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Complex band structure and superlattice electronic states
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The complex band structures of the bulk materials which constitute the alternating layer (001) semiconductor-

semiconductor superlattice are investigated. The complex bands near the center of the Brillouin zone in the [001]
direction are studied in detail. The decay lengths of superlattice states whose energies lie in the bulk band gaps of
one of the semiconductors are determined from the dispersion curves of these bands for imaginary k. This method is

applied using a tight-binding band-structure calculation to two superlattices: the A1As-GaAs superlattice and the

CdTe-Hg Te superlattice. The decay lengths of A1As-GaAs superlattice conduction-band minimum states are found

to be substantially shorter than those for the CdTe-Hg Te superlattice, These differences in the decay of the states in

the two superlattices result in differences in the variation of the conduction-band effective masses with the thickness

of the AlAs and CdTe layers. The conduction-band effective masses increase more rapidly with A1As thickness in

the A1As-GaAs superlattice than with CdTe thickness in the CdTe-Hg Te superlattice.

I. INTRODUCTION

Semiconductor superlattices have been the sub-
ject of much interest in recent years due to the
development of new highly controllable growth
techniques, especially molecular beam epitaxy. ' '
The superlattices consist of alternating layers of
two bulk semiconductors having the same crystal
structures and similar lattice constants. Two
superlattices have been studied in detail both the-
oretically and experimentally so far. These are the
Al„Ga, „As-GaAs and the In, „Ga+s-Gash, Ps,
superlattices. ' ' In addition, a theoretical calcu-
lation of the electronic structure of the CdTe-
HgTe superlattice has been carried out. '

This paper is concerned with understanding im

detail an important feature of some of the elec-
tronic states in a superlattice: the decay in space
of the electron wave function from one layer into
the other. We are, in particular, interested in
this effect as it applies to the states at the va-
lence- and conduction-band edges of the super-
lattice, the states important in determining elec-
tronic transport properties in the direction per-
pendicular to the interface planes.

For superlattices which have alternating slabs
consisting of many atomic layers, the effect of
the decaying states can be interpreted in terms
of the familiar well model for the superlattice.
The band gap of one of the bulk constituent semi-
conductors is envisioned as forming barriers to
carriers in wells consisting of allowed energy
regions in the other bulk semiconductor. The
electronic state decays into the barrier semi-
conductor. When considering superlattices con-
sisting of a small number of atomic layers, the
well model can no longer be used. It is necessary
to take into account the microscopic atomic po-
tential and the detailed band structures of the

bulk semiconductors.
In this paper we calculate band structures for

complex% near %.=0 using the empirical tight-
binding method. The band structures are then
used to investigate the decay lengths of the k =0
superlattice states of two systems: the AlAs-
GaAs and CdTe-HgTe superlattices. The super-
lattices are constructed parallel to (001) zine-
blende planes. The influence of the bulk band
structures of th'e constituent semiconductors and
the differing band line-ups in the two systems on
perpendicular superlattice transport is studied
and discussed.

The paper is organized as follows. Section II
discusses the qualitative physics involved with
complex band structures and how they determine
decay lengths. It also describes briefly the tight-
binding method used to calculate the band struc-
tures. Section III describes the complex bulk band
structures of CdTe and A1As. Section IV dis-
cusses the electronic states of the two super-
lattices and relates them to the complex bulk band
structures. Section V compares the effective
masses of the two superlattices.

II. QUALITATIVE PHYSICS

As mentioned in the preceding section, there
exist electronic states of the superlattice with
energies which lie in forbidden energy regions of
one of the bulk constituent semiconductors. This
is illustrated in Fig. 1. It shows a schematic band
diagram for a hypothetical superlattice made from
two semiconductors labeled 1 and 2. The two
materials alternate in the z direction. The bulk
valence- and conduction-band edges of each are
shown. The hatched area represents the forbidden
band gap of the bulk semiconductors (not of the
superlattice). The energy E, is the energy of a
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FIG. l. Schematic band diagram of a hypothetical
superlattice. bE„and QE~ are the valence- and con-
duction-band discontinuities between semiconductors
1 and 2. The hatched area represents the bulk band

gaps. E, is the energy of a superlattice state which
decays into semiconductor 2.

superlattice state located below the valence-band
edge of semiconductor 1 and above the valence-
band edge of semiconductor 2. The wave function
of this state should be expected to have a'charac-
teristic form. In region 1 it is made up of bulk
Bloch and evanescent waves of material 1, pro-
ducing a peaked envelope structure similar to
that of a particle in a well. In region 2 the state
would exhibit an exponentially decaying behavior
with decay lengths characteristic of evanescent
states at that energy in material 2. States of this
sort have previously been found in several the-
oretical calculations on superlattices. "

It is a good approximation to analyze these su-
perlattice states in terms of bulk Bloch and evan-
escent waves for the following reason. Previous
studies have shown that the superlattice potential
differs from that of the constituent semiconductors
only in short regions near the interfaces, typically
within one or two atomic layers. ' Insofar as the
superlattice potential approximates the potential of
one or the other of the bulk semiconductors, it
is describable by a bulk Hamiltonian in that re-
gion. Since Schrodinger's equation is a local
equation, its solutions in these regions will be
just the bulk solutions. Bulk evanescent states,
previously disallowed by the bulk boundary condi-
tions, are now acceptable. The superlattice states
are thus well described in terms of the bulk states
of the two materials connected at the interfaces.

In this paper we are, in particular, interested
in the evanescent states and their decay lengths.
The decay lengths to be used depend on two fac-
tors: the dispersion of the bulk energy bands as
a function of complex k -and the Iocation in energy
of the suyerlattice state of interest. %'hen both of

these are known, the decay length of the evane-
scent state at the energy of the state in the super-
lattice is just the reciproca1 of the imaginary
part of k, 4;, for that state.

The calcuIation is simplified by several con-
siderations. Since the superlattices of interest
have direct fundamental band gaps, only the band
structure near k =0 must be known. There are
other evanescent states away from R =0 which
can connect with the Bloch states at the interface,
but they do so only with small amplitudes. ' Vfe,
therefore, do not consider these states. Also,
according to Blount, ' time reversal at k =0 en-
sures that all the necessary evanescent states
with real energies have purely imaginary values
of k. Thus, the calculation must be done only
for k near k =0 in the imaginary [001j direction.

The empirical tight-binding method is used to
calculate the band structures in this paper. It
has been described in detail in Bef. 5 for the
AIAs-GaAs superlattice and in Bef. 4 for the
CdTe-HgTe superlattice. The parameters used
in the present paper for AIAs-QaAs were obtained
from Bef. 8 and those for CdTe-HgTe from Ref.
4. The energies and wave functions of the super-
lattice states are obtained by diagonalizing the
superlattice tight-binding Hamiltonian matrix.
The complex bulk band structures are also cal-
culated with the tight-binding method, with the
modification that k can take on complex as well
as real values.

III. COMPLEX BAND STRUCTURE

This section includes the results of our com-
plex band-structure calculations. The theory of
complex band structures in three dimensions has
been discussed in general terms by Heine. "
There have been few detailed calculations of this
sort done on specific materials because of the
difficulty of investigating the complex band struc-
tures experimentally. However, since evanescent
states are important in determining the tunneling
properties of materials, transport measurement
involving tunneIing through barriers mould be
useful in investigating complex band structures.
This, in fact, was done by Kurtin, McGill, and
Mead" to determine part of the complex disper-
sion curves of QaSe by studying tunneling in a
metal-insulator-metal structure. Applying com-
plex band-structure considerations to the super-
lattice yields another, but less direct, system-in
which to study them. A theoreti. cal study by
Osbourn and Smith' of transmission and reflec-
tion coefficients at Al„Ga, +s-GaAs interfaces
also makes use of the complex band structure.

In this payer we are concerned with the com-
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plex band structures of the bulk materials which
form the "barriers" in Fig. 1. This is AlAs for
the AlAs-QaAs superlattice and CdTe for the
CdTe-HgTe superlattice. AlAs has a larger di-
rect band gap than QaAs, and it has been experi-
mentally determined to overlap that of QaAs in
the superlattice. " We use values of ~E, and
AF., (Fig. 1) equal to 0.19 and 1.10 eV, respec-
tively. Similarly, CdTe has the larger band gap
of the CdTe, HgTe pair. HgTe has a band gap of
0 eV due to the degeneracy of the conduction-band
minimum and valence-band maximum at k =0."
We use a valence-band discontinuity, AE„, equal
to zero for the CdTe-HgTe superlattice for rea-
sons given in a previous paper. 4 Since this super-
lattice has not yet been fabricated, this value of
the discontinuity should be regarded as tentative.

A segment of the band structure of AlAs is
shown in Fig. 2. Energy is plotted as a function
of 4&, the imaginary part of the wave vector in
the [001]direction. The unit of k& is 2'/a,
where a is the AlAs lattice constant (5.66 A). The
real part of k is zero in this direction for the
energies to be real, as mentioned previously.
The arbitrary energy zero is set such that the
valence-band maximum of QaAs is at zero. The
A1As valence-band maximum, labeled by its
symmetry classification I»„, is located ~E„
=0.19 eV below this, as shown. The conduction-
band minimum is labeled I"„.

As explained by Heine, "the imaginary disper-
sion curves connect bands across band gaps at
maxima and minima. This can be seen in Fig. 2.
The two bands (one doubly degenerate) coining
off from the triply degenerate I»„ level connect

to the two conduction-band level. s. The value of
A& first increases as the energy increases away
from the valence-band maximum. After k&

reaches its maximum value, it then decreases
back to zero as the energy approaches the con-
duction band. The maximum value of k& for each
curve represents the location of a branch point
in complex k space. " 'The two energies for a
given value of 0& on a given curve are the energies
on either side of the branch line of that point.
The highest energy band in Fig. 2 has no higher
band to connect to in our tight-binding approxi-
mation. It continues to increase in energy mono-
tonically with Q.

The complex band structure of CdTe is some-
what more complicated. Crystal symmetry and

group theory are enough to determine which bands
connect together in the AlAs case. The singly
and doubly degenerate valence bands connect with
the singly and doubly degenerate conduction bands.
The relatively large spin-orbit splitting in CdTe
necessitates the inclusion of the spin-orbit inter-
action in our tight-binding calculation. ' There
is only one single-particle representation of the
double symmetry group in the [001j direction and
hence, all the states have the same symmetry.
We find the bands to be connected as shown in
Fig.3. Again, the curves are labeled atk =0by their
symmetry classifications there. The zero of energy
is at the valence-band maximum. The fundamen-
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FIG. 2. Complex band structure of AlAs in the [001]
direction for purely imaginary k, 0&. a is the AlAs
lattice constant. E„and E~ indicate the valence-band
maximum and conduction-band minimum energies of a
superlattice consisting of twenty layers of AlAs alter-
nating with ten layers of GaAs. The points a, b, c,
and d label the intersection of these energies with the
complex band structure.

FIG. 3. Complex band structure of CdTe in the [001]
direction for purely imaginary k, k&. a is the CdTe
lattice constant. E~ indicates the conduction-band mini-
mum energy of a superlattice consisting of twenty layers
of CdTe alternating with ten layers of HgTe. The point
c labels the intersection of this energy with one of the
bands.
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tal band gap lies between the I",„and F„energies.
The lattice constant of Cd'Te is equal to 6.48 A.

Before going on to relate the superlattice states
to the complex band-structure results, it is in-
teresting to examine the applicability of two ap-
proximation schemes in determining the complex
bands. The first is effective mass theory and
the second is a simple adjustment made to take
into account the analytic structure of the bands.

It is evident in Figs. 2 and 3 that the parabolic
effective-mass approximation can have only a
limited range of applicability because the bands
eventually turn back towards R =0 as their ener-
gies depart significantly from the band extrema
energies. The values of k~ at these points (where
dE/dk, =~) mark the location of the branch points
in the complex band structure. The effective-
mass approximation becomes less accurate closer
to these points.

We calculated effective masses for small k
using our tight-binding method and compared the
energies resulting from the effective-mass ex-
pression with the results of the full tight-binding
calculation. The differences in energies are on
the order of 10% calculated these two ways for
values of k; near 85/q of their branch-point values.
The valence bands which. connect with these con-
duction bands are less parabolic and the agree-
ment is only on the order of 30% for the same
values of Q.

A better approximation for these bands is to
use a formula which takes into explicit account
the existence of the branch points in a simple
way. For k close to the branch point, the energy
must have the characteristic square-root depen-
dence on k described by Heine. ' Such a formula
is

The pa, rameter y is equal to the value of 4'~ at the
branch point. E, is the energy at that point. The
plus or minus sign is chosen depending on whether
E is greater or lesser than E,. The form of
Eq. (1) is similar to that derived by Kane" using
k. p perturbation theory, with or without the in-
clusion of the spin-orbit splitting.

The value of y can be determined from experi-
mentally measurable quantities of the real band
structure alone. Setting k=0 in Eq. (1) results
in two energies whose difference is just the k =0
band gap E~ between the two connected bands.
Inverting Eq. (1) then implies

y Q P2 +

Using the tight-binding derived band gaps and
effective masses in Eq. (2) produces values of
y which are almost indistinguishable from those
derived from visual inspection of Figs. 2 and 3.
A quantitative analysis shows that the tight-binding
values differ by only a few percent from those
derived from Eq. (2).

IV. SUFERLATTICE STATES

In this section the complex band-structure re-
sults are used to analyze the evanescent parts of
the superlattice wave functions. First, the super-
lattice tight-binding method~' is used to find the
energies and states for the AIAs-QaAs and
Cd-Te-HgTe superlattices. The decay lengths
of these states are then compared with the decay
lengths of the evanescent bulk states at the same
energies.

This procedure is first applied to the AIAs-
QaAs superlattice. In pa, rticular, the superlat-
tice consisting of twenty layers of A1As alternating
with ten layers of QaAs is considered. The
thicker AlAs slabs are used in order to more
clearly observe the wave-function decay into the
AlAs.

We examine the states at two energies: the
conduction-band minimum and the valence-band
maximum. The energy of the conduction-band
state is 1.68 eV and that of the valence-band state
is —0.05 eV. The two energies are indicated in
Fig. 2 by the two dashed lines. It ean be seen that
the dashed lines for each of these energies inter-
sects the complex dispersion curves at two
points. The AlAs states at the intersection points
a,re candidates to match up with the states in the
QaAs slabs. The details of how the states con-
nect at the interface determine the amplitude of
each bulk AlAs evanescent state in the super-
lattice state. We do not directly investigate the
interface to find these amplitudes. However, the
superlattice state at the top of the valence band
is doubly degenerate and connects with a doubly
degenerate state in AlAs denoted by 5 in Fig. 2.
The superlattice state at the bottom of the con-
duction band is singly degenerate and connects
with a singly degenerate state denoted by e in
Fig. 2. In Fig. 4 is plotted the superlattiee wave
function for the valence-band-maximum state in
the AlAs slab only. The state is plotted as a func-
tion of layer spacing away from the AIAs-GaAs
interface on a logarithmic scale. The integers
labeling the horizontal axis are centered about
the aluminum atom positions. Layer 1 is at the
interface and layer 10 is at the center of the
AIAs slab. The lines connecting the dots are for
visual aid purposes only. The state has two com-
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FIG. 4. %ave function of the state at the valence-band

maximum of the AlAs-GaAs superlattice in the A1As
slab. The line labeled b has the slope given by the decay
length of the state at b in Fig. 2. M and N are the number
of A1As and GaAs layers pex' repeated supexlattice slab.

ponents plotted separately. The solid bne labeled
XO represents the amplitudes of orbitals centered
on arsenic atoms with X- or F-type symmetry.
The dashed line labeled X1 represents the same
symmetry orbitals on the aluminum atoms.
These are the only orbitals allowed by symmetry
for this state. Figure 5 is the same type of plot
for the conduction-band-minimum state. It is
allowed to have orbitals of S- and S-type sym-
metry as indicated.

The decay lengths of the evanescent bulk Alhs
states which describe the superlattice states are
also shown ln Figs 4 and 5 The straight line
shown in Fig. 4 represents the decay length of
the state labeled bin Fig. 2. Its decay length is
2.55 in units of the layer spacing. The state
labeled e in Fig. 2 does not have any amplitude
in the superlattice state because it is of the im-
proper symmetry type. Similarly, the conduc-
tion minimum state in Fig. 5 is well described
by just the state labeled c in Fig. 2. It has a de-
cay length of 1.40 in the same units. Again,
symmetry excludes the bulk state at d contributing
to the superlattice state. The deviation of the
states from an exponential decay near the center
of the slab is due to the presence of the decaying
state from the next interface.

The situation is more complicated for the
CdTe-HgTe superlattice. The states have only

Zl SO
Q.QI
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LAYER
PIG. 5. %Pave function of the state at the conduction-

band minimum of the AlAs-GaAs supex'lattice in the
AlAs slab. The line labeled e has the slope given by the
decay length of the state at c in Fig. 2. M and hf are the
number of AIAs and GaAs layers per repeated supexlat-
tice slab.

one representation due to the necessary inclusion
of the spin-orbit interaction. This is illustrated
by considering the bottommost conduction state
in the superlattiee consisting of twenty layers
of CdTe and ten of HgTe. The energy of the state
is 0.06 eV as indicated by the dashed line in
Fig. 3. ' For greater clarity, the energy range
near 0 e7 is expanded in Fig. 6. The dashed line
is seen to intersect the complex bands at three
points labeled a, 0, and e.

The question is: How much does each of the
three bulk states contribute to the superlattice
state at that energy& Since all three states have
the same symmetry, all must be considered.
The superlattice wave function in the CdTe is shown
in Fig. V. The dashed curves represent amplitudes
of orbitals centered on cadmium atoms and the
solid curves represent orbitals on tellurium
atoms. In addition each curve is labeled by its
orbital type (X stands for X and y orbitals) with
0 and 1 representing cadmium- and tellurium-
eentered orbitals, respectively. The decay
lengths of the bulk evanescent states are repre-
sented in the top part of the figure as straight
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sion curve characterized near k =0 by the light-
hole effective mass. It has a decay length of
B.V9 CdTe-layer widths. The state at 5 originates
from the heavy-hole band and it has a decay length
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FIG. 7. %'ave function of the state at the conduction-
band minimum of the CdTe-Hg Te superlattice in the
CdTe slab. The lines labeled a, b, and c have the
slopes given by the decay lengths of the states at a, b,
and e in Pig. 6. M an& N are the number of CdTe and
Hg Te layers per repeated superlattice slab.

FIG. 6. Expanded version of the CdTe complex bands
shown in Fig. 3 near E= 0. The points a, 5, and c label
the intersection of the line indicating the superlattice
conduction-band minimum energy with the complex band
structure.

of 2.8'?. Finally, the state at c is from the spin-
orbit split-off band, and it has a decay length of
0.90.

Different components of the superlattice wave
function need to be characterized by different de-
cay lengths. The X, I; and Z orbital amplitudes
are well described by the decay length of the
hea.vy-hole band sta,te at b. The s orbitals ha,ve
amplitudes with longer decay lengths and are
described by the light-hole band state at a. The
deviation of the states from exponential decay is
again due to the presence of decaying states from
the next interface. This effect is more pronounced
in the CdTe-HgTe case than in the A1As-GaAs
case because the decay lengths are longer in the
CdTe-HgTe case.

V. EFFECTIVE MASSES

The preceding analysis of the decay lengths of
the superlatti. ce states leads to important con-
clusions rega. rding transport. As discussed in
Sec. I, longer decay lengths imply smaller ef-
fective masses in the direction perpendicular
to the interfaces. We find that there shou1d be
relatively small conduction-band effective masses
in the CdTe-HgTe superlattice, despite the large
conduction-band discontinuity between CdTe and
HgTe. This ls ln contrast to what occurs for
the AlAs-GaAs superlattice which also has a
large conduction-band discontinuity.

The reason for this involves the close proximity
in energy of the CdTe-HgTe superlattice conduc-
tion-band minimum to the CdTe bulk valence-
band maximum. The conduction band of the super-
lattice is derived from the HgTe conduction band
which is degenerate with the valence-band maxi-
mum in the bulk. This property of the cohduction-
band state in the superlattice combined with the
small offset between the valence-band edges of
the bulk HgTe and CdTe leads to this close prox-
imity. Because of this proximity the appropriate
CdTe evanescent states in the CdTe slabs have
small values of k';, a.s shown in-Fig. 6. ' The states
at a and 5 have small values of k, (0.06 and 0.11,
respectively) and thus long decay lengths. The
A1As-GaAs superlattice conduction-band energy
intersects the relevant dispersion curve in Fig. 2
at c which has a relatively large value of k, (0,23)
and thus a short decay length.

The values of the decay lengths of the conduc-
tion-band states for the CdTe-HgTe superlattice
are dependent on the piecise values of the band
discontinuities. Raising the bulk HgTe band
structure relative to the CdTe band structure
would raise the energy E, in Fig. 6 and thus
change the intersection points with the disper-
sion curves. This would result in shorter decay
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The valence-band effective masses show similar
trends. The superlattice valence-band-maximum
energies are closer to the AlAs or CdTe valence-
band edges than is true for the conduction-band
energies. Therefore, the valence-state decay
lengths are longer and the effective masses grow
more slowly with layer thickness. For the same
A1As-GaAs superlattices as those in Fig. 8, the
valence-band mass varies from 0.38 for two
layers of AlAs to 0.87 for ten layers of AlAs.
The topmost valence-band structure of the CdTe-
HgTe superlattice consists of a number of bands
separated by energies on the order of a meV.
These bands interact, making it difficult to assign
meaningful effective masses.
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lengths. The opposite effect would occur from
lowering the HgTe band structure. The valence
band is similarly effected.

The longer decay lengths in the CdTe-HgTe
superlattice indicate that the effective masses
should be smaller. This demonstrated in Fig. 8.
It shows the conduction-band effective masses for
both superlattices as calculated using the super-
lattice tight-binding method. The masses are
plotted as a function of the number of AlAs or
CdTe atomic layers per repeated slab. The
number of layers of GaAs and HgTe is held con-
stant at four. The AlAs-GaAs effective masses
are seen to be substantially larger. Due to the
inaccuracy in the values of the bulk tight-binding
effective masses, however, this result must be
regarded as qualitative only.

I I I I

4 6 8 I O l2 14

No. of AIAs, CdTe Layers

FIG. 8. Conduction-band effective masses perpen-
dicular to the superlattice layers for the AlAs-GaAs
and CdTe-Hg Te superlattices as a function of the number
of AlAs or CdTe atomic layers per slab. There are
four layers of GaAs or Hg Te per slab.

VI. SUMMARY

We have calculated the complex band structures
of AlAs and CdTe in the [001]direction. A simple
formula taking into account the analytic nature of
the bands was found which describes the bands
well. The band structures were then used to
analyze the decay lengths of superlattice states
in the "barrier" semiconductor. The effective
masses were found to vary rapidly with barrier
layer thickness for states having small decay
lengths. The effective masses varied more slowly
with barrier layer thickness for states with larger
decay lengths. For the CdTe-Hg Te superlattice,
the zero band gap of HgTe combined with the small
expected offset in valence-band edges of CdTe and
HgTe results in long decay lengths and, conse-
quently, small effective masses for relatively
large CdTe layer thickness.
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