
ically.

2g(b, b, )'~'
&b, (T"'fb, )=, -- dk, [(1/I }(k,—k, )'I(k, }+J(k,)]+ (84)

where

/(k) =, +1 1 1

(p+ —p-}' p+

2
l

P+
3

ln
(p+ —p-}'

(p++p ) p+
J(k, ) =

3
ln

(p+ p }',p- (—p+ -—p-}' '

with

=—b,'+(k, +ko) g' . p —= b, +(k, —ko) g

The remaining integrals must be carried out numerically.
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