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Coupling between valence fluctuations and lattice vibrations in rare-earth chalcogenides
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A critical study of the interplay between f-d valence transitions and lattice vibrations in rare-earth chalcogenides is
presented for a simplified electron-phonon coupling.

I. INTRODUCTION

During the last decade' ' mixed-valent systems
of rare-earth materials have been studied inten-
sively both experimentally and theoretically. Such
systems exhibit an interesting behavior. How-
ever, so far no completely satisfying microscopic
theory exists for the most essential physics of
valence transitions. In the present study we would
like to discuss a theory which takes into account
the interplay between the valence fluctuations and
the lattice vibrations in the mixed-val. ent systems.

Many experiments5-s and theories9-is have sug
gested already that the valence fluctuations and the
lattice vibrations should interact strongly, because
the former might induce local lattice distortions
through the change in the ionic-radii of relevant
rare-earth ions. Therefore, one should study how
this interaction affects the valence fluctuations as
well as the lattice vibrations. Sherrington and
Riseborough'4 have already studied this problem,
but did not give any definite results. Our present
study attempts to solve this problem by using
simple models. %e find these results: Firstly,
the valence fluctuation is strongly suppressed by
the local lattice distortion (polaron effect), if the
lattice vibrations are much faster than the val-
ence fluctuations. Then, the lattice vibrations
are also not much affected. Secondly, phonon
softening occurs but there are no large effects on
the valence fluctuation if the lattice vibrations
are much slower than the valence fluctuation.
Thirdly, in the intermediate case, both valence
fluctuations and lattice vibrations are changed
due to their coupling. In particular, when both
lattice vibrations and valence fluctuations have
the same frequency, we find a very strong cou-
pling between them and thus a drastic modifica-
tion of the lattice vibrations (resonance effect).

In Sec. II, we propose a simplified Hamiltonian
(including ionic-size effect) for the coupling be-
tween the vaI.ence fluctuations and the lattice vi-
brations. In Sec. III, we study the case in the
semiconducting phase where only localized elec-
trons are involved, while in Sec. IV we treat the
case in the metallic phase where both localized

and delocalized electrons are invol. ved. Finally
in Sec. V, we give a summary and some conclud-
ing remarks.

II. ELECTRON-LATTICE COUPLING (IONIC-SIZE
EFFECTS)

Most of the rare-earth chalcogenides have
NaCl-type structures and their lattice constants
are given quite accurately by the sum of the ionic
diameters of the rare-earth ion and the chalcogen
ion. On the other hand, the ionic diameter of the
rare-earth ion is intimately related to its valence,
that is, the number of 4f electrons in the rare-
earth ion. Smaller valence (i.e. , a larger number
of 4f electrons) means larger ionic dia, meter.
Therefore, the fluctuating valence in a rare-earth
ion directly causes a fluctuation in the ionic
diameter. Furthermore, because of the strong
Coul. omb attraction among the rare-earth ion and
its surrounding chalcogen ions it may induce
local lattice distortion around the relevant rare-
earth ion. Conversely the lattice vibration may
seriously affect the valence fluctuation. Our aim
in the present study is to investigate the essential
features of this interplay between the valence
fluctuation in the rare-earth ions and the lattice
vibrations through the chalcogen ions. In the
following we refer to SmS as a typical system
just to simplify the terminology in the present
study. The ionic radii of S', Sm", and Sm"
ions are given by 1.84, 1.14, and 0.96 A, re-
spectively. Note, that the difference in the ionic
radii of the two kinds of Sm iona is nearly 20%%uz

of the radius of the Sm" ion. The electronic con-
figurations of Sm" and Sm" ions are character-
ized by (4f)' and (4f)', respectively. When an
Sm ion changes its val. ence from Sm" to Sm", it
releases a localized 4f electron a.s a delocalized
5d electron. Hence we may use the average num-
ber n~ of 5d electrons per Sm atom to represent
the average atomic concentration of Sm" ions in
the system,

n, —= N(Sm")l[N (Sm")+N(Sm")],

where N(Sm") and N(Sm") are the numbers of
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Sm" and Sm" ions, respectively.
As regards the interplay between the valence

fluctuation and the lattice vibration, S ions may
be supposed to play a predominant role, because
an S ion has nearly five times smaller atomic
mass than that of an Sm ion. Therefore, through-
out the present study we neglect the effects of the
finiteness of the Sm-ions atomic mass for the
sake of simplicity. . Since an Sm" ion has a smal-
ler ionic diameter than an Sm'+ ion as noted above,
when a Sm ion changes its valence from Sm'+ to Sm",
the 8 ions surrounding the relevant Sm ion must con-
tract towards the Sm ion. Then, the repulsive
interactions among the S-ions core electrons and
the Sm-ions core electrons might just balance
the attractive Coulomb interaction among the S
ions and the Sm ions. On the other hand, when
an Sm ion changes its valence from Sm" -to Sm",
the situation is reversed. Then, the S ions sur-
rounding the Sm ion must be pushed away from
the Sm ion. The most essential part of these
processes can be described by the following sim-
ple electron-phonon interaction:

a„u(R.)

(2.1)
Note, g should also include Coulomb contribu-
tions proportional to (i/vV, //) In Eq. (.2.1) R,
runs over all of the S-ion sites, a„(o.=+1, a2,
+2) denotes the unit lattice vector of magnitude
a (a is the lattice constant) pointing to the near-
est neighbors of an S ion, u, (R, ) is the displace-
ment vector of the S ion at lattice point 8, ,
n& (R) is the number operator of 4f electrons at
the Sm ion at lattice site H, and n& is the average
number of 4f electrons per Sm ion throughout the
sample. Since only the difference [n& (R) -I&] is
relevant, we may simply set nz (R) =1 if the Sm
ion at R is divalent and n& (R) = 0 if the Sm ion
is trivalent, while n&=1-m„. Now, as is usually
done, we rewrite Eq. (2.1) in terms of electron
operators (f, d, etc.) and. phonon (Einstein phonon
in the present case) operators. Then,

(2.2)

III, SIMPLE MODEL ASSUMING LOCAI. IZED d
ELEC'ION S

First, we investigate the case n„«1,which is
supposed to be a extreme case realized in the
semiconducting phase. Then the Sm ions are
mostly in the Sm" state and only occasionally
excited to the Sm" state through the f dhybr-idi-
zation mechanism. Consequently, we may regard
Sm" ions as isolated excited states of Sm ions
just like fmpurities dissolved in the Sm" matrix,
and neglect in lowest approximation the interac-
tion among Sm" ions." %hen a Sm ion changes
its valence from Sm'+ to Sm'+, it must release
a localized f electron as a delocallzed d electron.
The d electron can move to other Sm ion sites be-
cause of the delocalized nature of the d wave
function. However, it cannot move completely
away from the Sm'+-ion site from which it has
been released because of the strong Coulomb at-
traction between the d electron and the f hole left

bound exciton

localized f state

Rg, e
g [ s( R, + a) n][I) (-R, )+& (R, )1,

(2.2)

where g„=(k/2(u, M, )'~'gsgn(o. ) and M, is the
atomic mass of an S ion. The phonon operator is
defined by

together with bt(R, ) -=bt„(R,) and I) (R, )
—= I) „(R,).

The harmonic term in the phonon Hamiltonian is
given by

DENSITY OF STATES

FIG. 1. Illustration of the electronic configuration in
the semiconducting phase described by Eq. (3.1) in which
the electron-phonon interaction is neglected. Only the
localized f states are occupied by electrons in the
ground state. The characteristic frequency of the val-
ence fluctuation is given by the larger of (&z —e&)/0' and
V/I'. In the present study we assume (c~- &&)» V, i.e. ,
g~ &&1.



H =H~+H, +Hz, +H»+H,
„

(3.1)

behind in the Sm" ion. Actually, a bound exciton
is formed whose binding energy is of the order of
the Coulomb energy, which is significantly larger
than the rel.evant energies involved in the present
problem. Thus, we may neglect the explicit ef-
fects of the band character of the d electrons, '0

although implicit band effects are included in the
formation of the exciton. Thus, neglecting band
effects, the simplest form of the effective Hamil-
tonian for the present problem may be given by

where H„„andH, „aregiven m Eqs. (2.3) and
(2.2). Here, R„runs over all of the Sm sites.
We use n~(R )+n, (R )=1. As far as the present
problem is concerned, the spin degeneracy of the
electron is not relevant, and hence we do not use
explicitly spin indices. The electronic configura-
tion described by Eq. (3.1) in which the electron-
phonon interaction is neglected is illustrated in
Fig. 1.

Since we wish to treat the electron-phonon inter-
action H, » as exactly as possible, we treat
II, „byusing the canonical transformation meth-
od rather than. the perturbation method. The can-
onical transformation'4 which diagonalizes the
electron-phonon interaction 0, h is given by eD

with

Rm

Then, the transformed Hamiltoni3n H = e ~ He~ js gjven by

with

HI = H~ — (o,
~
Q ~ [n~ (R, + a.„)—n~ ] ~

Hg~=g Vft(R)d(R)exp]~Q ' [ ( (t+a).)„)—)()) +a.„)])+)).t:.

Hph =Hph . (3.2)

Now Hf~ is taken into account perturbationally. %ith the help of the ordinary Green's-function technique, "
we calculate the average f -electron number nz=(nz (R„)),the ground-state energy E,=(H), the renormal. -
ized phonon energy co„and the mean-square displacement of 8 ions (u'(R, )). Here, (A) means the
expectation value of A for the true ground state of H. Since the explicit procedure of the calculation is
quite straightforward, we only give the final results which are exact up to O(V'):
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2ro, M,
I „,n! & ],(c~ —iq +neo, )' [e~ —eq+ (n+ 1)(d,]'

6

(e, —~q+ n(d, )[e, —
K~ + (n+ 1)(d ]) (3.6)

with

g(a
(3.7)

iq =- eq+ (2r7q —1)rP(u, .
In deriving these results, we have assumed (e,
—Rz ) & 0, which is consistent with the condition
n„=1 -0&«1. Here, it should be noted that every
bare vertex V is renormalized to 7' due to an ar-
bitrary number of phonon-closed loops attached to
it. This is essentially due to the local lattice dis-
tortion. The n summation in the above equations
gives the exchange process between two adjacent
vertices. In calculating the renormalized phonon

energy Cu„we have used, for the phonon Green's
function, the form"

(e, -K~)' (3.14)

(dE =e +~ —(e -e )FT0 f 2
(3.15)

To be consistent with the condition" n~ «1, we
must have [I VI'/(e, -~~)']«1. Note, the polaron
factor in V is completely canceled by the contri-
butions from the terms including the multiphonon
exchange between the two adjacent vertices. So
we have the bare vertex V in Eq. (3.10). Note,
the valence fluctuation makes the phonon softer
through the electron-phonon interactions, see Eq.
(3.12). Also note, the correction to (u,' ) due to
the electron-phonon interaction may be regarded
fully due to the phonon softening. Equation (3.13)
results from Eq. (3.12) if (u,') is given by (3K/
2(d, M, ). Secondly, we assume (d, »(e„-e&)&0.
Then, we find

(3.6)

(do —(doI1+(2 —]!2)]!2 ~ &
@~I

0

(3.16)

where bt(R, , f ) and b(R, , t) are the Heisenberg
representation of bt(R, ) and b(R, ), respectively.
The renormalized phonon frequency c5o is given

by the pole of D((()), whose formal expression is
given by

/ II(j

D((u) =D,((d)[1-11((o)D,((d)] ',
with

Do((d) = 2 (do(Q) —(d(, + Z 5)

(3 9)

where II(~) is the phonon self-energy whose typi-
cal diagrams are illustrated in Fig. 2.

Now we discuss these results in some limiting
cases. First, we assume (e, —ez)»&o. Then

Eqs. (3.3)-(3.6) simplify as follows:

I I I'
d (~ e )2

(3.10)

E,=a~ -—a —(e, cq)n, , -QP (3.11)

2 eo
6~ —Ey j

3S 4)o(g2 ) = 1+ 2@2 n~2+,M,

(3.12)

(3.13)

FIG. 2. Typical diagrams for the phonon self-energy.
The solid lines denote f- or d-electron propagator and
the wavy lines denote unperturbed phonon propagator
Dp((d). The vertices denote the renormalized f-d mixing
interaction fi.
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To be consistent with the assumption" n»«1, we
must have [ ~

V~'l(e~ —e&)']«l. In this case, we
note that the multiphonon exchange. is not import-
ant and hence we have V in Eq. (3.14). Also, note
the valence fluctuation makes the phonon harder
for g'& 2 and softer for q'& 2. We can estimate
q' approximately by using the rel.ation

rP = ~~ [R(sm") -R(Sm'+)]'i(~'&N
8 s 09

(3.16)

whic'h is derived in the Appendix. Here, R(M) is
the ionic diameter of the ion I and N» is the
number of the nearest neighbors of an S ion. By
using the experimental data, ' R(Sm") = 1.14 A,
R(Sm") = 0.96 A, and NN„=6 together with'

[(u'(R, )),]' '=0.07 A we find q'= 5. Although we
cannot take this number for g' too seriously be-
cause of the crudeness involved in the formula
(3.18), we still feel that it is unlikely to find the
phonon hardening due to the valence fluctuation in
a real system. Finally note, the correction in

(u,' ) is essentially independent of the phonon
softening or hardening. ~2 Actually this correction
results from the random motion of an S ion fol-
lowing the changes in ionic sizes of its neighbor-
ing Sm ions induced by the valence fluctuation.
Thirdly, we assume (d, = ~» —cf . Then we have to
execute the n summation in Egs. (3.3), (3.4),
and (3.6) to obtain the values of N~, E„and(u,').
Most interesting is the calculation of vo. Note,
the first term in the second set of large paren-
theses in Eg. (3.5) will be divergent if we take
Q, =c» -if -—v, withn=o. Therefore, we cannot
replace e, in Eq. (3.5) simply by &o„asis done
in usual perturbation procedure. Solving Eq.
(3.5) with respect to v, we find

(3.19)

where the sign + corresponds to the sign of
(&o, —e~+ i& ). This is the result due to the res-
onantlike coupling effect between the phonon and
the valence fluctuations. One should note again
that, although we do have a nonperturbative mod-

ification of the phonon frequency, we do not find
a singular behavior of other physical quantities
such as I„,E„and(u,'). The anomalous soften-
ing of the optical-zone boundary phonons observed
in SmS at low pressure can be explained with the
present model by assuming that (e~ —~z) a ro, .

IV. SIMPLE MODEL ASSUMING DELOCALIZED
d ELECTRONS

If 8&=—1 —Fs„«1,then all of the Sm ions are
mostly in the Sm'+ state and very occasionally
excited to the Sm" state through the f -d hybridi-
zation mechanism. This is supposed to be an ex-
treme case realized in the metallic phase. Again,
we may neglect the interaction among excited
Sm'+ states. In the present case, we have the
delocalized d electrons in the ground-state Sm"
configuration of the Sm ion. The d electrons are
occasionally trapped by the Sm ion to become
bound f electrons. This physical model is most
simply described by the fol.lowing Hamiltonian:

H = Hf + H»+ H~»+ Hp), + H, (4.1)

where H~, H,„,and H, » are given in Eg. (3.1).
II„is given by

H, = Z .,dt d.
Qo koki o

H~~ =Q Q [ Vf t(R )d q, + H.c.]

H +a»+0 +& h (4.2)

Here, e~ is the band energy of the d electrons.
Note that we use a spin-noneonserving interaction
Hf» because we are not inte res ted in the spin de-
generacy of the f states in the present study, but
we need to take explicit account of the spin degen-
eracy of the d states in order to avoid unphysical.
occurrence of the excitonic state. The electronic
configuration described by (4.1) in which the elec-
tron-phonon interaction is negl. ected is il.lustrated
in Fig. 3. Now we can follow the procedure sim-
ilar to that taken in the previous section. We apply
the polaron transformation to H to obtain the ef-
fective Hamiltonian

where H» =H»,

Hy„=Z Vf~(R )d&, exp g " [bt(R„+a„)-b(R +a.„)]+8c.
Rm C 0

and H& and H» are given in Eq. (3.2). We can use a perturbation expansion with respect to V to calculate
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(4.3)

various physical quantities. For practical purpose, we may reasonably assume that the density of the d
states is given by a constant pp within the range of the energy of our present interest. Then, the average
number of the f electrons n&, the shift b,E, of the ground-state energy E, due to including Hz~, the re-
normalized phonon frequency r3„and the mean-square displacement (u'(H, )) are given up to 0(V') by

g
28

n~ —2I V( po
p n ~ g4)p+ 6y —p,

bE, = E, -p, D'- —,&u, = —p, (
V(' g

n=p

g
2tl D

- ln
n t N(dp+ 6y —JL

(4.4)

2p, ~V~'~ q'"" i, -p, +n(u, —ro, a, —p. +ntdo+~,
n! 6~ —p, +n(dp, E~ —p. +scop

in e—(er —p, +n(o, —~,) (4.5)

4 6 ez-y, +(n+1)&u,
~~+ ——ln

ZI —p. +n47p (dp 6I —p +n+p j
(4.6)

Here, i&, q', and
~
V[' are given in Eq, (3.7).

p, and D are the Fermi energy and half of the d

band width, respectively. In deriving these re-
sults we have used the assumption (Z& —p)/D «1,
(&u, /D) «1, together with Z&

—p &0 and have kept
the lowest-order terms in each expression. For
Zz —p, » &o„Eqs.(4.3)—(4.5) simplify as follows:

those given in the previous section, see Eqs.
(3.14)-(3.17). The only modification is the life-
time effect in Qp.

As is clear from this, all the results given here
are essentially the same as those given in the
previous section. Therefore, previous remarks

n, = 2p, [V(2
1

6y —P.

D
b,E, = --, (el —p, ) ln n~,

Zg —p,

(o, (o,~1-2q' — n, ~,'I,

(u,') = — 1+ 2t)' ' n2 &p

2+p M, E& —P. ~)

(4.7)

(4.8)

(4.9)

(4.10)

ENEPGY

V2

nant
state

Fermi energy

Note, that these results are essentially the same
as those given in Eqs. (3.10}-(3.13}, where t7~ and

(e„-C~)are replaced bynf and ~z-p, , respect-
ively. For ep Zf —p, 0, we find

nI = 2p. l V I'/(~& - p }, (4.11)
d band

1 DaE, .= , (~q —p,—) l—n

Zy —P,

2, =(o, 1+(2 —q')q' ~
. ln

2

~p
nf

(4.12)

(4.13)

(u,' ) =
2

(1+4q'n~ ) .
2+pM,

(4.14)

Again, these are essentially the same results as

DENSITY OF STATES

FIG. 3. Illustration of the electronic configuration in
the metallic phase described by Eq. (4.1) in which the
electron-phonon interaction is neglected. Only the states
in the shaded areas both of the d band and the resonant

f states are occupied by electrons in the ground state.
The characteristic frequency of the valence fluctuation
is given by the larger of (e&- p)/5 and poV /O'. In the
present study we assume (&f—p)» poV, i.e. , n& «1.
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are also relevant here. However, the- situation is
different for the xesult for 9, in the limit (d,
= Zf —p, . Al. though we have a singular term in
Eq. (4.5) for n=0 and G, =(d„implying that we
must solve (4.5) with respect to (d, again, the re-
sult is not as singular as that given in Eq. (3.19).
One obtains

(d, = (u, (1+y), (4.15)

y-—y, (lny, +lnilnyJ+ . )

A typical example for the present case may
be' Sm, „T,S with x ~ 0.2 at room temperature.
In order to make a critical comparison of the
present resul. ts with experiments' ' we also have
to include the lattice vibrations of the Sm ions
explieity. " But the general physical situation is
weB explained by the present model. assuming
that Zf —p, ~ uo.

V. CONCLUSION

So far we have investigated the essential fea-
tures of the intexplay between the valence fluctua-
tions Rnd the I,attlce vlbx'RtloQS by using a s1mple-
model Hamiltonian. The interaction between them
includes the ionic-size effect. . The latter may be
dominant and is most simply descxibed by. the
electron-phonon interaction given in Eq. (2.12).
For simplicity we neglected the lattice vibration
of Sm ions.

The esseQtlRl 1'esults of oui study Rre summar-
ized as follows: In a simplified physical model
we view the system with n„«I as a system with a
few Sm'+ ions in an Sm'+-rich system. The case
nf «1 is viewed correspondingly. We have then
ealeulated the ground-state energy E„the re-
normalized phonon energy Q„and the mean-
square displacement of S iona (u'(R, )) to first
order in the impurity-ion concentration x rigor-
ously. Here, x is defined byx=n, if n„«1and

by x =Sf for nf «1. The results simplify in some lim-
iting cases. If the characteristic electron energy
b.E [which is {E,-KI) or (E~ —p, ), respectively]
ls much 1Rx'gex' thRD the chRx'Rcterlstlc phoDOD-

energy co„the electron-phonon interaction cor-
rections are small, of the relative order of
0(q'(((I, /LE)x). The shift 6(d, in the phonon ener-
gy due to the electron-phonon interaction is al. —

ways negative. The renormalized phonon becomes
softer proportionally to the impurity-ion concen-
tration x. The corrections to (u'(8, )} seem to be
simply due to the phonon-softening effects. On

the other hand, when 4e «cu„ then dxastic effects
result fxom the electron-phonon interaction. The
matrix element, for the f -(f hybridization is re-
duced by the polaron factor of O(e " ). The shift
4mo in the phonon energy can be positive or nega-
tive depending on the sign of (q' —2). The correc-
tion to (u'(R, )} is 0(q'x), which is significantly
larger than that expected from the modification in
the phonon energy. " When 4e = co„wefind singu-
lar modifications in the phonon frequency [ see
Eqs. (3.18) and (4.14)], which cannot be expressed
simply by the perturbation expansion in x, while
we do Qot find anything singular in other physical.
quantities.

These x'esults are applicable only to eases with
n~ « I or n& « I in the stx iet sense of the approxi-
IQRtlon used. So lt IQRkes sense fox' the semleon-
dgeting phase, because to our best knowledge most
of the mixed-valent material. s seem to have n~ « I
in the semiconducting phase. On the other hand,
this is not the case for the metallic phase. We
have to include higher-ox'der terms in power of
e& in ordex' to discuss the more realistic cases.

One of the conventional ways to extend the pres-
ent study in such direction is to replace the unper-
turbed f Green's function G(&OI(E) =-(E —E&+ p. +i5) '
used in the above calculations by the renormalized
oIle G g (E) = [ E —Ey + p, + +g (E)], whel'e the
self-energy is given by

E —E-+ p, —neo +15sgn(E- —p, )k 0 k

which simplifies as

—iS sgn(E —p, ) (for j E —p, [»(u, )
g (1)(E)f

—ia sgn(E —p, ) (for (u, »[ E —pi ),
with b, =- 2mp, i V [' and b, =—2mp, i V i'. This approx-
imation" is to neglect the vertex corrections due
to the multiphonon exchange processes, which are
negligible in the both limits of [{E&—p, ) +1l']~'»&o,
and of ~, &&[(E& —(I)'+bP]'~'. Thus we can also
calculate ni, E„&3„da(nu,') rigorously in these
limits. , The details of such calculations and the
results will be published separately, "but the
qualitative feature of the results is summarized
in brief as follows: When (E& —(I)'+n, '» ((I,', n&
ls glve11 by cos {(Ey —p, )/[(Ey —il) +6 ] j /m

Rlld tile energy (Eg —lj) Rlld sg RppeRl'lllg In Eqs.
(4.8)-(4.10) are replaced by [(Ez —il)'+i( ']'/' and
sin(mR&)/m, respectively When (d,'»(E.z

—(I)'+6',
tip ls glve11 by cos {(Eg—ll)/[(Eg —p) + b, ]
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and the energy (K& —p, ) and n& appearing in Eqs.
(4.12)-(4.14) are replaced by [(ef —p, )'+a']' '
and sin(ma&)/~, respectively. Hence, we note
that the results given in the present study can be
used not only for cases with x «j.„butalso for
cases with more realistic values of x by regard-
ing (b,~!K) as the characteristic frequency of val-
ence fluctuation as far as the semiquantitative
studies are eoneerned.

an Sm' ion and that of an Sm" ion. I.et us look
at a pair of neighboring S' ion and Sm ion located
at sites R, and R,+a~, respeetive1. y. Then the
displacement u of the 8 ion is a function N(n&) of
the number sl of f electrons in the Sm ion. We
may regard the difference (bg) —=

) u(l) -u(0)
~

as
the difference between the ionic diameters AB
=—[It(Sm") -R(Sm")]. Then,
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On the otherhand, M, ~, is related to the mean-
square displacement (u,'), in the zero-point os-
cillation by the relation

API'ENDIX: DERIVATION OF Eg. (3.18)

If the electron-phonon interaction, Eq. (2.1),
would result dominantly from the ionic-size ef-
fect, then we can relate the coupling constant g
to the difference between the ionic diameter of

Using these results, we find the result (3.18).
Note, this estimate of g neglects contributions
resulting from the conventional electron-lattice
coupling.
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