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Influence of disorder on the electronic structure of amorphous silicon*
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We have examined the electronic structure of amorphous silicon using a tight-binding scheme with all first- and

second-neighbor couplings in a continuous random network. Matrix elements and deformation potentials were taken

from the crystalline band structure. The effect of bond-length and bond-angle variations is relatively small and

contributes to the narrow tails at the band edges. The effect of dihedral-angle disorder was examined keeping only

the nearest-neighbor interactions in the Hamiltonian. The dihedral-angle disorder was found to be important at the

valence-band edge and responsible for the observed features near the top of the valence band. Topological disorder

was found to have important consequences in the bulk of the bands as well as at the conduction-band edge. Apart
from the effects of the bond-length and bond-angle disorder, the states at the band edges are confined within regions

closely approaching the crystalline structure locally, where they have the same form as in the crystal, but do not

extend through the entire structure.

I. INTRODUCTION
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FIG. l. (a) Density of states in the valence band of
crystalline silicon. ' I, II, III denote the three peaks. (b)
Density of states of the valence band of a-Si (XPS re-
sults).

In recent years amorphous silicon (a-Si) has
become an intensely studied material. One of the
main reasons for this interest is the unusually
low density of localized states achievable in the
band gap." These narrow localized tails make
a-Si very interesting from the technological point
of view. The low density of gap states allows
a good effective mobility for the charged carriers.
It is also possible to make junctions with deeply
penetrating electric fields. Since n-Si is much
cheaper to make than crystalline silicon, it be-
comes a good candidate for solar cells. It is very
important, therefore, to understand theoretically
the origin and nature of localized states, why the
tails are narrow, and how narrow they can get.

The electronic structure of silicon changes sub-
stantial1. y in going from the crystalline to the
amorphous state. The crystalline density of states
shows three main peaks in the valence band as
shown in Fig. 1(a).'4 In going to the amorphous
state, the results of photoemission experiments'
indicate that the peak I is relatively unaffected

while peaks II and III merge to form abroad hump
as shown in Fig. 1(b). Peak I, when carefully
examined, shows some interesting quantitative
changes. It becomes -asymmetrically tilted towards
higher energy and its width narrows. These
changes have to be contrasted with extremely
narrow band-edge tails in amorphous films made
by passing silane through a glow discharge cham-
ber. ' These films have a substantial hydrogen
content, and the hydrogen seems to remove the
coordination defects thus removing most of the
defect-related gap states. The use of fluorine
along with hydrogen has further reduced the gap
states. ' With the experimental techniques im-
proving, it is conceivable that one may have films
approaching ideality in structure with only in-
trinsic localized states, i.e., states arising from
the disorder present in the amorphous structure
and not from structural defects. It is thus impor-
tant to study the amorphous structure without any
defects. Such structures are known as ideal con-
tinuous random networks (CRN), and our work
will be confined to these structures.

Considerable effort has been made to understand
the electronic structure of a-Si and other te-
trahedral amorphous semiconductors. Weaire and
Thorpe" have proved certain general theorems
concerning the existence of well defined band
edges for a very simple Hamiltonian. The dis-
order considered is topological, and only one of
the four possible nearest-neighbor interactions is
included. Numerical work using an extension of
the Weaire-Thorpe model has been done by Kelly
and Bullett. ' Work has been also done by Ching,
Lun, and Guttman using various computer-gen-
erated CHN's. Joannopoulos and Cohen' have
studied various crystalline forms of silicon and
used the pseudopotential method to look at their
band structures. Assuming that the amorphous
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state will reflect the properties of the mixture
of all these structures, they have concluded that
bond-angle disorder and the presence of odd rings
is very important. Joannopoulos" has used the
cluster-Bethe-lattice method to study the effects
of bond-angle and bond-length disorder using
nearest-neighbor interactions. He found the former
to be much more important than the latter. Ziman"
has studied the edges of the valence band by
assuming that the character of the wave functions
there were of the same form as in the crystal.
He concluded that the bottom of the valence band
was little affected by disorder while the top was
quite sensitive.

Here we examine the electronic structure of
a-Si using a tight-binding scheme. A method to
study the effect of quantitative disorder (due only
to bond-angle and bond-length disorder) has al-
ready been reported. " In Sec. II we discuss this
method briefly and give the results for quan-
titative disorder so as to compare them to the
effects of dihedral-angle disorder and topological
disorder. Section IO deals with the importance
of dihedral-angle disorder and in Sec. IV we de-
velop a scheme to study the limits of the electron
spectrum. Section V deals with the effect of
dihedral-angle disorder on the valence-band states.
In Sec. VI we deal with the effect of dihedral-angle
disorder on the conduction-band edge and dis-
cuss the overall effect of quantitative disorder.
In Sec. VII we discuss the total effect of quantitative
disorder, and finally Sec. VIG deals with top-
ological disorder. We conclude with Sec. IX.

II. EFFECT OF QUANTITATIVE DISORDER

In results reported earlier" it has been pointed
out that quantitative disorder involving only bond-
length and bond-angle disorder does not play a
very important role in the electronic structure
of silicon. We discuss here briefly the procedure
for studying the effect of quantitative disorder and
we set the basis for the following sections on
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FIG. 2. Band structure of crystalline silicon. The
dotted lines are the TB fit while the dark lines are the
results of pseudopotential calculations.

dihedral- angle and topological disorder.
A tight-binding fit is made using the Koster-

Slater" method to a band structure calculated by
pseudopotential theory. '4 This involves thirteen
interaction terms since up to second-neighbor
interactions are included. This gives a good fit
(Fig. 2) for the valence band the lower 3.5 eV
of the conduction band. The matrix elements
required for the fit are shown in Table I. The
notation is as used by Koster-Slater. Each ele-
ment represents the interaction between the atomic
orbital at (0, 0, 0) and the point in the paren-
thesis. The subscripts s, x, y, and z stand for
the s,p„p„,p, functions.

In order to study the effects of quantitative
disorder one needs to study the various models
available for a-Si. Several models have been pro-
posed for a continuous randon network (CRN).""
The quantities characterizing a CRN are the bond-
angle, bond-length, and dihedral-angle values.
In addition the ring statistics is a very important

TABLE I. Tight-binding matrix elements for crystalline silicon.

Mat-rix
element E„(O) E (0)

Value
in eV -5.4 1.0 -2.05 0.43 1.20 1.13

Matrix
element E (0, 1,1} E (1,1, 0) E (1,1, 0) E (1,1, 0) E „(1,1, 0) E (0, 1,1) E,„(0,1,1)

in eV -0.25 0.11 0.21 0.07 0.03 0.0 0.03

~Note that the values given here are different from the misprinted values in M. H. Cohen, J. Singh, and F. Yonezawa,
J. Non-Cryst. Solids 35-36, 55 (1980).
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property of the CHN but will be discussed in Sec.
VHI. Examination of the various models suggests
that we choose the following characterizations
for the structure. The bond-length variations
about the crystalline value are Gaussian with an
rms deviation dR/R =0.016. The bond angle t)

varies about its mean value of 209.3' with an rms
deviation of ~8 =10 . The dihedral angle is
defined as the angle between the second-neighbor
bonds when projected onto a plane perpendicular
to the common bond as shown in Fig. 3. For the
crystalline case the dihedral angle (p) has a value
of +60', 180' (staggered configuration), but in the
amorphous state it varies as shown in Fig. 4. The
distribution can be represented by the equation

P(y) A(-,' sin'-,'P+ 3), (1)

where A is a normalization constant. The maxima
in J'(P) occur at the staggered configuration,
@=+60', 180', and the minima at the eclipsed
configuration, P =0; F120'.

To estimate the quantitative disorder we
use the deformation-potential" theory and
express it in our tight-binding scheme. Using
the molecular approximation" and the results of
modulation spectroscopy" we get the various def-
formation potentials. Once the deformation po-
tentials are known, the effects of bond-length
and bond-angle fluctuations equal'to the rms val-
ues noted above can be found in a straightforward
way. " Table II shows the fluctuations introduced
at the band edges of silicon. Although a-Si is not
deformed crystalline silicon„ these numbers give
a good estimate of the quantitative disorder.

As will appear in the following, the quantitative
disorder introduced by the bond-length and bond-
angle variation is relatively small compared to the
dihedral-angle disorder effects and the effects
of the topological disorder. Accordingly, in dis-
cussing the latter, we shall ignore the effects
of bond-length and bond-angle disorder and give
the matrix elements the values they have for the
crystalline bond lengths and bond angles. We
shall then discuss briefly how the results so ob-
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FIG. 4. Dihedral-angle distribution for CHN's taken
from various models. P(Q}: the probability distribution;
A: normalization constant.

tained are modified by the bond-length and bond-
angle variations.

HI. THE IMPORTANCE OF DIHEDRAL-ANGLE
DISORDER

The dihedral angle has been defined in Sec. III
and Fig. 3. Dihedral-angle disorder arises from
random rotations around bonds, and the ease with
which such rotations can be made accounts for the
large fluctuations of the dihedral angle (Fig. 4).
The dihedral-angle disorder does not alter the
distances between atoms as it simp1y involves
rotations about bonds. It is therefore not pos-
sible to see its effects by using the deformation-
potential theory. To study the effects of the
dihedral-angle variations, we need to extend the
Weaire-Thorpe model' and explicitly study a
structure-dependent Hamiltonian. Kelly and
Bullett' studied a structure-dependent Hamil-
tonian, but not all nearest-neighbor interactions
were included. %'e find that the complete Ham-
iltonian in fact makes the study easier and gives
us insight into the amorphous state without having
to employ numerical calculations.

To study the effect of dihedral-angle disorder
it is convenient to use the sp' bond basis. In this
representation the nearest-neighbor int eractions
are V, through V, as shown in Fig. 5. These are
known in terms of the Koster-Slater interactions
(Table 1) by a simple transformation. For the
crystalline case we put V4 = V„V,' = V, = V„and
find that

V, =-1.6 eV, V, =-4.3 eV, V, =-0.38 eV,
(2)

V, =0.3 ev, V™,=-O.45 ev.

TABLE II. Approximate changes produced in I'2&& and
X~ due to bond-length (dA/R= 0.015}and bond-angle +8
= 10 ) variations.

(1/& 1/& 1/& )
( 1/ &/2 l/a) ( i/ 1/ 1/g}

FIG. 3. Geometry of the diamond structure showing
the bond angle 8 and the dihedral angle Q.

Structural
change ~r» (eV)

0.02
0.2

0.025
0.15
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variations and therefore important for the elec-
tronic structure (Fig. 7).

%e note, however, a very important invariance
relation, viz. ,

V~+ V, + Vs=const. (4)

FIG. 5. On-site and nearest-neighbor interactions in
the bond representation.

Clearly V, and V, are the strongest interactions,
which is why the Weaire-Thorpe model is a good
starting approximation. From Fig. 5 it is clear
that V» V» V, are independent of dihedral-angle
distributions. Thus by keeping only the V2 and the
V, term we can not study the dihedral-angle ef-
fects. The effect of dihedral-angle variations
is manifested in the V4, V„and V, terms. We
define a convention shown in Fig. 6(a): V~ is the
interaction with the farthest bond, V, with the next
farthest, and V, with the closest. It follows
from this choice that IV,
results have to be periodic in the dihedral angle
$ with a period of 120, as is clear from the
rotation symmetry of the diamond structure. V~,
V„and V, as defined above are special cases of
the general interaction V(Q) as displayed in Fig.
6(b). The dark line represents the bond connected
to the (1, 1, 1) atom and the dotted line the bond
connected to the (0, 0, 0) atom. Using the matrix
elements from Table I, we find that

This relation is especially useful when we study
band limits and their dependence on dihedral-
angle variation. An eigenvalue involving the
combination (V~+ V, + V,) will be an invariant
under dihedral-angle fluctuations. Clearly it is
important to include all nearest-neighbor inter-
actions to realize this result. Looking more
carefully at the invariants, viz. , V„V, (V, + V,
+ V,), we find that all of these are made up of o

interactions, i.e., sso, spa, PPo. The ppm inter-
action is not an invariant under dihedral-angle
rotations, as can be easily visualized.

The scale of variation of V(@), -1 eV, and the
broad range of Q found in the structure force us
to include dihedral-angle variation as a primary
source of the effects of disorder on the electronic
structure of a tetrahedral amorphous semicon-
ductor 2' Th.e broad range of P arises from the
low restoring force for rotation around the bonding
axis and is itself the ultimate source of the break-
down of the long-range order and of the topological
disorder. Accordingly, we include topological
disorder and dihedral-angle disorder on an equal
footing in our discussion of the electronic struc-
ture.

V(Q) = 0.3 —1.0 cos'P/2 (3) %'. THE ELECTRONIC STRUCTURE

expressed in eV. There is a substantial variation
in the interaction (-1 eV), and the dihedral-angle

In this section we shall use the method of
%eaire and Thorpe and extend it to a more com-
plete Hamiltonian. The Hamiltonian can be written
as

(0)
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FIG. 6. (a) Convention for the dihedral-angle-depen-
dent interactions. (b) A general dihedral-angle-depen-
dent interaction.

FIG. 7. Variation of V(P) with dihedral angle. The
ranges of the interactions V4,

'

V5, and Ve are shown for
the disordered structure.
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(i»v, &i. (+ g (i»v, &~„„(
i,u, v;e A i, v

+ zp, V3 i„p.'
i,v, u;u &v'

i,g, ff 'a w e~'

Here i denotes a site index and p. a bond index.
Site i has a neighbor i„which is along the bond
p, . A one-to-one correspondence exists between
the bonds at site i and the bonds at site i„, which
is used in the last three terms. The interactions
V, ~ = 4, 5, 6 are now site dependent, and the bond

indices appearing in these terms are defined by
the convention discussed above.

It is important to realize that since we have
included only nearest-neighbor interactions, an
electron sees the same atomic configuration around
itself at each site. This would not be so if the
second-, neighbor interactions had also been in-
cluded. However, it is not just the immediate
neighborhood which governs the nature of eigen-
states as was realized by Cohen et a/. "for the
topologically disordered s-band structure and
earlier by Joannopoulos and Cohen. ' 'The im-
mediate neighborhood defines the limits of the
band spectra, while the global features determine
whether or not certain states can exist on the
entire structure.

Vfe are primarily interested in the limits of the
spectrum of this Hamiltonian and general features
near those limits. %e shall assume a wave func-
tion of the form

y= g a,„( p,i&, g (a,.(
= l . (6)

Using the variational principle we can then look
at the limits of the energy spectrum. Using (6)
in the Hamiltonian, we get for the energy

E=C, V, +C2 V2+Cs V3+

where we have removed the restriction that Vy

couples different bonds- on the same atom, and

have included the self-interaction which only
shifts the origin of energy. The various terms
in (f) are

C,'- (a,.„(' ga, , ' 4C, ,

therefore,

0 (C, (4.
The limit C, =4 occurs when a,.„=a,.„,. Since the

(i p) are the sP' bonds, this corresponds to pure
s states on the sites. The limit C, =0 occurs when

Pa, „=O, which corresponds to a pure p state
Limits on C,:

C, = Qa,*„a, „.
Setting a,„.=A„, a, „=Bi„,we get

C'~ Q Iai. ('Q(« ~ ('- l

therefore,

-1 &C &1. (lO)

These limits correspond to the bonding and
antibonding configurations. The limits are reached
for a,„=+a, , As we shall see later, the sign
of C, distinguishes the conduction and valence
bands.

Limits on C,: The limits on C, and C, can occur
independently, but the limits on the other terms
are related, as we shall see now:

where D, =Z„a,„. From the definitions of the

(ip), , D,. =O means a pure P state. As discussed
before, the problem of including only the V, and

V, terms was solved by Keaire and Thorpe. %e
shall reconstruct their results and in the same
spirit study the full Hamiltonian. The study of
the terms becomes easy if we cast them as inner
products of vectors and then apply the Schwartz
inequality.

Limits on C,:

C;= Q Qa„'= gga«„ga, .
Vfe cast this expression in terms of a vector
product by identifying a,.„-(~),,g„.a, , - (~),,
Now applying the Schwartz inequality ((X ~ B('
~A'8') we have

a+ a Vi g ip I

aiii ai pVQ
i pic, &

a a, V
5

(6)

Defining C,' = C, + 2C2, we have

C~ =2 Q a«„D)„.

Making the identification a,.„=A, D,. =B„, we get
from the Schwartz inequality

4x4C, =64.
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The limits occur when the vectors X and 8 are
parallel or antiparallel and when aj„=a,„,. This
is also the condition for C, to reach its limits and
for C j 4 We therefore have

-6 &C &6.

limit we use the Schwartz inequality

(12)

Limits on E4. The matrix elements discussed
so far have been structure independent, so it has
been straightforward to apply the Schwartz in-
equality. However, now we have to look at struc-
ture-dependent terms. We can study the limits
of the energy for our wave function, but these
"limits" may now be -structure dependent and the
exact limit may arise for a special configuration.
The crystalline value of &4j jv = p4 is given by
V(@)=V(180 ). From Fig. f we see that V,' ~ '~
~ V,. Thus we may write

4t 4t

i.e., C4 ranges from 0 to 4 in this case. Similarly
in the opposite quadrant C4 ranges from 0 to -4.
Remembering the definition of C4, the ranges of
C4 are -1 to 3 and -3 to 1 for C, positive and
negative, respectively.

Limits on E, and E6: The limits on the E, and

E, terms can be obtained by arguments similar
to the ones used above. The extremum values of
V, and V, occur at V,"~= V(80') = V; and V,"~
= V(0 ) = V~, where the superscripts c and e stand
for crystalline and eclipsed positions, respec-
tively. Thus from Fig. 7 we have

where

a j~ a j p 0

j~p ~p '0 ~p

where C, has the same structure as C4 and will
therefore have the same limits. Similarly, for
E, we have

We are now in a position to study the limits of
C, . Adding+, .„a,*., a,. „ to C, we get

C4, -C4+C, — Q a,*„a,

thus removing the restriction p, 4 p, '.
We now associate vectors (X), X,(a«, a„,. . . )

with each site. C,' is then of the form

c;= gx,.x, ,

where X,.Xj contains the term aj~„aj „and other
terms arising from C,. If there are no odd rings
in the structure, i.e., if the structure is bi-
chromatic, we can divide it into two substructures
each containing the nearest neighbors of those
sites on the other. This separation allows wave
functions to have pure bonding or pure antibonding
nature. We shall show later that the spectral
limits for a mixed structure are associated with
states confined to regions which are locally even.
Introduction of odd rings causes a mixture of
bonding and antibonding states such that the en-
ergy of the eigenfunctions moves away from the
limits into the band. Thus for the purpose of
studying the limits me can consider the wave func-
tion to be purely bonding or antibonding. It is
useful to study the two cases where Xj and X„
lie in the same "quadrant" or in the opposite
"quadrant", since this corresponds to C2 being
positive or negative.

In the same-quadrant case, we see immediately
that the lowest value of C4 is zero. For the upper

where the superscript e stands for the eclipsed
position. Again C, has the same form as C4 and

C, and wiI.l have the same limits. Of course, the
limits on C4, C„and C, may not occur simul-
taneously.

From the above discussion it is clear that the
E4, E„and E, terms, though. structure dependent,
have well defined limits. This is a consequence
of the disorder being only dihedral-angle dis-
order. It is useful to examine these limits to see
what states they correspond to.

The C, =4 limit arises when a,„=a,„,. It is
easy to see that in this case the wave function is
pure s. The limits C, =+1 and -1 then give rise
to bonding and antibonding limits, as shown in
Fig. 8(a) and 8(b). The conditions for the limits
on C4, C„and C, are also satisfied simulta-
neously. In the limit C, =0, remembering that
our basis functions are the sP' orbitals, we see
that this corresponds to pure P states.

As we have already mentioned, the V, and V,
interactions are the strongest interactions and
mill be dominant in determining the limits of the
spectra. We also note from the signs of V, and

V2 that when C2 is positive, these two terms have
the same sign while when C, is negative they
oppose each other. This means that the on-site
terms and the nearest-neighbor terms occur with
the same sign in the. bonding states and with
opposite sign in the antibonding states. For the
bonding case, we therefore expect the limits
to arise from pure states, while for the anti-
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valence band. Thus in the valence band we shall
look at the positive values of C,.

A. Bottom of the valence band

(a) (b)

From Eq. (2) we know that V, is large and

negative, so that we require the maximum positive
value of C,. The same is true for the V, term
which is negative. Similarly V, is large and

negative so that we require the maximum positive
value of C2. This choice automatically minimizes
the V, term and fixes the values of the remaining
C's. Since V, and V, dominate, we arrive at the
minimum energy

EF„=4V,+ V2+ 6V3+3(V~+ V, + V6) . (13)

(c)

FIG. 8. (a) Configuration for the bonding s states. (b)
Configuration for the antibonding s states. (c) Configura-
tion for the bonding p states. (d) Configuration for the
antibonding p states.

We arrive at Eg. (13) because U, + U, + V, is in-
variant under dihedral-angle disorder. From Fig.
8(a), it is clear that this state corresponds to a
bonding s state. We call this band edge a "normal
bound". At this bound the wave function at each
site is s type, i.e. , $,. =(1/2WN)S, , where N is the
number of sites in the system. Close to the bound
we introduce the vector K and write the wave
function as a perturbation series in K:

bonding case the limits may be from mixed states.
We shall discuss this more clearly when dis-
cussing the conduction band.

V. THE VALENCE BAND

(n, S,.+P, P,.) exp(iy, .),
2WN

~. = ~+~&»K+aI»K2+ ".,i i

P. =b'."K+b~2'K + ~ ~ ~,i i i (14)

From Fig. 8 we realize that in moving from
one site to the next the amplitude may or may not
change sign. The latter case gives rise to lower
energy states (V, is negative) which make up the

}|,=k r, + t, , ()

(t =v"'K+r(2)Z'+ ~

i i

The energy close to the edge (small K) is given

by

E= QE (0)+E, ( ', )+Ã„Q Q iE ( ')(r(q—+r)+ QE (—')(a!"+,,a!")+E(1(b!—''+1,"&)), '—

4N

+Z' E (-')(n"'+a" )+E (-')(t "'+t "')+E (-')(t "+t "')+ ~

iaaf,

For purely dihedral-angle disorder, Q,. (r, ,
=r, —r,. ) is zer. o, so that for real energies

(r, , =r, —r, )=0. .Since E(g=s) is a mini-
mum, the terms proportional to K are zero, so
that a,'."= b,"'= 0. To order K', the energy con-
tains only invariant terms E~.,(-,') and E,~(-,'), so
that the edge is crystalline-like, with deviations
appearing in order K' where the noninvariant term
E~ (2) appears.

B. Top of the valence band

The top of the valence band is affected by the
dihedral-angle variations in a very interesting
manner. To get as high in energy as possible one
would like C, =O. Together with C, =1. this implies
C, = 2. However, the remaining terms in the en-
ergy are structure dependent. We note that V4

is positive and V, and V, are negative. To get
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the highest energy we therefore want C, to be
positive and large and C, and C, to be negative
and large. From the discussion of Sec. VII this
gives us C4=3, C, =-i=C,. Also since V4

V~"", alla
~
V, + V, ~'-

~
V, + Ve ~", the limit

is

E" = V +2V +3V'- V'-V' (15)

which is the energy of the I'», point in the crystal.
To find variationally the maximum energy of an

extended state, we choose a configuration for the

a, given by the crystalline value. This will give
a lower limit to the actual energy of an extended
state and will be a lower limit to the mobility
edge. The energy may be written as

expressed in eV. This is an upper limit to the
tail width as discussed earlier and is a good esti-
mate of the magnitude of the tail width due to
dihedral- angle disorder.

&. First peak of the valence band

The valence band of the crystalline silicon has
three main features denoted by the peaks I, II,
and III in Fig. 1(a). Peak I is primarily due to

mp states. The tetrahedral symmetry of silicon
assures that the mixing of s states with mp states
is very small. For example, if one assumes a
k vector given by k = k(a, b, 0), then it is simple to
see that

(16)
g(s ~H ~pw) ~E ~, [(a —b) sink(a+b)

+(a+b) sink(b —a)].

1 +[V,+2V, +3V4(P, , )

E",„(P, , )= g(V, +2V, +0.3
. Cp,

+1.5cos&$, , ). (16 )

The maximum is reached for the crystalline
structure as we found earlier. The problem is
similar to the Lifshitz alloy problem, "except
that instead of two components A and 8, we now

have a continuous distribution, the ends of which
correspond to the staggered and eclipsed cases.
Localized states will exist near the top of the
valence band as in the case of the Lifshitz alloy
problem. An estimate of the width of the tail of
localized states can be obtained from Eqs. (16),
(16'), and (1):

where Q, , gives the dihedral angle between the
sites i and i~. If &Q is the change in the dihedral
angle from the crystalline value, from Eq. (12)
we have

V, (ny) = 0.3 —s tn2ny/2,

V, (ng) = 0.3 —cos'(30' —Lp/2),

V, (b,g) = 0.3 —cos'(30'+ b, g/2),

so that

Similar results are obtained for any generatl
direction. Thus along the symmetry direction
there is no s-pm mixing. In a general direction
away from the symmetry axes the mixing is pro-
portional to k' where k, is the component of k
perpendicular to the nearest symmetry axis.
Thus the transverse P states combine primarily
with each other to form the peak I. With dihedral-
angle disorder each stom is still surrounded by
a perfect tetrahedron so that we expect the peak
I to be still made from transverse P states. In the
amorphous state, the width of peak I reduces and
the edge close to the top of the valence band be-
comes steeper as shown in Fig. 1. Joannopoulos
and Cohen studied various crystalline forms of
silicon to understand these features and concluded
that they were due to bond-angle variations. How-
ever, it is not clear why bond-angle variations,
which change the tight-binding (TB) matrix ele-
ments, make the edge steep. Also, in the various
structures studied there are other parameters,
e.g. , dihedral angles, which vary.

We find that the dihedral-angle variations are
primarily responsible for the features observed
in the peak I in the amorphous state. Near the
top of the valence band there is a redistribution
of states. As discussed above these states are
confined to regions where &P-0. Such regions
which are spherical in shape dominate the tail. '2

The highest energy of a state is given by"

2m@&=&.+ . ,V213Nl V

(17)
where V is the volume (in which bQ-0) in which
the state is confined and m* is the effective mass.
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Clearly the edge E„will be reached with zero
probability in the disordered structure (here
m*&0). If we assume as Lifshitm did that the
probability to find a volume V which is "crys-
talline-like" goes as exp(-cV), where c is a
constant, then the density of states near the edge
is given by'

(20)

States near the top of the valence band in the crys-
talline silicon are affected substantially by
dihedral-angle disorder. In general they are
pushed in to the band according to the arguments
above. Deeper in the band (for energies more
than 0.3 eV below the top of the valence band) not
much change is expected, so that in general the
change shomn in Fig. 9 is expected for the density
of states. The combination of the valence-band top
appearing as a Lifshitz limit and the appearance
of a tail of localized states are responsible for the
sharpening of the valence-band edge and the up-
ward shift of the maximum of peak I in going from
the crystalline to a-Si. Prom the nature of our
arguments me expect these results to hold for
other tetrahedral semiconductors also as long as
the sP' orbtials are the atomic functions giving
rise to the band structure. The above results
are qualitative in nature and it is difficult to get
a simple quantitative estimate of the precise
shape of the valence-band edge.

One can understand the results at the top of the
valence band as folloms. In the crystal the top is
reached by putting P, (or P„or P,) functions on
each site, so that the energy involves only
E (2, 2, e) term. Any change from this introduces
E„„(,', —,', —,'} term -which lowers the energy. In the
dihedrally disordered structure it is not possible
to put p„ functions on each site, so that the ex-
tended state wiII always have E„,(-,', —,', —,') terms,
thus lowering the energy of the state below the
crystalline limit. The crystalline limit can thus
be approached only by localized states in which
the wave function is confj.ned to large, improbable

regions of the amorphous structure within which
the structure is essentially crystalline.

VI. THE CONDUCTION BAND

As discussed briefly in Sec. VII, the fact that
the states in the conduction band are antibonding
forces the on-site and nearest-neighbor inter-
actions to give opposing contributions to the en-
ergy. This leads to the possibility that the bottom
of the conduction band is not due to a pure state.
It is therefore not possible to apply as simple a
method as used fo'r the valence band. We use,
therefore, a less rigorous approach which' is
only suggestive of what one may expect upon in-
troduction of dihedral-angle disorder.

Let us study the limits of the conduction band
in a crystal and understand the differences be-
tween silicon and germanium. A general wave
function is Z,.(a,.s,. +b,. ~ p,.), where Z,. (a,. ('+ (b,
=1. The relative signs of a,. and a, , b,. and b,.
(i and i„are nearest neighbors) determine
whether the energy of the state lies in the con-
duction or valence band. Figure 10 shows the
on-site and nearest-neighbor contributions to the
energy as the nature of the mave function goes
from pure s to pure P in the conduction band (we
only look at the bottom of the conduction band).
The on-site contribution is determined uniquely
by the ~a

~

and ~b (. However the nearest-neighbor
contribution depends on the direction of b as mell, .
In general the energy wiII contain terms E„(-,'),
E,„(-,), E,„(e), E,„(-,') using the Slater-Koster
notation. A wave function of the form r/i=+, a, ~s;).
+b,.(1, 0, 0}.p, involves no E „(2) term, while
t(=Q,.a,.s, +b, (1, 1, 1) p,. involves a large E„,(-,)
term in general. Thus the direction of b essentially
determines the relative mixture of E„„and E„,
terms or of the PPo and PPv interactions (for a
fixed sP mixture). Thus the relative strength
of the PPO and &Pm interactions determines mhich
kind of wave function will form the conduction-
band minimum. As is well known, in silicon the
minimum is given by a wave function for which b

a(E)

--—c-Si
— o-Si

pg
Localized
stotes.

E()=s)
-E(f[s,P])

On Site

X(b;)

E O&eV

FIG. 9. Sketch of the effect of the dihedral-angle dis-
order on the density of states n(E) near the top of the
valence band.

Neor est
Neighbor

FIG. 10. Energy difference between a pure s state
and a mixed state for on-site and nearest-neighbor
terms in the conduction band.
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=b(1, 0, 0), while for germanium it is given by
b =b(1, 1, 1). For dihedral-angle disorder the
relative strengths of the o and w interactions are
not altered, so that the character of the wave
functions forming the minimum is not expected
to change. It is possible, though, that the wave
function may not be compatible with the structure
or may be able to exist only in particular regions
of the structure, as happened at the top of the
valence band.

For silicon the bottom of the conduction band
is near X, (in the crystal). At X„ the wave func-
tion is effectively s (or p„) at one site and p„(or
s) at the neighboring site. Due to this fact the
energy at X, involves the invariants V„V„V„
and (V, + V, + V,), or only o'-type interactions. We
thus expect very small fluctuations near the bottom
of the conduction band in a-Si arising from di-
hedral-aogle disorder. This is not the case for
germanium, for which the bottom of the con-
duction band involves a substantial m interaction.

We find in this simple picture that in a-Si the
valence-band top has a tail of localized states
-0.3 eV in width, while the conduction-band edge
is essentially free. of localized states (Fig. 11).
In germanium, however, we expect both the
valence-band and the conduction-band edges to
have similar widths for their tails of localized
states.

VII. TOTAL EFFECT OF QUANTITATIVE DISORDER

In this section we combine what we have found
in the previous sections and compare it with some
known experimental results. We notice first that
dihedral-angle disorder is primarily responsible
for the sharpening and shift of the valence-band
edge. The bond-angle a,nd bond-length disorder
will smear this shape further as. shown in Fig.
11. From the above results we expect the total
energy fluctuations near the top of the valence
band to be -0.5 eV and at the conduction-band
edge to be -0.2 eV. These represent an upper
limit to the widths of the tails of localized states.

An actual calculation for the amorphous struc-

ture is extremely difficult. Hama and Yonezawa"
have studied the effect of quantitative disorder
using coherent-potential-approximation (CPA)
techniques. The amorphous structure is rep-
resented by a Weaire-Thorpe Hamiltonian with
random V, and V, terms. The disorder was then
varied to find how much was required to merge
the peaks II and III as observed in the x-ray
photoemission spectroscopy (XPS) results. They
found that Lorentzian half-widths of -2 eV were
required. Such a large disorder would also put
a high density of localized states in the band gap
which would be inconsistent with the narrow ob-
served tails. %e find that the structural models
of a-Si and our calculations predict an order-of-
magnitude-lower quantitative disorder compared
to what is required by them to explain the XPS
results for peaks II and III. Our estimate is con-
sistent with the narrow tails of localized states
and the observed shape of peak I. In the next
section we describe another source of disorder
which is expected to be present in amorphous
semiconductors, which we consider responsible,
together with the dihedral-angle disorder for the
merging of peaks II and III.

UIH. TOPOLOGICAL MSORDER

In addition to the obvious quantitative disorder,
another kind of disorder present in amorphous
semiconductors is the topological disorder. The
primary manifestation of topological disorder is
in the ring statistics of the structure. In the crys-
talline structure the ring statistics is even, but
in the general CBN we expect both odd and even
rings to be present. The role of. odd rings in
merging of the peaks II and III has been pointed
out. ' The introduction of localized states due to
topological disorder was demonstrated by Cohen,
Singh, and Yonezawa. " These reuslts will be
briefly discussed here and the results for a more
complete Hamiltonian as chosen here will be
inferred from them.

The Hamiltonian for the s-band model is

e= g ~f)V(f„~, (21)--- t.'-5i
dihedral disorder
present

Quantitative
disorder.

where V is hopping matrix element between the
nearest-neighbor sites i and i„and will be assumed
negative. The Weaire- Thorpe model can be
mapped on to the s-band model. ' The energy for
a wave function g=g, a, S, is

E=ZVC, ZC= a~a, —1~C=1. (22)

FIG. 11. Effect of only dihedral-angle disorder Oeft)
and total quantitative disorder on the density of states in
the valence band of silicon.

At the lower bound the eigenfunction is bonding,

a, =N ', where N is the number of sites. It has
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been shown that this bound is a normal bound"
in the sense that the density of states has a form

~(z) (z —zv)"',

n(E)

even

Z„=-(Z-4v/W)V, (24)

which is like an optical potential. States near or
above E„are expected to be drastically affected
by the disorder.

Rivier" has shown that odd-membered rings
can be threaded by a continuous line which avoids
even rings and either closes in a loop or ends at
the surface. The odd rings are therefore as-
sociated with randomly fluctuating densities of
defects in an even structure. One can imagine
regions free of odd rings. The problem is sim.-
ilar to the Lifshitz alloy proble, "and the anti-
bonding bound is reached with zero probability.
States near this bound are localized states con-
fined to regions free of odd rings. %e assume
as was. done by Lifshitz that if e is the concen-
tration of even rings, the probability of finding
a volume V free of odd rings is proportional to
exp(-eV). The density of states near the anti-
bonding limit is then given by

~(Z) =n, e~ [Z,/(-ZI ~)-]"'),
with n, and E, constants. States close to the anti-
bonding limit in the crystalline case are now

pushed into the bulk of the band. Conservation of
the first moment of the density of states results
in a peak in the density of states as shown in Fig.
12. It has been pointed out that the mobility edge
will lie above the variationally determined en-
ergy E.,

It was shown by Weaire and Thorpe' that their
model could be mapped onto an s-band model.
A more complete model such as we have used
causes the 5 functions observed in the Weaire-
Thorpe model to broaden into the peak I, but
peaks II and III are qualitatively similar to the

similar to the crystalline-band edge. No localized
states are expected at this edge, and only a small
correction is expected for the effective mass near
the edge.

The upper bound, which is an antibonding bound,
has a different behavior. This bound is reached
for the amplitude variation a, =+K' ' and C=-1.
Such a state which changes sign across each bond
is incompatible with a mixed structure having both
even and odd rings. Thus a state of this property
cannot extend to the entire structure. If p is the
minimum possible number of frustrated bonds,
i.e., bonds across which the sign change is not
possible due to the presence of odd rings, the
above type of antibonding state has a maximum
expectation value of the energy

gV 0 Eap ziVi

E
C

FIG. 12. Effect of topological disorder on the density
of states of the s-band mode1. Dotted line: crystalline
case; dark line: disordered case; E~: mobility edge.

ones obtained from the Weaire-Thorpe model.
Thus the s-band-model results can be used to
understand the effects of topological disorder on
these peaks. It is easy to see that the symmetry
properties of P-bonding states is similar to those
of the s-antibonding states. Thus the states in
the upper half of the valence band containing P-
bonding states will be pushed down into the band
due to the presence of odd rings. The transverse
P states forming the peak I will be unaffected by
the odd rings as in the case of the %eaire-Thorpe
model.

A rough estimate of the lower limit on the con-
centration of odd rings can be obtained from the
XPS results and our discussions. The difference
between properly normalized XPS results for the
crystalline and amorphous structure gives the net
displacement of the density of states due to dis-
order. Separating the states into m (peak I) and
o (peaks II and III), we get an estimate for the
displacement of the density of states due to top-
ological disorder. Assuming that states move
from near the top of the valence band to fill the
valley between peaks II and III, we can estimate
the energy E„discussed earlier. Using the trans-
formation between the s-band model and the s9'
Weaire-Thorpe model, we can determine v defined
in Eq. (24). This comes out to be -12%%u~. Con-
sidering the simplicity of the arguments this is
in good agreement with the values obtai. ned by
actual construction of CRN's. "

The bottom of the conduction band is reached
by a wave function in which s and p functions are
placed alternately on the atomic sites. The ef-
fect of the frustration due to the odd rings is felt
most at the energies corresponding to a wave
functions which are s antibonding or p bonding,
as discussed earlier. In the case of a mixed
wave function as is the case at the bottom of the
conduction band, the effect is rather small. The
effect can be studied variationally and it is seen
that essentially for an odd ring the E,„(—,') matrix
element is replaced by E„(—,'). Assuming a 12%%u„

odd ring concentration, the variational shift is
about O. j. eV. It has been suggested that the odd-
even disorder may not be present in amorphous



INFLUENCE OF DISORDER ON THK ELECTRONIC STRUCTURE. ..

films made from III-V compounds. 6 The strong
energy couplings between atoms of different kinds
are expected to force each atom to be surrounded
by atoms of the other kind. This wQl minimize
the odd-even disorder and will lead to amorphous
films of better quality.

IX. CONCLUSIONS

We find from the study in this paper that a sim-
ple tight-binding scheme is capable of giving very
interesting results for a-Si. We find that the quan-
titative disorder is rather smaO in this material
and produces narrow tails of localized states.
The dihedral-angle disorder is a primary impor-
tance near the top of the valence band, and under-
standing it is crucial to the preparatiOn of better
amorphous films, especially with better hole
properties. The topological disorder is of prime
importance near the bottom of the conduction band
in a-Si. We find the dihedral-angle disorder ex-
plains the changes observed in peak I in going
from the crystalline to the amorphous state, while
the topological disorder is mainly responsible for
the merging of peaks II and III.

Our aim in this paper was not to do rigorous
calculations for amorphous semiconductors, in
view of the difficulty involved. We found, how-
ever, that much information about the disordered
state could be achieved through the intuitive and
semiquantitative methods used here. We find that
the nature of the wave functions near the band
edges in the crystal is rather important in deter-
mining the "quality" of the corresponding edge
in the amorphous state. By quality we mean the
extent of localization present near the mobility
edge. We have also been able to study the relative
roles of different disorders present in the amor-
phous state modeled as a continuous random net-
work. Our results reinforce the idea that the
local environment in the amorphous structure is

important in forming the band limits. However,
the somewhat longer-range order which deter-
mines the dihedral-angle distribution and ring
statistics of the structure is also very crucial,
especially in determining the localized states
near the band edges. These results allow us to
understand the origin of the localized states in
different amorphous semiconductors, e.g. , we
find that while dihedral-angle disorder is not so
important for the conduction-band edge of a-Si,
it is very important for the conduction-band edge
of a-Ge in which the dihedral-angle disorder may
produce tails of localized states with widths -0.3
eV. Such information is important for preparation
of better amorphous films. We find for example
that silicon is intrinsically better than germanium
as far as dihedral-. angle disorder is concerned
and that III-V compounds can produce high-quality
amorphous films.

Here we have ignored the role of the d' levels.
Inclusion of these levels may not only improve
the crystalline band structure, but may also give
a more accurate picture for the amorphous state.
We have examined the dihedral-angle disorder in
context of nearest-neighbor interactions aLone.
Inclusion of second-neighbor interactions may
introduce important effects, since now the local
atomic configuration wiD no longer be constant.
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